
Query Processing and Advanced Query Processing and Advanced
QueriesQueries

Query Optimization (4)Query Optimization (4)

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (4)Query Optimization (4) 2 / 17

TwoTwo--Pass Algorithms Based on HashingPass Algorithms Based on Hashing

If both input relations R and S are too large to
be stored in the buffer, hash all the tuples of
both relations applying the same hash
function to the join attribute(s).
Hash function h has domain of k hash values,
i.e. k buckets.
Only tuples from R and S that fall into the
same bucket i can join.
Hash first relation R, then relation S, write the
buckets to disk.

R ./ SR ./ S

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (4)Query Optimization (4) 3 / 17

TwoTwo--Pass Algorithms Based on HashingPass Algorithms Based on Hashing

To hash relation R, read it block by block.
Allocate one buffer block to each of the k
buckets.
For each tuple t, move it to the buffer of h(t).
If a buffer is full, write it to disk and initialize
it.
Finally, write to disk all partially-full buffer
blocks.
I/O cost is B(R).
Memory requirement M = k+1 (k for buckets
and 1 for reading tuples from R).

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (4)Query Optimization (4) 4 / 17

TwoTwo--Pass Algorithms Based on HashingPass Algorithms Based on Hashing

For each i, read the i-th bucket of R into
memory, and read the i-th bucket of S into
memory, one block at a time.
For each tuple s S in the buffer block,
determine matching tuples r R and output
the join result (r,s).
We assume that each bucket fits into main
memory.

22
22

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (4)Query Optimization (4) 5 / 17

TwoTwo--Pass Algorithms Based on HashingPass Algorithms Based on Hashing

Hash join
Hash function h, range 0 . . . k
Buckets for R: G0, G1, ... Gk
Buckets for S: H0, H1, ... Hk

Algorithm
(1) Hash R tuples into G buckets
(2) Hash S tuples into H buckets
(3) For i = 0 to k do

match tuples in buckets Gi, Hi and output results

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (4)Query Optimization (4) 6 / 17

Two PhasesTwo Phases

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (4)Query Optimization (4) 7 / 17

TwoTwo--Pass Algorithms Based on HashingPass Algorithms Based on Hashing

Example hash function: even/odd buckets

R S Buckets
2 5 Even
4 4
3 12 Odd:
5 3
8 13
9 8

11
14

2 4 8 4 12 8 14

3 5 9 5 3 13 11

R S

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (4)Query Optimization (4) 8 / 17

TwoTwo--Pass Algorithms Based on HashingPass Algorithms Based on Hashing

Cost
“Bucketize:” Read R + write

Read S + write
Join: Read R, S

Total cost = 3 (B(R)+B(S))
This is an approximation, since buckets will vary
in size, and we have to round up to full blocks.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (4)Query Optimization (4) 9 / 17

TwoTwo--Pass Algorithms Based on HashingPass Algorithms Based on Hashing

)(i.e.,1)1/()(

)(i.e.,1)1/()(

SBMMMSB

RBMMMRB





Memory requirements
Size of R bucket = B(R)/(M-1)

k = M-1 = number of hash buckets
This is assuming that all hash buckets of R
have the same size.

Same calculation for S.
The buckets for the smaller input relation must
fit into main memory.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (4)Query Optimization (4) 10 / 17

IndexIndex--Based AlgorithmsBased Algorithms

Index-based algorithms are especially useful for
the selection operator, but also for the join
operator.
We distinguish clustering and non-clustering
indexes.
A clustering index is an index where all tuples
with a given search key value appear on
(roughly) as few blocks as possible.
One relation can have only one clustering index,
but multiple non-clustering indexes.

R ./ SR ./ S

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (4)Query Optimization (4) 11 / 17

IndexIndex--Based AlgorithmsBased Algorithms

Index join

For each r  R do
X  index (S, C, r.C)
for each s  X do

output (r,s)

index(rel, attr, value)
returns the set of rel tuples with attr = value

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (4)Query Optimization (4) 12 / 17

IndexIndex--Based AlgorithmsBased Algorithms

Example
Assume S.C index exists; 2 levels.
Assume R clustered, unordered.
Assume S.C index fits in memory.
Cost

reads of R: 500 IOs
for each R tuple:

- probe index – no IO
- if match, read S tuple: 1 IO.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (4)Query Optimization (4) 13 / 17

IndexIndex--Based AlgorithmsBased Algorithms

What is expected number of matching tuples?

(a) say S.C is key, R.C is foreign key
then expect 1 match

(b) say V(S,C) = 5000, T(S) = 10,000
with uniform distribution assumption
expect 10,000/5,000 = 2 matching tuples.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (4)Query Optimization (4) 14 / 17

IndexIndex--Based AlgorithmsBased Algorithms

Total cost of index join

(a) Total cost = 500+5000(1)1 = 5,500 IO

(b) Total cost = 500+5000(2)1 = 10,500 IO

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (4)Query Optimization (4) 15 / 17

IndexIndex--Based AlgorithmsBased Algorithms

What if index does not fit in memory?

Example: say S.C index is 201 blocks.
(1 root node, and 200 leaf nodes)

Keep root + 99 leaf nodes in memory.
Expected cost of each probe is

E = (0)99 + (1)101  0.5.
200 200

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (4)Query Optimization (4) 16 / 17

Summary of Join AlgorithmsSummary of Join Algorithms

Nested-loop join is suitable for “small” relations
(relative to memory size).
Hash-join usually is best for equi-join (join

condition is equal), where relations not sorted and
no indexes exist.

Sort-merge join is good for non-equi-join
e.g., R.C > S.C.
If relations already sorted, use merge join.
If index exists, index-join can be efficient
(depends on expected result size).

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (4)Query Optimization (4) 17 / 17

parse

convert

apply laws

estimate result sizes

consider physical plans estimate costs

pick best

execute

{P1,P2,…..}

{(P1,C1),(P2,C2)...}

Pi

answer

SQL query

parse tree

logical query plan

“improved” l.q.p

l.q.p. +sizes

statistics

Summary: Query ProcessingSummary: Query Processing

