Query Processing and Advanced

Queries

Query Processing (2)

Review: Query Processing

| SQL query

‘ parse tree
@ | answer

| logical query plan @

T Pi
“Improved” I.q.p

| l.g.p. + sizes {(P1,C1),(P2,C2).. }]
@r physical plans
{P1,P2,..} T

CMPT 454: Database Systems |l — Query Processing (2)

Grammar for SQL

B The following grammar describes a simple subset of SQL.

e Queries
<Query>::= SELECT <SelList> FROM <FromList>
WHERE <Condition> ;

k Selection lists
<SelList>::= <Attribute>, <SelList>
<SelList>::= <Attribute>

e From lists
<FromlList>::= <Relation>, <FromList>
<FromlList>::= <Relation>

CMPT 454: Database Systems Il — Query Processing (2)

Grammar for SQL

B Conditions
<Condition>::= <Condition> AND <Condition>
<Condition>::= <Attribute> IN (<Query>)
<Condition>::= <Attribute> = <Attribute>
<Condition>::= <Attribute> LIKE <Pattern>

r Syntactic categories Relation and Attribute are not
defined by grammar rules, but by the database schema.

» Syntactic category Pattern defined as some regular
expression.

CMPT 454: Database Systems Il — Query Processing (2)

Example: A SQL Query

Starsin (movieTitle, movieYear, starName)
MovieStar (name, address, gender, birthdate)

Goal: find the movies with stars born in 1960

SELECT movieTitle
FROM Starsin, MovieStar
WHERE starName = name AND birthdate LIKE ‘%1960’

CMPT 454: Database Systems |l — Query Processing (2)

A Parse Tree

<Query>

T

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <Relation> , <FromList>
movieTitle Starsln <Relati
ovieStar

<Condition> AND <Condition>
<Attribute> = <Attribute> <Attribute> LIKE <Pattern>
starName name birthdate ‘001960’

CMPT 454: Database Systems |l — Query Processing (2)

Conversion to Logical Query Plan

» How to convert a parse tree into a logical query plan, i.e.
a relational algebra expression?

e Queries with conditions without subqueries are easy:
Form Cartesian product of all relations in <FromList>.
Apply a selection . where C is given by <Condition>.

e Finally apply a projection ©; where L is the list of
attributes in <SelList>.

r Queries involving subqueries are more difficult.

rRemove subqueries from conditions and represent them
by a two-argument selection in the logical query plan.

CMPT 454: Database Systems |l — Query Processing (2)

An Algebraic Expression Tree

TcmovieTitIe

cSstarName:name AND birthdate LIKE ‘%1960’

X

T

Starsln MovieStar

CMPT 454: Database Systems |l — Query Processing (2)

Another SQL Query

Starsin (movieTitle, movieYear, starName)
MovieStar (name, address, gender, birthdate)

Goal: find the movies with stars born in 1960

. p— e, = W m

FROM Starsln
WHERE starName IN (
SELECT name
FROM MovieStar
WHERE birthdate LIKE ‘%1960’);

CMPT 454: Database Systems |l — Query Processing (2)

Another Parse Tree

<Query>

T

SELECT <SelList> FROM <FromList> WHERE <Cond|t|on>

/
<Attribute> <Re|a’tion> \

title Starsin <Attr|bute>

starName <Query>

S =0

SELECT <SelList> FROM <FromList> WHERE <Condition>

/ i _—/

<Attribute> <Relation> <Attribute> LIKE <Pattern>

| | | |

name MovieStar birthDate ‘001960’

CMPT 454: Database Systems |l — Query Processing (2)

Another Algebraic Expression Tree

7-‘:movieTitIe

/G\ .
Starslin <condition>
\ AN
<Attribute> IN 7T e

|

starName O birthdate LIKE ‘%1960’

MovieStar

CMPT 454: Database Systems |l — Query Processing (2)

Algebraic Laws for Query Plans

Introduction

B Algebraic laws allow us to transform a Relational
Algebra (RA) expression into an equivalent one.

¥ Two RA expressions are equivalent if, for all
database instances, they produce the same answer.

e The resulting expression may have a more
efficient physical query plan.

Algebraic laws are used in the query rewrite
phase.

CMPT 454: Database Systems Il — Query Processing (2)

Algebraic Laws for Query Plans

Introduction

B Commutative law:
Order of arguments does not matter.
XTy=y+X
B Associative law:
May group two uses of the operator either from the left
or the right.
(x+y)+z=x+(y+2)
Operators that are commutative and associative
can be grouped and ordered arbitrarily.

