
Query Processing and Advanced Query Processing and Advanced
QueriesQueries

Query Optimization (3)Query Optimization (3)

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (3)Query Optimization (3) 2 / 23

NestedNested--Loop JoinsLoop Joins

We now consider algorithms for the join
operator.
The simplest one is the nested-loop join, a one-
and-a-half pass algorithm.
One table is read once, the other one multiple
times.
It is not necessary that one relation fits in main
memory.
Perform the join through two nested loops over
the two input relations.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (3)Query Optimization (3) 3 / 23

NestedNested--Loop JoinsLoop Joins

Tuple-based nested-loop join
natural join R S, join attribute C

for each r  R do
for each s  S do

if r.C = s.C then output (r,s)

Outer relation R, inner relation S.
One buffer for outer relation, one buffer for
inner relation.
M = 2.
I/O cost is T(R) x T(S).

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (3)Query Optimization (3) 4 / 23

NestedNested--Loop JoinsLoop Joins

Example

Relations not clustered

T(R1) = 10,000 T(R2) = 5,000

R1 as the outer relation

Cost for each R1 tuple t1:

read tuple t1 + read relation R2

Total I/O cost is 10,000 (1+5,000)=50,010,000

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (3)Query Optimization (3) 5 / 23

NestedNested--Loop JoinsLoop Joins
Can do much better by organizing access to
both relations by blocks.
Use as much buffer space as possible (M-1) to
store tuples of the outer relation.
Block-based nested-loop join

for each chunk of M-1 blocks of R do
read these blocks into the buffer;
for each block b of S do

read b into the buffer;
for each tuple t of b do

find the tuples of R that join
with t and output the join results

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (3)Query Optimization (3) 6 / 23

NestedNested--Loop JoinsLoop Joins

Example
R1 as the outer relation
T(R1) = 10,000, T(R2) = 5,000
S(R1) = S(R2) = 1/10 block (each block 10 tuples)
M = 101, 100 buffers for R1, 1 buffer for R2
10 R1 chunks
cost for each R1 chunk:
read chunk: 1,000 IOs
read R2: 5,000 IOs
total I/O cost is 10 x 6,000 = 60,000 IOs

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (3)Query Optimization (3) 7 / 23

NestedNested--Loop JoinsLoop Joins

Can do even better by reversing the join order.
R2 R1

T(R1) = 10,000, T(R2) = 5,000
S(R1) = S(R2) = 1/10 block (each block 10 tuples)
M = 101, 100 buffers for R2, 1 buffer for R1
5 R2 chunks
cost for each R2 chunk:

read chunk: 1,000 IOs
read R1: 10,000 IOs

total I/O cost is 5 x 11,000 = 55,000 IOs

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (3)Query Optimization (3) 8 / 23

NestedNested--Loop JoinsLoop Joins
Finally, performance is dramatically improved
when input relations are clustered (read by block).
With clustered relations, for each R2 chunk:

read chunk: 100 IOs
read R1: 1,000 IOs

Total I/O is 5 x 1,100 = 5,500 IOs.
Note that the IO cost for a one-pass join (which has
the minimum IO of any join algorithm) in this
example is 1,000 + 500 = 1,500 IOs.
For a comparison, the one-pass join requires
M=501 buffer blocks, which is optimal. Back

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (3)Query Optimization (3) 9 / 23

TwoTwo--Pass Algorithms Based on SortingPass Algorithms Based on Sorting

If the input relations are sorted, the efficiency of
duplicate elimination, set-theoretic operations
and join can be greatly improved.
Reserve one buffer for each of the input relations
R and S and another buffer for the output.
Scan both relations simultaneously in sort order,
merging matching tuples.
For example, for set intersection: repeatedly
consider the tuple t that is least in the sort order
(w.r.t. primary key) among all tuples in the input
buffer. If it appears in both R and S, output t.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (3)Query Optimization (3) 10 / 23

TwoTwo--Pass Algorithms Based on SortingPass Algorithms Based on Sorting

In the following, we present a simple sort-merge
join algorithm.
It is called merge-join, if step (1) can be skipped,
since the input relations R1 and R2 are already
sorted.

Sort-merge join
(1) if R1 and R2 not sorted, sort them
(2) i  1; j  1;

while (i  T(R1))  (j  T(R2)) do
if R1{ i }.C = R2{ j }.C then outputTuples
else if R1{ i }.C > R2{ j }.C then j  j+1
else if R1{ i }.C < R2{ j }.C then i  i+1

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (3)Query Optimization (3) 11 / 23

TwoTwo--Pass Algorithms Based on SortingPass Algorithms Based on Sorting
Procedure outputTuples produces all pairs of
tuples from R1 and R2 with C = R1{ i }.C
= R2{ j }.C.
In the worst case, need to match each pairs of
tuples from R1 and R2 (nested-loop join).

Procedure outputTuples
While (R1{ i }.C = R2{ j }.C)  (i  T(R1)) do

[jj  j;
while (R1{ i }.C = R2{ jj }.C)  (jj  T(R2)) do

[output pair R1{ i }, R2{ jj };
jj  jj+1]

i  i+1]

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (3)Query Optimization (3) 12 / 23

TwoTwo--Pass Algorithms Based on SortingPass Algorithms Based on Sorting

Example

i R1{i}.C R2{j}.C j
1 10 5 1
2 20 20 2
3 20 20 3
4 30 30 4
5 40 30 5

50 6
52 7

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (3)Query Optimization (3) 13 / 23

TwoTwo--Pass Algorithms Based on SortingPass Algorithms Based on Sorting

Example
Both R1, R2 ordered by C; relations clustered.

