
Data Storage and Query AnsweringData Storage and Query Answering

Indexing and Hashing Indexing and Hashing (4)(4)



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 2 / 26

Hash TablesHash Tables
Introduction

Tree-based index structures map search key 
values to record addresses via a tree structure.
Hash tables perform the same mapping via a 
hash function, which computes the record 
address.
Search key K
Hash function h

B: number of buckets.
}1,...,0{)(  BKh



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 3 / 26

Hash TablesHash Tables

key  h(key) <key>

...

Buckets
(typically 1
disk block)

Hashing



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 4 / 26

Hash TablesHash Tables
Introduction

Good hash function should have the following 
property: expected number of keys the same 
(similar) for all buckets.
This is difficult to accomplish for search keys 
that have a highly skewed distribution, e.g. 
names.
Common hash function
K = ‘x1 x2 … xn’ n byte character string

B often chosen as prime number
BMODxxKh n )...()( 1 



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 5 / 26

Hash TablesHash Tables
This may not be the best function …
Read Knuth Vol. 3 if you really need to select a good 
function.



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 6 / 26

Hash TablesHash Tables
Secondary-Storage Hash Tables

Bucket: collection of blocks.
Initially, bucket consists of one block.
Records hashed to b are stored in bucket b.
If bucket capacity exceeded, link chain of 
overflow buckets.
Assume that address of first block of bucket i
can be computed given i.
E.g., main memory array of pointers to blocks.



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 7 / 26

Hash TablesHash Tables
Secondary-Storage Hash Tables

Hash tables can perform their mapping directly 
or indirectly.

...

records

...
(1) key  h(key)

(2) key  h(key)

Index

record
key 1



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 8 / 26

Within a BucketWithin a Bucket

• Do we keep keys sorted?

• Yes, if CPU time critical
& Inserts/Deletes not too frequent



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 9 / 26

Hash TablesHash Tables

Insertions
To insert record with search key K.

Compute h(K) = i.
Insert record into first block of bucket i that 
has enough space.
If none of the current blocks has space, add a 
new block to the overflow chain, and store 
new record there.



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 10 / 26

Hash TablesHash Tables

Insertions

INSERT:
h(a) = 1
h(b) = 2
h(c) = 1
h(d) = 0

0

1

2

3

d

a
c
b

h(e) = 1

e

bucket capacity:
2 records



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 11 / 26

Hash TablesHash Tables
Deletions

To delete record with search key K.

Compute h(K) = i.
Locate record(s) with search key K in bucket i.
If possible, move up remaining records within 
block.
If possible, move remaining records from 
overflow chain to the previous block and de-
allocate block.



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 12 / 26

Hash TablesHash Tables

Deletions

0

1

2

3

a

b
c
e

d

Delete:
e
f

f
g

maybe move
“g” up

c
d



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 13 / 26

Hash TablesHash Tables
Queries

To find record(s) with search key K.
Compute h(K) = i.
Locate record(s) with search key K in bucket i, 
following the overflow chain.
In the absence of overflow blocks, only one 
block I/O necessary, i.e. O(1) runtime.
This is (much) better than B-trees.
But hash tables do not support range queries! 



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 14 / 26

Hash TablesHash Tables
Queries

In order to keep overflow chains short, keep 
space utilization between 50% and 80%.

If space utilization < 50%: waste space.
If space utilization > 80%: overflow chains 
become significant. 
Depends on hash function and on bucket 
capacity. 

b
bbnutilizatiospace

in fit  that keys#
bucket in  keys#  )( 



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 15 / 26

Hash TablesHash Tables

So far, only static hash tables, i.e. the number B of 
buckets never changes. 
With growing number of records, space 
utilization cannot be kept in the desired range. 
Dynamic hash tables adapt B to the actual number 
of records stored.
Goal: approximately one block per bucket.
Two dynamic methods:

Extensible Hashing, and
Linear Hashing.



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 16 / 26

Extensible Hash TablesExtensible Hash Tables
Introduction

Add a level of indirection for the buckets, a  
directory containing pointers to blocks, one for 
each value of the hash function.

Size of directory doubles in each growth step.

...

...

h(K)
to bucket



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 17 / 26

Extensible Hash TablesExtensible Hash Tables
Introduction

Several buckets can share a data block, if they 
do not contain too many records.
Hash function computes sequences of k bits, 
but bucket numbers use only the  i first of 
these bits. i is the level of the hash table.

00110101

k

i, grows over time

0initially
,2 directory  of size




i

i



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 18 / 26

Extensible Hash TablesExtensible Hash Tables
Insertions

To insert record with search key K.
Compute h(K) and take its first i bits. Global 
level i is part of the data structure.
Retrieve the corresponding directory entry.

Follow that pointer leading to block b. b has a 
local level j <= i.
If b has enough space, insert record there.
Otherwise, split b into two blocks.



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 19 / 26

Extensible Hash TablesExtensible Hash Tables
Insertions

If j < i, distribute records in b based on (j+1)st 
bit of h(K): if 0, old block b, if 1 new block b’.
Increment the local level of b and b’ by one.

Adjust the pointer in the directory that 
pointed to b but must now point to b’.

If j = i, first increment i by one. Double the 
directory size and duplicate all entries. 
Proceed as in case j < i.



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 20 / 26

Extensible Hash TablesExtensible Hash Tables
Example

i = 1
1

1

0001

1001
1100

Insert 1010
1
1100

1010

New directory

2
00

01

10

11

i =

2

2



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 21 / 26

Extensible Hash TablesExtensible Hash Tables

1
0001

2
1001
1010

2
1100

Insert:

0111

0000

00

01

10

11

2i =

0111

0000

0111

0001

2

2



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 22 / 26

Extensible Hash TablesExtensible Hash Tables

00

01

10

11

2i =

21001
1010

21100

20111

20000
0001

Insert:

1001

1001
1001

1010

000

001

010

011

100

101

110

111

3i =

3

3



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 23 / 26

Extensible Hash TablesExtensible Hash Tables
Overflow Chains

May still need
overflow chains
in the presence 
of too many
duplicates of
hash values.
Split does not help if all
entries belong to same
of two resulting blocks!

1
1101
1100

2

2
1100

insert 1100

1100

if we split:



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 24 / 26

Extensible Hash TablesExtensible Hash Tables

Overflow Chains

1
1101
1100

1
1100

insert 1100 add overflow block:

1101
1101



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 25 / 26

Extensible Hash TablesExtensible Hash Tables

Deletions

To delete record with search key K. 

Using the directory, locate corresponding 
block b and delete record from there.
If possible, merge block b with “buddy” block 
b’ and adjust the directory pointers to b and b’.
If possible, halve the directory.
 reverse insertion procedure



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (3)Indexing and Hashing (3) 26 / 26

Extensible Hash TablesExtensible Hash Tables
Discussion

Can manage growing number of buckets 
without wasting too much space.
Assume that directory fits into main memory.
Never need to access more than one data 
block (as long as there are no overflow chains) 
for a query.
Doubling the directory is a very expensive 
operation. Interrupts other operations and 
may require secondary storage. 


