Query Processing and Advanced

Queries

Query Optimization (3)

Nested-Loop Joins

® We now consider algorithms for the join
operator.

E The simplest one is the nested-loop join, a one-
and-a-half pass algorithm.

E One table is read once, the other one multiple
times.

B]t is not necessary that one relation fits in main
memory.

B Perform the join through two nested loops over
the two input relations.

CMPT 454: Database Systems || — Query Optimization (3)

Nested-Loop Joins

B Tuple-based nested-loop join
natural join R <] S, join attribute C

foreachr e Rdo
foreachs € S do
If r.C = s.C then output (r,s)

B Quter relation R, inner relation S.

® One buffer for outer relation, one buffer for
inner relation.

EM=2
® /O costis T(R) x T(S).

CMPT 454: Database Systems || — Query Optimization (3)

Nested-Loop Joins

¥ Example
B Relations not clustered
* T(R1) =10,000 T(R2) =5,000
B R1 as the outer relation
B Cost for each R1 tuple t1:
read tuple t1 + read relation R2
B Total I/O cost is 10,000 (1+5,000)=50,010,000

CMPT 454: Database Systems || — Query Optimization (3)

Nested-Loop Joins

E Can do much better by organizing access to
both relations by blocks.

B Use as much butfer space as possible (M-1) to
store tuples of the outer relation.

B Block-based nested-loop join

for each chunk of M-1 blocks of R do
read these blocks into the buffer:

for each block b of S do
read b into the buffer;
for each tuple t of b do
find the tuples of R that join
with t and output the join results

CMPT 454: Database Systems || — Query Optimization (3)

Nested-Loop Joins

B Example

E R1 as the outer relation

E T(R1) =10,000, T(R2) =5,000

B S(R1) =5S(R2) =1/10 block (each block 10 tuples)
EM=101, 100 buffers for R1, 1 buffer for R2

B 10 R1 chunks

E cost for each R1 chunk:
read chunk: 1,000 IOs
read R2: 5,000 IOs

B total I/O costis 10 x 6,000 = 60,000 IOs

CMPT 454: Database Systems || — Query Optimization (3)

Nested-Loop Joins

Can do even better by reversing the join order.
R2 ><]R1
E T(R1) =10,000, T(R2) =5,000
S(R1) = S(R2) =1/10 block (each block 10 tuples)
M =101, 100 buffers for R2, 1 buffer for R1
E 5 R2 chunks
E cost for each R2 chunk:
read chunk: 1,000 IOs
read R1: 10,000 IOs
B total I/O costis 5 x 11,000 = 55,000 IOs

CMPT 454: Database Systems || — Query Optimization (3)

Nested-Loop Joins

B Finally, performance is dramatically improved
when input relations are clustered (read by block).

. With clustered relations, for each R2 chunk:
read chunk: 100 IOs
read R1: 1,000 IOs

B Total I/Oi1s5x 1,100 = 5,500 IOs.

B Note that the IO cost for a one-pass join (which has
the minimum IO of any join algorithm) in this

example is 1,000 + 500 = 1,500 IOs.

® For a comparison, the one-pass join requires
M=501 buffer blocks, which is optimal. Back

CMPT 454: Database Systems || — Query Optimization (3)

Two-Pass Algorithms Based on Sorting

B If the input relations are sorted, the efficiency of
duplicate elimination, set-theoretic operations
and join can be greatly improved.

E Reserve one buffer for each of the input relations
R and S and another buffer for the output.

E Scan both relations simultaneously in sort order,
merging matching tuples.

B For example, for set intersection: repeatedly
consider the tuple t that is least in the sort order

(w.r.t. primary key) among all tuples in the input
buffer. If it appears in both R and S, output t.

CMPT 454: Database Systems || — Query Optimization (3)

Two-Pass Algorithms Based on Sorting

E In the following, we present a simple sort-merge
join algorithm.

B [t is called merge-join, if step (1) can be skipped,
since the input relations R1 and R2 are already
sorted.

Sort-merge join

(1) iIf R1 and R2 not sorted, sort them
(2) 1< 1;]« 1,
while (1< T(R1)) A (j £T(R2))do
If R1{1}.C =R2{j }.C then outputTuples
else if R1{i }.C>R2{j}.Cthenj«j+1
else IfR1{1}.C<R2{j}.Ctheni« i+1

CMPT 454: Database Systems || — Query Optimization (3)

Two-Pass Algorithms Based on Sorting

E Procedure outputTuples produces all pairs of
tuples from R1 and R2 with C =R1{1}.C

=R2{j}.C.

B In the worst case, need to match each pairs of
tuples from R1 and R2 (nested-loop join).

Procedure outputTuples

While (R1{ i }.C = R2{j }.C) » (i < T(R1)) do

L) < J;
while (R1{1i }.C =
[output

R2{ J] }.C) A (J] £ T(R2)) do

pair R1{ i }, R2{ jj }

J] <+l]

i i+l]

CMPT 454: Database Systems || — Query Optimization (3)

Two-Pass Algorithms Based on Sorting

Example

i R1{i}.C R2{j}.C
1 10 5

s w——m

s =

50
52

CMPT 454: Database Systems || — Query Optimization (3)

O O~ WDN R

Two-Pass Algorithms Based on Sorting

® Example
® Both R1, R2 ordered by C; relations clustered.

