Data Storage and Query Answering

Indexing and Hashing (4)

Hash Tables

Introduction

Tree-based index structures map search key
values to record addresses via a tree structure.

® Hash tables perform the same mapping via a
hash function, which computes the record
address.

B Search key K
B Hash function h
h(K) e{0,...,B—1}

® B: number of buckets.

CMPT 454: Database Systems Il — Indexing and Hashing (3)

Hash Tables

Hashing

key — h(key) <key>

Buckets
<~ (typically 1
disk block)

CMPT 454: Database Systems Il — Indexing and Hashing (3)

Hash Tables

Introduction

B Good hash function should have the following
property: expected number of keys the same
(similar) for all buckets.

® This is difficult to accomplish for search keys
that have a highly skewed distribution, e.g.
names.

® Common hash function
K="'x1x2... xa" n byte character string

h(K)=(x,+...+X,) MOD B

- B often chosen as prime number

CMPT 454: Database Systems Il — Indexing and Hashing (3)

Hash Tables

®E This may not be the best function ...

B Read Knuth Vol. 3 if you really need to select a good
function.

CMPT 454: Database Systems Il — Indexing and Hashing (3)

Hash Tables

Secondary-Storage Hash Tables
B Bucket: collection of blocks.
B Initially, bucket consists of one block.
B Records hashed to b are stored in bucket b.

B If bucket capacity exceeded, link chain of
overflow buckets.

B Assume that address of first block of bucket 1
can be computed given i.

B E.g, main memory array of pointers to blocks.

CMPT 454: Database Systems Il — Indexing and Hashing (3)

Hash Tables

Secondary-Storage Hash Tables

B Hash tables can perform their mapping directly
or indirectly. :

............ >

(1) key — h(key)

records

(2) key — h(key) key | tecord

Index

CMPT 454: Database Systems Il — Indexing and Hashing (3)

Within a Bucket

e Do we keep keys sorted?

e Yes, If CPU time critical
& Inserts/Deletes not too frequent

CMPT 454: Database Systems Il — Indexing and Hashing (3)

Hash Tables

Insertions
B To insert record with search key K.
B Compute h(K) =1.
B Insert record into first block of bucket i that
has enough space.

B If none of the current blocks has space, add a
new block to the overflow chain, and store

new record there.

CMPT 454: Database Systems Il — Indexing and Hashing (3)

Hash Tables

INSERT:
h(a) =1
h(b) =2
h(c) =1
h(d)=0
h(e) =1

Insertions
[|
d
C
[|
b
[|

CMPT 454: Database Systems Il — Indexing and Hashing (3)

bucket capacity:
2 records

Hash Tables

Deletions
B To delete record with search key K.
B Compute h(K) =1.
B Locate record(s) with search key K in bucket 1.

If possible, move up remaining records within

block.

B If possible, move remaining records from
overflow chain to the previous block and de-
allocate block.

CMPT 454: Database Systems Il — Indexing and Hashing (3)

Hash Tables

Deletions

0
Delete:
€ 1
f
C 2
]
’ A - ~ ymaybe move
g -|- 9g'up

CMPT 454: Database Systems Il — Indexing and Hashing (3)

Hash Tables

Queries
¥ To find record(s) with search key K.
B Compute h(K) =1.
B Locate record(s) with search key K in bucket i,

following the overflow chain.

B In the absence of overflow blocks, only one
block I/O necessary, i.e. O(1) runtime.

B This is (much) better than B-trees.

B But hash tables do not support range queries!

CMPT 454: Database Systems Il — Indexing and Hashing (3)

Hash Tables

Queries

B In order to keep overtlow chains short, keep
space utilization between 50% and 80%.

#keys in bucket b
#keysthat fitinb

B [f space utilization < 50%: waste space.

space utilization (b) =

® If space utilization > 80%: overflow chains
become significant.

® Depends on hash function and on bucket
capacity.

CMPT 454: Database Systems Il — Indexing and Hashing (3)

Hash Tables

B So far, only static hash tables, i.e. the number B of
buckets never changes.