CMPT 454: Database Systems |l — Query Processing (2)

Algebraic Laws for Query Plans

Natural Join, Cartesian Product and Union

RS = SR
(R><1S)><IT = RD><I(SD> T)

RxS=SxR
(RxS)xT=Rx(SxT)

RUS=SUR
RU(SUT)=(RUS)UT

CMPT 454: Database Systems |l — Query Processing (2)

Algebraic Laws for Query Plans

Selection

Gp1 A p2(Gpl | sz (R)]

Op1vp2R =[O RIU [O, R)]

Gp]_ [sz (R)] — sz [Gpl (R)]

r Simple conditions pl or p2 may be pushed down
further than the complex condition.

CMPT 454: Database Systems |l — Query Processing (2)

Algebraic Laws for Query Plans

Bag Union

e What about the union of relations with duplicates
(bags)?
R ={a,a,b,b,b,c}
S={b,b,c,c,d}
RUS=?
e Number of occurrences either SUM or MAX of
occurrences in the imput relations.
SUM: RUS=4{a,a,b,b,b,b,b,c,c,c,d}
MAX: RUS ={a,a,b,b,b,c,c,d}

CMPT 454: Database Systems Il — Query Processing (2)

Algebraic Laws for Query Plans

Selection
B o vz (R) = on(R) Uowr(R)

r MAX implementation of union makes rule work.

e R={a,a,b,b,b,c}
pl satisfied by a,b, p2 satisfied by b,c
o2 (R) ={a,a,b,b,b,c}
on(R) = {a,a,b,b,b}
or(R) = {b,b,b,c}
on (R) U o2 (R) = {a,a,b,b,b,c}

CMPT 454: Database Systems Il — Query Processing (2)

Algebraic Laws for Query Plans

Selection
B onvpe (R) = on(R) U or(R)

B SUM implementation of union makes more sense.

Senators (......) Reps (......)
T1= TC yr state Sena'[OFS, T2 — TU yrstate RepS
T1 Yr State T2 Yr State
o7 CA 99 CA
99 CA 99 CA
08 AZ — /98 CA
Union?

B Use SUM implementation, but then some laws do not hold.

CMPT 454: Database Systems Il — Query Processing (2)

Algebraic Laws for Query Plans

Selection and Set Operations

or(R U S) = op(R) U 6u(S)

or(R - S) = op(R) - S = 6p(R) - 6u(S)

CMPT 454: Database Systems |l — Query Processing (2)

Algebraic Laws for Query Plans

Selection and Join

e p: predicate with only R attributes

q: predicate with only S attributes
m: predicate with attributes from R and S

CMPT 454: Database Systems |l — Query Processing (2)

Algebraic Laws for Query Plans

Selection and Join

Oprq (RBEIS) =[0Op (R)] ><1[Oq (S)]
O prgam (RNS) =
Onm [(Op R) <1(04 S)]

Opvq (R><1S) =

[(op Ry=<8] U [Re<1 (Oq 9)]

CMPT 454: Database Systems |l — Query Processing (2)

Algebraic Laws for Query Plans

Projection

r X: set of attributes

Y: set of attributes
XY: XUY

BTy (R) = %)]

B May introduce projection anywhere in an expression
tree as long as it eliminates no attributes needed by
an operator above and no attributes that are in result

CMPT 454: Database Systems Il — Query Processing (2)

Algebraic Laws for Query Plans

Projection and Selection

e X: subset of R attributes
Z: attributes in predicate P (subset of R attributes)

TUxz
e (ooR) = T {op [xRy 1}

® Need to keep attributes for the selection and
for the result

CMPT 454: Database Systems |l — Query Processing (2)

Algebraic Laws for Query Plans

Projection and Selection

r X: subset of R attributes
® Y: subset of S attributes
e Z: Intersection of R,S attributes

ETlxy (R><1S) =

Tny{ [Tsz (R)] > [TCyz (S)]}

CMPT 454: Database Systems |l — Query Processing (2)

Algebraic Laws for Query Plans

Projection, Selection and Join

TUxy {Gp (R>< S)} —

TUxy {Gp [TUxz (R) > TTlyz (S)]}

z=2zU {attributes used in P }

CMPT 454: Database Systems |l — Query Processing (2)

What Are Good Transformation?

e No transformation is always good
e Usually good: early selections/projections

CMPT 454: Database Systems |l — Query Processing (2)