Memory

7% | 1 | | | ... R1
R1 77

R2%

..... R2

Total cost: read R1 cost + read R2 cost
= 1,000 + 500 = 1,500 I0s

CMPT 454: Database Systems || — Query Optimization (3)

Two-Pass Algorithms Based on Sorting

® What if input relations are not yet in the required
sort order?

® Do Two-Phase, Multiway Merge-Sort (2PMMS).

B Phase 1: Sort each block of relation R separately in
main memory, write sorted sublists back to disk.

B Phase 2: Merge all the B(R) sorted sublists.

input buffer (sorted) : ~_
¥ | select
| smallest output buffer
pointer to first L unchosen
unchosen tuple]

CMPT 454: Database Systems || — Query Optimization (3)

Two-Pass Algorithms Based on Sorting

B Fach sorted sublist has a length of M blocks.
B Number of sublists is B(R)/M.

BT
Tl

herefore, B(R)/M <M -1, i.e.B(R)<M2—-M <M?2.

his means we require |\ > \/ B(R).

E In phase 1, each tuple is read and written once. In

phase 2, each tuple is read again. We ignore the

cost of writing the results to disk.

® Thus, the IO cost is 3B(R).

CMPT 454: Database Systems || — Query Optimization (3)

Two-Pass Algorithms Based on Sorting

E JO cost is 4B(R), if sorting is used as a first step of
sort-join and the results must be written to the

disk.
B If relation R is too big, apply the idea recursively.

® Divide R into chunks of size M(M-1), use 2PMMS
to sort each one, and take resulting sorted lists as

input for a third (merge) phase.
E This leads to Multi-Phase, Multiway Merge Sort.

CMPT 454: Database Systems || — Query Optimization (3)

Two-Pass Algorithms Based on Sorting

® Example M=101

(i) For each 100 blk chunk of R:

- read chunk
- sort In memory
- write to disk

sorted

Rt I ety
R] Rrceil I et]]
g 5
P

CMPT 454: Database Systems || — Query Optimization (3)

Two-Pass Algorithms Based on Sorting

(i1) Read all chunks + merge + write out

Sorted file Memory Sorted
Chunks

L L

R

-
Eatntads)

CMPT 454: Database Systems || — Query Optimization (3)

Two-Pass Algorithms Based on Sorting

Sort cost: each tuple is read, written,
read, written

Join cost: each tuple is read Running Example:
T(R1) = 10,000

T(R2) = 5,000

Sort cost R1: 4 x 1,000 = 4,000 |>RY) =5(R2)=1/10 block
(each block 10 tuples)

Sort cost R2: 4 x 500 = 2,000 |[m=101
100 buffers for R2, 1 buffer for R1

Total cost = sort cost + join cost
= 6,000 + 1,500 =7,500 1Os

Total 10 Cost: 5(B(R1) + B(R2))

CMPT 454: Database Systems || — Query Optimization (3)

Two-Pass Algorithms Based on Sorting

E Nested loop join (best version discussed
above) needs only 5,500 IOs, i.e. outperforms
sort-join.

¥ However, the situation changes for the
following scenario:

R1 = 10,000 blocks | clustered
R2 =5,000 blocks | not ordered

® R11is 10,000 blocks, sorting needs M > 100.
R2 is 5,000 blocks, sorting needs M > 70.7.
I.e., need at least M=71 buffers.

CMPT 454: Database Systems || — Query Optimization (3)

Two-Pass Algorithms Based on Sorting

B Nested-loops join:

5000 x (100+10,000) = 50 x 10,100 M=101
100
= 505,000 IOs
B Sort-join:

5(10,000+5,000) = 75,000 1Os

B Sort-join clearly outperforms nested-loop join!

CMPT 454: Database Systems || — Query Optimization (3)

Two-Pass Algorithms Based on Sorting

E Simple sort-join costs 5(B(R) + B(S)) IOs.

¥ It requires M Z\/B(R) and M >,/B(S).

E [t assumes that tuples with the same join
attribute value fit in M blocks.

® If we do not have to worry about large
numbers of tuples with the same join
attribute value, then we can combine the
second phase of the sort with the actual join
(merge).

B We can save the writing to disk in the sort
step and the reading in the merge step.

CMPT 454: Database Systems || — Query Optimization (3)

Two-Pass Algorithms Based on Sorting

B This algorithm is an advanced sort-merge join.

E Repeatedly find the least C-value c among the
tuples in all input buftfers.

B Instead of writing a sorted output buffer to
disk, and reading it again later, identity all
the tuples of both relations that have C=c.

E Costis only 3(B(R) + B(S)) IOs.
E Since we have to simultaneously sort both

input tables and keep them in memory, the
memory requirements are getting larger:

M >,/B(R)+B(S).

CMPT 454: Database Systems || — Query Optimization (3)