B With growing number of records, space
utilization cannot be kept in the desired range.

B Dynamic hash tables adapt B to the actual number
of records stored.

B Goal: approximately one block per bucket.

¥ Two dynamic methods:

® Extensible Hashing, and
e Linear Hashing.

CMPT 454: Database Systems Il — Indexing and Hashing (3)

Extensible Hash Tables

Introduction

B Add alevel of indirection for the buckets, a
directory containing pointers to blocks, one for
each value of the hash function.

h(K) 5
I " to bucket

B Size of directory doubles in each growth step.

CMPT 454: Database Systems Il — Indexing and Hashing (3)

Extensible Hash Tables

Introduction

B Several buckets can share a data block, if they
do not contain too many records.

B Hash function computes sequences of k bits,
but bucket numbers use only the 1 first of
these bits. 1 is the level of the hash table.

— Kk
00110101
—

I, grows over time

size of directory = 2',
initially i =0

CMPT 454: Database Systems Il — Indexing and Hashing (3)

Extensible Hash Tables

Insertions

B To insert record with search key K.

¥ Compute h(K) and take its first 1 bits. Global
level i is part of the data structure.

B Retrieve the corresponding directory entry.

B Follow that pointer leading to block b. b has a
local level] <=1.

E If b has enough space, insert record there.

B Otherwise, split b into two blocks.

CMPT 454: Database Systems Il — Indexing and Hashing (3)

Extensible Hash Tables

Insertions

bit of h(K): if 0, old block b, if 1 new |

® Ifj <i, distribute records in b based on (j+1)st

olock b’.

B Increment the local level of b and b’

directory size and duplicate all entri
Proceed as in case j < 1.

CMPT 454: Database Systems Il — Indexing and Hashing (3)

by one.

B Adjust the pointer in the directory that
pointed to b but must now point to b'.

e Ifj =i, first increment 7 by one. Double the

es.

Extensible Hash Tables

CMPT 454: Database Systems Il — Indexing and Hashing (3)

Example
> - 00
\K 1 0001 ,\
01
AR~ 10
\ ‘Z‘ 2 /
1001 _ 11
1010, 1200
A2 New directory
Insert 1010 1100

Extensible Hash Tables

2
////// 0000
= 2 0001
00
\
o1 _;\ﬁx;\,ArZ
- | 0001
10 N 04T
11 \ 2
1001
1010
Insert:
2
0111 1100
0000

CMPT 454: Database Systems Il — Indexing and Hashing (3)

0111

Extensible Hash Tables
/=3

0000
0001

000

[001

0111

010

011

100

11

VAR

1010 101

110

Insert:
1001

111

CMPT 454: Database Systems Il — Indexing and Hashing (3)

Extensible Hash Tables

B May still need

in the presence

of too many \

duplicates of
hash values.

B Split does not help if all
entries belong to same
of two resulting blocks!

CMPT 454: Database Systems Il — Indexing and Hashing (3)

Overflow Chains

overflow chains insert 1100

1101

1100

If we split:

N

1100

1100

Extensible Hash Tables

Overflow Chains
insert 1100 add overflow block:
1101 1101 .7 1100
1100 1101

CMPT 454: Database Systems Il — Indexing and Hashing (3)

Extensible Hash Tables

Deletions
B To delete record with search key K.

B Using the directory, locate corresponding
block b and delete record from there.

B If possible, merge block b with “buddy” block
b" and adjust the directory pointers to b and b’.

B If possible, halve the directory.
- reverse insertion procedure

CMPT 454: Database Systems Il — Indexing and Hashing (3)

Extensible Hash Tables

Discussion

B Can manage growing number of buckets
without wasting too much space.

B Assume that directory fits into main memory.

B Never need to access more than one data
block (as long as there are no overflow chains)
for a query.

® Doubling the directory is a very expensive
operation. Interrupts other operations and
may require secondary storage.

CMPT 454: Database Systems Il — Indexing and Hashing (3)

