
Query Processing and AdvancedQuery Processing and AdvancedQuery Processing and Advanced Query Processing and Advanced
QueriesQueriesQQ

Query Processing (2)Query Processing (2)Query Processing (2)Query Processing (2)

Review: Query ProcessingReview: Query Processing
SQL query

parse

parse tree

convert answer
logical query plan

query rewrite
execute

Pi

logical query plan

“improved” l q p

estimate result sizes pick best

{(P1 C1) (P2 C2) }

“improved” l.q.p

l i

consider physical plans estimate costs
{P1 P2 }

{(P1,C1),(P2,C2)...}l.q.p. + sizes

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 2 / 26

{P1,P2,…..}

ParsingParsing

Grammar for SQLf
The following grammar describes a simple subset of SQL.
QueriesQueries
<Query>::= SELECT <SelList> FROM <FromList>

WHERE <Condition> ;WHERE <Condition> ;
Selection lists
<SelList>::= <Attribute> <SelList><SelList>:: <Attribute>, <SelList>
<SelList>::= <Attribute>
From listsFrom lists
<FromList>::= <Relation>, <FromList>
<FromList>::= <Relation>

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 3 / 26

<FromList>:: <Relation>

ParsingParsing

Grammar for SQLGrammar for SQL
Conditions
<Condition>::= <Condition> AND <Condition><Condition>::= <Condition> AND <Condition>
<Condition>::= <Attribute> IN (<Query>)
<Condition>::= <Attribute> = <Attribute><Condition>:: <Attribute> <Attribute>
<Condition>::= <Attribute> LIKE <Pattern>

Syntactic categories Relation and Attribute are not Syntactic categories Relation and Attribute are not
defined by grammar rules, but by the database schema.
Syntactic category Pattern defined as some regularSyntactic category Pattern defined as some regular
expression.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 4 / 26

Example: A SQL QueryExample: A SQL Query

StarsIn (mo ieTitle mo ieYear starName)StarsIn (movieTitle, movieYear, starName)
MovieStar (name, address, gender, birthdate)

Goal: find the movies with stars born in 1960Goal: find the movies with stars born in 1960

SELECT movieTitle
FROM StarsIn, MovieStar
WHERE starName = name AND birthdate LIKE ‘%1960’WHERE starName = name AND birthdate LIKE %1960

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 5 / 26

A Parse TreeA Parse Tree
<Query>

SELECT S lLi t FROM F Li t WHERE C ditiSELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <Relation> , <FromList>

movieTitle

,

StarsIn <Relation>

MovieStar

<Condition> <Condition>AND

<Attribute> <Attribute> <Attribute> <Pattern>LIKE=

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 6 / 26

starName name birthdate ‘%1960’

Conversion to Logical Query PlanConversion to Logical Query Plan

How to convert a parse tree into a logical query plan, i.e.How to convert a parse tree into a logical query plan, i.e.
a relational algebra expression?
Queries with conditions without subqueries are easy:Queries with conditions without subqueries are easy:

Form Cartesian product of all relations in <FromList>.
Apply a selection  where C is given by <Condition>Apply a selection c where C is given by <Condition>.
Finally apply a projection L where L is the list of
tt ib t i <S lLi t>attributes in <SelList>.

Queries involving subqueries are more difficult.
Remove subqueries from conditions and represent them
by a two-argument selection in the logical query plan.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 7 / 26

An Algebraic Expression TreeAn Algebraic Expression Tree

movieTitle

starName=name AND birthdate LIKE ‘%1960’

X

StarsIn MovieStarStarsIn MovieStar

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 8 / 26

Another SQL QueryAnother SQL Query

St I (i Titl i Y t N)StarsIn (movieTitle, movieYear, starName)
MovieStar (name, address, gender, birthdate)

Goal: find the movies with stars born in 1960

SELECT titl

Goal: find the movies with stars born in 1960

SELECT title
FROM StarsIn
WHERE starName IN (

SELECT name
FROM MovieStar
WHERE birthdate LIKE ‘%1960’);

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 9 / 26

)

Another Parse TreeAnother Parse Tree

<Query>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <Relation>

title StarsIn <Attribute> ()INtitle StarsIn <Attribute> ()

starName <Query>

IN

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <Relation> <Attribute> LIKE <Pattern><Attribute> <Relation> <Attribute> LIKE <Pattern>

name MovieStar birthDate ‘%1960’

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 10 / 26

Another Algebraic Expression TreeAnother Algebraic Expression Tree

movieTitle


StarsIn <condition>

<Attribute> IN name

starName birthdate LIKE ‘%1960’

MovieStar

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 11 / 26

Algebraic Laws for Query PlansAlgebraic Laws for Query Plans
Introduction

Algebraic laws allow us to transform a Relational
Algebra (RA) expression into an equivalent one.
Two RA expressions are equivalent if, for allp q ,

database instances, they produce the same answer.
The resulting expression may have a moreThe resulting expression may have a more
efficient physical query plan.
Algebraic laws are used in the query rewrite
phase.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 12 / 26

p

Algebraic Laws for Query PlansAlgebraic Laws for Query Plans

IntroductionIntroduction
Commutative law:
O d f t d t ttOrder of arguments does not matter.

x + y = y + x
A i ti l Associative law:
May group two uses of the operator either from the left
or the rightor the right.

