
Data Storage and Query AnsweringData Storage and Query Answering

Indexing and Hashing Indexing and Hashing (5)(5)



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (4)Indexing and Hashing (4) 2 / 21

Linear Hash TablesLinear Hash Tables
Introduction

No directory.

Hash function computes sequences of k bits. 
Take only the i last of these bits and interpret 
them as bucket number m.

n: number of last bucket, first number is 0.

00110101

k

i, grows over time



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (4)Indexing and Hashing (4) 3 / 21

Linear Hash TablesLinear Hash Tables

records)(number capacity bucket   and                                       

records ofnumber   total  where,
)1(

  








c 

r
cn

rnutilizatiospace

Insertions
If m <= n, store record in bucket m. Otherwise, 
store it in bucket number 
If bucket overflows, add overflow block.
If space utilization becomes too high, add one 
bucket at the end and increment n by 1.

 file grows linearly

12  im



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (4)Indexing and Hashing (4) 4 / 21

Linear Hash TablesLinear Hash Tables
Insertions

Bucket we add is usually not in the range of 
hash keys where an overflow occurred.
When  n > 2i, increment i by 1. 
i is the number of rounds of doubling the size 
of the Linear Hash table.
No need to move entries.



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (4)Indexing and Hashing (4) 5 / 21

Linear Hash TablesLinear Hash Tables
Example

00 01                      10 11

0101
11111010

n = 01

Future
growth
buckets

0101
• can have overflow chains!

• insert 0101

If h(k)[i ]  n, then
look at bucket h(k)[i ]

else, look at bucket h(k)[i ] – 2i -1

k = 4, i = 2



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (4)Indexing and Hashing (4) 6 / 21

Linear Hash TablesLinear Hash Tables
Example

00 01                  10 11

0101
11111010

n = 01

Future
growth
buckets

10

1010

0101 • insert 0101

11

1111
0101

k = 4, i = 2



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (4)Indexing and Hashing (4) 7 / 21

Linear Hash TablesLinear Hash Tables
Example

k = 4

00 01                       10 11

111110100101
0101

n = 11

i = 2

0 0 0 0
100           101             110        111

3

. . .

100

100

101

101

0101
0101



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (4)Indexing and Hashing (4) 8 / 21

Linear Hash TablesLinear Hash Tables

Discussion

Can manage growing number of buckets 
without wasting too much space.

No directory, i.e. no indirection in access and 
no expensive doubling operation.

Significant need for overflow chains, even if 
no duplicates among last i bits of hash values.



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (4)Indexing and Hashing (4) 9 / 21

Example: BAD CASEExample: BAD CASE

Very empty Need to move
m here…
Would waste
space...

Very full



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (4)Indexing and Hashing (4) 10 / 21

Indexing Indexing vsvs HashingHashing
Hashing good for probes given key

e.g.,   SELECT …
FROM R
WHERE R.A = 5



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (4)Indexing and Hashing (4) 11 / 21

Indexing Indexing vsvs HashingHashing
Indexing (Including B Trees) good for

Range Searches:
e.g.,  SELECT

FROM R
WHERE R.A > 5



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (4)Indexing and Hashing (4) 12 / 21

Index Definition in SQLIndex Definition in SQL
Create index name on rel (attr)
Create unique index name on rel (attr)

Drop INDEX name

defines candidate key



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (4)Indexing and Hashing (4) 13 / 21

Index Definition in SQLIndex Definition in SQL
CANNOT SPECIFY TYPE OF INDEX

(e.g. B-tree, Hashing, …)
OR PARAMETERS

(e.g. Load Factor, Size of Hash,...)

... at least in SQL...



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (4)Indexing and Hashing (4) 14 / 21

MultiMulti--Key IndexKey Index

Motivation: Find records where
DEPT = “Toy” AND SAL > 50k



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (4)Indexing and Hashing (4) 15 / 21

Strategy IStrategy I

Use one index, say Dept.
Get all Dept = “Toy” records

and check their salary

I1



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (4)Indexing and Hashing (4) 16 / 21

Strategy IIStrategy II

Use 2 Indexes; Manipulate Pointers

Toy Sal
> 50k



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (4)Indexing and Hashing (4) 17 / 21

Strategy IIIStrategy III

Multiple Key Index

One idea:  

I1

I2

I3



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (4)Indexing and Hashing (4) 18 / 21

ExampleExample

Example
Record

Dept
Index

Salary
Index

Name=Joe
DEPT=Sales
SAL=15k

Art
Sales
Toy

10k
15k
17k
21k

12k
15k
15k
19k



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (4)Indexing and Hashing (4) 19 / 21

For Which Queries is This Index Good?For Which Queries is This Index Good?
Find RECs Dept = “Sales” SAL=20k
Find RECs Dept = “Sales” SAL > 20k
Find RECs Dept = “Sales”
Find RECs SAL = 20k



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (4)Indexing and Hashing (4) 20 / 21

Interesting ApplicationsInteresting Applications
Geographic Data

DATA:
<X1,Y1, Attributes>
<X2,Y2, Attributes>

x

y

. .
 .

What city is at <Xi,Yi>?
What is within 5 miles from <Xi,Yi>?
Which is closest point to <Xi,Yi>?



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (4)Indexing and Hashing (4) 21 / 21

CommentsComments
Many types of geographic index structures have 
been suggested

Kd-Trees (very similar to what we described here)
Quad Trees
R Trees
...

To be discussed in the topics of “advanced queries”.


