
Query Processing and Advanced Query Processing and Advanced
QueriesQueries

Query Optimization (2)Query Optimization (2)

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (2)Query Optimization (2) 2 / 12

IntroductionIntroduction

We have optimized the logical query plan,
applying relational algebra equivalences.
In order to refine this plan into a physical query
plan, we in particular need to choose one of the
available algorithms to implement the basic
operations (selection, join, . . .) of the query plan.

For each alternative physical query plan, we
estimate its cost.
The cost estimates are based on the size
estimates that we discussed in the previous
chapter.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (2)Query Optimization (2) 3 / 12

IntroductionIntroduction

Disk I/O (read / write of a disk block) is orders
of magnitude more expensive than CPU
operations.
Therefore, we use the number of disk I/Os to
measure the cost of a physical query plan.
We ignore CPU costs, timing effects, and double
buffering requirements.
We assume that the arguments of an operator
are found on disk, but the result of the operator
is left in main memory.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (2)Query Optimization (2) 4 / 12

IntroductionIntroduction

We use the following parameters (statistics) to
express the cost of an operator:
- B(R) = # of blocks containing R tuples,
- f(R) = max # of tuples of R per block,
- M = # memory blocks available in the buffer,
- HT(i) = # levels in index i,
- LB(i) = # of leaf blocks in index i.
M may comprise the entire main memory, but
typically the main memory needs to be shared
with other processes, and M is much (!) smaller.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (2)Query Optimization (2) 5 / 12

IntroductionIntroduction
The performance of relational operators depends
on many parameters such as the following ones.

Are the tuples of a relation stored physically
contiguous (clustered)? If yes, the number of
blocks to be read is greatly reduced compared
to non-clustered storage.
Is a relation sorted by the relevant (selection,
join) attribute? Otherwise, it may need to be
sorted on-the-fly.
Which indexes exist? Some algorithms require
the existence of a corresponding index.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (2)Query Optimization (2) 6 / 12

IntroductionIntroduction

Each operator (selection, join, . . .) in a logical
query plan can be implemented by one of a
fairly large number of alternative algorithms .
We distinguish three types of algorithms:
- sorting-based algorithms,
- hash-based algorithms,
- index-based algorithms.
Sorting, building of hash table or building of
index can either have happened in advance or
may happen on the fly.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (2)Query Optimization (2) 7 / 12

IntroductionIntroduction

We can also categorize algorithms according to
the number of passes over the data:
- one-pass algorithms

read data only once from disk,
- two-pass algorithms

read data once from disk, write intermediate
relation back to disk and then read the
intermediate relation once.

- multiple-pass algorithms
perform more than two passes over the data,
not considered in class.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (2)Query Optimization (2) 8 / 12

OneOne--Pass Algorithms for Unary OperationsPass Algorithms for Unary Operations

Consider the unary, tuple-at-a-time operations,
selection and projection on relation R.
Read all the blocks of R into the input buffer, one
at a time.
Perform the operation on each tuple and move
the selected / projected tuple to the output
buffer.

R
Input
buffer

Output
buffer

Unary
operation

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (2)Query Optimization (2) 9 / 12

OneOne--Pass Algorithms for Unary OperationsPass Algorithms for Unary Operations

Output buffer may be input buffer of other
operation and is not counted.
Thus, algorithm requires only M = 1 buffer
blocks.
I/O cost is B(R).
If some index is applicable for a selection, have
to read only blocks that contain qualifying
tuples.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (2)Query Optimization (2) 10 / 12

OneOne--Pass Algorithms for Binary OperationsPass Algorithms for Binary Operations

SR B

Binary operations: union, intersection,
difference, Cartesian product, and join.
Use subscripts B and S to distinguish between
the set- and bag- version, e.g.
The bag union can be computed using a
very simple one-pass algorithm: copy each tuple
of R to the output, and copy each tuple of S to
the output. (for the SUM model of bag union)
I/O cost is B(R) + B(S), M = 1.

.and SB

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (2)Query Optimization (2) 11 / 12

OneOne--Pass Algorithms for Binary OperationsPass Algorithms for Binary Operations

)).(),(min(SBRBM

Other binary operations require the reading of
the smaller of the two input relations into main
memory.
One buffer to read blocks of the larger relation,
M-1 buffers for holding the entire smaller table.
I/O cost is B(R) + B(S).
In main memory, a data structure is built that
efficiently supports insertions and searches.
Data structure, e.g., hash table or binary
balanced tree. Space overhead can be neglected.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Optimization (2)Query Optimization (2) 12 / 12

OneOne--Pass Algorithms for Binary OperationsPass Algorithms for Binary Operations

For set union, read the smaller relation (S) into
M-1 buffers, representing it in a data structure
whose search key consists of all attributes.
All these tuples are also copied to the output.
Read all blocks of R into the M-th buffer, one at
a time.
For each tuple t of R, check whether t is in S. If
not, copy t to the output.
For set intersection, copy t to output if it also is
in S.

