Query Processing and Advanced

Queries

Query Optimization (2)

Introduction

B We have optimized the logical query plan,
applying relational algebra equivalences.

B In order to refine this plan into a physical query
plan, we in particular need to choose one of the
available algorithms to implement the basic
operations (selection, join, . . .) of the query plan.

B For each alternative physical query plan, we
estimate its cost.

B The cost estimates are based on the size
estimates that we discussed in the previous
chapter.

CMPT 454: Database Systems Il — Query Optimization (2)

Introduction

B Disk I/O (read / write of a disk block) is orders
of magnitude more expensive than CPU
operations.

B Therefore, we use the number of disk 1/Os to
measure the cost of a physical query plan.

B We ignore CPU costs, timing etfects, and double
buffering requirements.

® We assume that the arguments of an operator
are found on disk, but the result of the operator
is left in main memory.

CMPT 454: Database Systems Il — Query Optimization (2)

Introduction

B We use the following parameters (statistics) to
express the cost of an operator:
- B(R) = # of blocks containing R tuples,
- f(R) = max # of tuples of R per block,
-M = # memory blocks available in the buffer,
- HT(i) = # levels in index i,
- LB(i) = # of leaf blocks in index i.

E M may comprise the entire main memory, but

typically the main memory needs to be shared
with other processes, and M is much (!) smaller.

CMPT 454: Database Systems Il — Query Optimization (2)

Introduction

B The performance of relational operators depends
on many parameters such as the following ones.

B Are the tuples of a relation stored physically
contiguous (clustered)? If yes, the number of
blocks to be read is greatly reduced compared
to non-clustered storage.

® [s a relation sorted by the relevant (selection,
join) attribute? Otherwise, it may need to be
sorted on-the-fly.

B Which indexes exist? Some algorithms require
the existence of a corresponding index.

CMPT 454: Database Systems Il — Query Optimization (2)

Introduction

B Each operator (selection, join, . . .) in a logical
query plan can be implemented by one of a
fairly large number of alternative algorithms .

B We distinguish three types of algorithms:
- sorting-based algorithms,
- hash-based algorithms,
- index-based algorithmes.

Sorting, building of hash table or building of
index can either have happened in advance or
may happen on the fly.

CMPT 454: Database Systems Il — Query Optimization (2)

Introduction

B We can also categorize algorithms according to
the number of passes over the data:

- one-pass algorithms
read data only once from disk,

- two-pass algorithms
read data once from disk, write intermediate
relation back to disk and then read the
intermediate relation once.

- multiple-pass algorithms
perform more than two passes over the data,
not considered in class.

CMPT 454: Database Systems Il — Query Optimization (2)

One-Pass Algorithms for Unary Operations

B Consider the unary, tuple-at-a-time operations,

selection and projection on relation R.

B Read all the blocks of R into the input buffer, one

at a time.

B Perform the operation on each tuple and move

the selected / projected tuple to the output

buffer.

| Input
E | buffer

CMPT 454: Database Systems Il — Query Optimization (2)

| Unary
operation

| Output
buffer

One-Pass Algorithms for Unary Operations

E Output buffer may be input butfer of other
operation and is not counted.

B Thus, algorithm requires only M =1 buffer
blocks.

B [/O costis B(R).

B If some index is applicable for a selection, have

to read only blocks that contain qualifying
tuples.

CMPT 454: Database Systems Il — Query Optimization (2)

One-Pass Algorithms for Binary Operations

B Binary operations: union, intersection,
difference, Cartesian product, and join.

B Use subscripts B and S to distinguish between
the set- and bag- version, e.g. Upg and Us .

B The bag union R Uy S can be computed using a
very simple one-pass algorithm: copy each tuple
of R to the output, and copy each tuple of S to
the output. (for the SUM model of bag union)

B [/Ocostis B(R) + B(S), M =1.

CMPT 454: Database Systems Il — Query Optimization (2)

One-Pass Algorithms for Binary Operations

B Other binary operations require the reading ot
the smaller of the two input relations into main
memory.

® One buffer to read blocks of the larger relation,
M-1 buffers for holding the entire smaller table.

® [/O costis B(R) + B(S).
B In main memory, a data structure is built that
efficiently supports insertions and searches.

B Data structure, e.g., hash table or binary
balanced tree. Space overhead can be neglected.

& M >min(B(R), B(S)).

CMPT 454: Database Systems Il — Query Optimization (2)

One-Pass Algorithms for Binary Operations

® For set union, read the smaller relation (S) into
M-1 buffers, representing it in a data structure
whose search key consists of all attributes.

® All these tuples are also copied to the output.

® Read all blocks of R into the M-th buffer, one at
a time.

® For each tuple t of R, check whether tis in S. If
not, copy t to the output.

B For set intersection, copy ¢ to output if it also is
in S.

CMPT 454: Database Systems Il — Query Optimization (2)

