Review: DBMS Components

Research Topics in Databases

- System Oriented...
 - How to implement a DBMS?
 - How to manage the data in the storage?
 - How to construct the index structures for the data?
 - How to implement the different SQL operators?
 - . . .
- Application Oriented...
 - What kind of database queries can be answered?
 - What kind of index structures can be used to support the database queries?
 - What kind of techniques can be used to improved the database queries?
 - ...

A Typical Database Research Project

- Find an interesting database research topic: e.g., an useful database query
 - NN query
 - Skyline query
 - Keyword search query
 - ...
- Design "efficient" and "effective" methods to answer the database query
 - Index structure?
 - Query answering algorithm?
 - Speed-up techniques?
 - Scalability?
- Implementation
 - An executable demo
 - How to maintain the data? How to access data via a database API? How to construct indices?...
 - Conduct experiments on a real dataset
- Publication
 - Write a research paper
 - Publish in major database conferences, e.g., SIGMOD, VLDB, ICDE, EDBT...
 - Apply for a patent
 - Start-up / Commercial software

Next to Discuss

- Database Research
- Data Mining Research
- Web Search and Information Retrieval Research

Query Processing and Advanced Queries

Advanced Queries (1): Spatial Databases and kd-Tree

Spatial Database Applications

- GIS (geographic information system) applications (e.g., maps):
 - Urban planning, route optimization, fire or pollution monitoring, utility networks, etc
- Other applications:
 - VLSI design, CAD/CAM, model of human brain, etc.
- Traditional applications:
 - Multi-dimensional records

What is a Spatial Database?

- A SDBMS is a DBMS
- It offers spatial data types/data models/ query language
 - Support spatial properties/operations
- It supports spatial data types in its implementation
 - Support spatial indexing, algorithms for spatial selection and join

Spatial Data Representation

Raster model:

Vector model:

Spatial Data Types

- Point : 2 real numbers
- Line : sequence of points
- Region : area included inside n-points

Raster and Vector Data Raster data are described by a cell grid, one value per cell Vector Raster Point Line Zone of cells Polygon

Spatial Data Relationships

- Topological relationships:
 - adjacent, inside, disjoint, etc
- Direction relationships:
 - Above, below, north_of, etc
- Metric relationships:
 - •"distance < 100"
- And operations to express the relationships

Spatial Queries

- Selection queries: "Find all objects inside query q"
 - Inside: intersects, north, etc.
- Nearest Neighbor queries: "Find the closet object to a query point q"
 - KNN: k-closest objects
- Skyline queries: find all skyline points which are not dominated by some others.

Access Methods

- Point Access Methods (PAMs):
 - Index methods for 2 or 3-dimensional points (kd-tree)
- Spatial Access Methods (SAMs):
 - Index methods for 2 or 3-dimensional regions and points (R-tree)

PAM: The problem

- Given a point set and a rectangular query, find the points enclosed in the query
- We allow insertions/deletions online

Tree-based PAMs

- Most of tree-based PAMs are based on kdtree
- kd-tree is a main memory binary tree for indexing k-dimensional points
- Levels rotate among the dimensions, partitioning the space based on a value for that dimension
- kd-tree is not necessarily balanced

kd-Tree

At each level we use a different dimension

kd-Tree Example

Each leaf node can hold up to 2 points.

Spatial Indexing

- Point Access Methods can index only points. What about regions?
 - Use the transformation technique and a PAM
 - New methods: Spatial Access Methods
 SAMs
 - R-tree and variations