(x + y) + z = x + (y + z)
O t th t t ti d i tiOperators that are commutative and associative
can be grouped and ordered arbitrarily.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 13 / 26

Algebraic Laws for Query PlansAlgebraic Laws for Query Plans

Natural Join Cartesian Product and UnionNatural Join, Cartesian Product and Union

R S = S RR S S R
(R S) T = R (S T)

R x S = S x R
(R x S) x T = R x (S x T)

R U S = S U R
R U (S U T) = (R U S) U T

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 14 / 26

R U (S U T) = (R U S) U T

Algebraic Laws for Query PlansAlgebraic Laws for Query Plans

SelectionSelection

 (R) = 1 [ 2 (R)]p1  p2(R) =

 (R) =

p1 [p2 (R)]

[ (R)] U [ (R)]p1 v p2(R) = [p1 (R)] U [p2 (R)]

p1 [p2 (R)] = p2 [p1 (R)]

Simple conditions p1 or p2 may be pushed down
further than the complex condition.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 15 / 26

Algebraic Laws for Query PlansAlgebraic Laws for Query Plans

Bag UnionBag Union
What about the union of relations with duplicates
(b)?(bags)?

R = {a,a,b,b,b,c}
{b b d}S = {b,b,c,c,d}

R U S = ?
Number of occurrences either SUM or MAX of
occurrences in the imput relations. p
SUM: R U S = {a,a,b,b,b,b,b,c,c,c,d}
MAX: R U S = {a,a,b,b,b,c,c,d}

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 16 / 26

{ , , , , , , , }

Algebraic Laws for Query PlansAlgebraic Laws for Query Plans

SelectionSelection
p1 v p2 (R) = p1(R) U p2(R)
MAX implementation of union makes rule work.
R={a,a,b,b,b,c}R {a,a,b,b,b,c}
p1 satisfied by a,b, p2 satisfied by b,c

(R) { b b b }p1vp2 (R) = {a,a,b,b,b,c}
p1(R) = {a,a,b,b,b}
p2(R) = {b,b,b,c}
p1 (R) U p2 (R) = {a,a,b,b,b,c}

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 17 / 26

p1 (R) U p2 (R) {a,a,b,b,b,c}

Algebraic Laws for Query PlansAlgebraic Laws for Query Plans
Selection

p1 v p2 (R) = p1(R) U p2(R)
SUM implementation of union makes more sense.SUM implementation of union makes more sense.

Senators (……) Reps (……)
T1 = yr state Senators T2 =  yr state RepsT1 yr,state Senators, T2  yr,state Reps
T1 Yr State T2 Yr State

97 CA 99 CA
99 CA 99 CA
98 AZ 98 CA

Use SUM implementation, but then some laws do not hold.
Union?

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 18 / 26

p

Algebraic Laws for Query PlansAlgebraic Laws for Query Plans

Selection and Set OperationsSelection and Set Operations

p(R U S) = p(R) U p(S)

p(R - S) = p(R) - S = p(R) - p(S)

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 19 / 26

Algebraic Laws for Query PlansAlgebraic Laws for Query Plans

Selection and JoinSelection and Join

p: predicate with only R attributesp p y
q: predicate with only S attributes
m: predicate with attributes from R and Sp

p (R S) = [ (R)] Sp (R S)

 (R S)

[p (R)] S

R [q (S)]q (R S) = R [q (S)]

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 20 / 26

Algebraic Laws for Query PlansAlgebraic Laws for Query Plans

Selection and JoinSelection and Join

pq (R S) = [p (R)] [q (S)]p q () [p ()] [q ()]

pqm (R S) =

[]m [(p R) (q S)]
pvq (R S) =

[(p R) S] U [R (q S)]

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 21 / 26

Algebraic Laws for Query PlansAlgebraic Laws for Query Plans
Projection

X: set of attributes
Y: set of attributesY: set of attributes
XY: X U Y

xy (R) = x [y (R)]

May introduce projection anywhere in an expressiony p j y p
tree as long as it eliminates no attributes needed by
an operator above and no attributes that are in result

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 22 / 26

Algebraic Laws for Query PlansAlgebraic Laws for Query Plans

Projection and SelectionProjection and Selection

X: subset of R attributes
Z: attributes in predicate P (subset of R attributes)

xz
x (pR) = {p [x (R)]} x

xz

Need to keep attributes for the selection andp
for the result

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 23 / 26

Algebraic Laws for Query PlansAlgebraic Laws for Query Plans

Projection and SelectionProjection and Selection

X: subset of R attributes
Y: subset of S attributes
Z: intersection of R S attributesZ: intersection of R,S attributes

xy (R S) =

xy{[xz (R)] [yz (S)]}

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 24 / 26

Algebraic Laws for Query PlansAlgebraic Laws for Query Plans

Projection Selection and JoinProjection, Selection and Join

{ }xy {p (R S)} =
{ }xy {p [xz’ (R) yz’ (S)]}

z’ = z U {attributes used in P }{ }

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 25 / 26

What Are Good Transformation?What Are Good Transformation?
No transformation is always good
Usually good: early selections/projectionsUsually good: early selections/projections

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Query Processing (2)Query Processing (2) 26 / 26