Memory

R1

R2

…..

…..

R1

R2

Total cost: read R1 cost + read R2 cost
= 1,000 + 500 = 1,500 IOs

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (3)Query Optimization (3) 14 / 23

TwoTwo--Pass Algorithms Based on SortingPass Algorithms Based on Sorting

What if input relations are not yet in the required
sort order?
Do Two-Phase, Multiway Merge-Sort (2PMMS).
Phase 1: Sort each block of relation R separately in
main memory, write sorted sublists back to disk.
Phase 2: Merge all the B(R) sorted sublists.

pointer to first
unchosen tuple

output buffer. . .
select
smallest
unchosen

input buffer (sorted)

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (3)Query Optimization (3) 15 / 23

TwoTwo--Pass Algorithms Based on SortingPass Algorithms Based on Sorting

.)(RBM 

Each sorted sublist has a length of M blocks.
Number of sublists is B(R)/M.
Therefore,
This means we require
In phase 1, each tuple is read and written once. In
phase 2, each tuple is read again. We ignore the
cost of writing the results to disk.
Thus, the IO cost is 3B(R).

.)(i.e.,1/)(22 MMMRBMMRB 

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (3)Query Optimization (3) 16 / 23

TwoTwo--Pass Algorithms Based on SortingPass Algorithms Based on Sorting

IO cost is 4B(R), if sorting is used as a first step of
sort-join and the results must be written to the
disk.

If relation R is too big, apply the idea recursively.

Divide R into chunks of size M(M-1), use 2PMMS
to sort each one, and take resulting sorted lists as
input for a third (merge) phase.

This leads to Multi-Phase, Multiway Merge Sort.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (3)Query Optimization (3) 17 / 23

TwoTwo--Pass Algorithms Based on SortingPass Algorithms Based on Sorting

(i) For each 100 blk chunk of R:
- read chunk
- sort in memory
- write to disk

sorted
chunksR1

R2 ...

Example M=101

Memory

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (3)Query Optimization (3) 18 / 23

TwoTwo--Pass Algorithms Based on SortingPass Algorithms Based on Sorting

(ii) Read all chunks + merge + write out

Sorted file Memory Sorted
Chunks

......

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (3)Query Optimization (3) 19 / 23

TwoTwo--Pass Algorithms Based on SortingPass Algorithms Based on Sorting

Sort cost: each tuple is read, written,
read, written

Join cost: each tuple is read

Sort cost R1: 4 x 1,000 = 4,000
Sort cost R2: 4 x 500 = 2,000

Total cost = sort cost + join cost
= 6,000 + 1,500 = 7,500 IOs

Running Example:
T(R1) = 10,000
T(R2) = 5,000
S(R1) = S(R2) = 1/10 block
(each block 10 tuples)
M = 101
100 buffers for R2, 1 buffer for R1

Total IO Cost: 5(B(R1) + B(R2))

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (3)Query Optimization (3) 20 / 23

TwoTwo--Pass Algorithms Based on SortingPass Algorithms Based on Sorting

Nested loop join (best version discussed
above) needs only 5,500 IOs, i.e. outperforms
sort-join.
However, the situation changes for the
following scenario:

R1 = 10,000 blocks clustered
R2 = 5,000 blocks not ordered

R1 is 10,000 blocks, sorting needs M  100.
R2 is 5,000 blocks, sorting needs M  70.7.
I.e., need at least M=71 buffers.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (3)Query Optimization (3) 21 / 23

TwoTwo--Pass Algorithms Based on SortingPass Algorithms Based on Sorting

Nested-loops join:
5000 x (100+10,000) = 50 x 10,100
100

= 505,000 IOs

Sort-join:
5(10,000+5,000) = 75,000 IOs

Sort-join clearly outperforms nested-loop join!

M=101

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (3)Query Optimization (3) 22 / 23

TwoTwo--Pass Algorithms Based on SortingPass Algorithms Based on Sorting

Simple sort-join costs 5(B(R) + B(S)) IOs.
It requires
It assumes that tuples with the same join
attribute value fit in M blocks.
If we do not have to worry about large
numbers of tuples with the same join
attribute value, then we can combine the
second phase of the sort with the actual join
(merge).
We can save the writing to disk in the sort
step and the reading in the merge step.

.)(and)(SBMRBM 

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (3)Query Optimization (3) 23 / 23

TwoTwo--Pass Algorithms Based on SortingPass Algorithms Based on Sorting

This algorithm is an advanced sort-merge join.
Repeatedly find the least C-value c among the
tuples in all input buffers.
Instead of writing a sorted output buffer to
disk, and reading it again later, identify all
the tuples of both relations that have C=c.
Cost is only 3(B(R) + B(S)) IOs.
Since we have to simultaneously sort both
input tables and keep them in memory, the
memory requirements are getting larger:

.)()(SBRBM 

