Data Storage and Query Answering

Indexing and Hashing (3)

B+ Tree Rules

E (1) Each node is a disk block

¢ An |/O access retrieves the whole block into main memory
E (2) All leaves at same lowest level (balanced tree)

F (3) Pointers in leaves point to records, except for
“sequence pointer”

B (4) Number of pointers/keys for B+ tree (order n)

Max | Max| Min Min
ptrs | keys| ptrs»data | keys
thomreaty [N n | [(+1)/2] | [(n+1)/2] 1
(no|he-?(1;ot) n+1| n | L(n+vy/2] | L(n+1)/2]
Root n+1| n 1 1

CMPT 454: Database Systems Il — Indexing and Hashing (2)

B+ Tree Example

B+ Tree Example N=3

Root
Minimum: | (n+1)/2 | points S

NN

/\8/ /O§/§\
/ / 4/ / \oo
T T T T

Minimum: | (n+1)/2] keys

CMPT 454: Database Systems Il — Indexing and Hashing (2)

B+ Trees

Insertions

B Always insert in corresponding leaf.
B Tree grows bottom-up.
B Four different cases:

® Space available in leaf,

e Leaf overflow,

¢ Non-leaf overflow,

¢ New root.

CMPT 454: Database Systems Il — Indexing and Hashing (2)

B+ Trees

Insertions

Space available in leaf

100

30

/.
AN
N\

CMPT 454: Database Systems Il — Indexing and Hashing (2)

N

Insert key 32

B+ Trees

B Leaf overflow

Insertions

split overflowing node into
two of (almost) same size

100

and copy middle (separating)
key to father node v

CMPT 454: Database Systems Il — Indexing and Hashing (2)

B+ Trees

Insertions

B Non-leaf overflow

S 3 split overflowing node

O O
PN and push middle key
/ \ up to father node

//5\5;%(/

Insert key 160

180

—>

/
<1180 /

«——160
<200

CMPT 454: Database Systems Il — Indexing and Hashing (2)

B+ Trees

Insertions

E New root

- split can propagate
new root / ™\ up to the rootand

\ result in new root
RS N

— —)

QL 887 | 99
S -

Insert key 45

CMPT 454: Database Systems Il — Indexing and Hashing (2)

B+ Trees

Deletions

® Locate corresponding leaf node.

B Delete specified entry.

B Four different cases:
® Leaf node has still enough entries,
e Coalesce with neighbor (sibling),
e Re-distribute keys,

® Coalesce or re-distribute at non-leaf.

CMPT 454: Database Systems Il — Indexing and Hashing (2)

B+ Trees

if node underflows

Deletions

B (Coalesce with neighbor (sibling)

and sibling has enough

space, coalesce

the two nodes P ﬁ
—i

7

olNolNoNe
— N M <
I N
v

/ Delete key 50

O ~

S \ n=4
— -

~

CMPT 454: Database Systems Il — Indexing and Hashing (2)

B+ Trees

Deletions

Redistribute keys
if node underflows
and sibling has extra
entry, re-distribute
entries of the

L0
two nodes d ; g \
// N

CMPT 454: Database Systems Il — Indexing and Hashing (2)

ST LY
— | | | |
lll% vl =

Delete key 50

n=4

B+ Trees

Deletions

p 4

B Non-leaf coalesce)< Delete key 37

new root --. / \ =4

CMPT 454: Database Systems Il — Indexing and Hashing (2)

B+ Trees

B+ Trees in Practice

B Often, coalescing is not implemented.

B [Itis too hard and typically does not gain a lot
of performance.

CMPT 454: Database Systems Il — Indexing and Hashing (2)

B+ Trees

B+ Trees in Practice
Typical order: 200, typical space utilization:

67%, i.e., average fanout = 133. Fanout: the

Typical capacities: number of
o Height 4: 1334 = 312,900,700 records, | pointers in a
o Height3:133%= 2,352,637 records. |Node

Can often hold top levels in buffer pool:
e Levell= 1 blocks = 8 Kbytes,

e Level2= 133 blocks = 1 Mbyte,
 Level 3 =17,689 blocks =133 Mbytes.

CMPT 454: Database Systems Il — Indexing and Hashing (2)

B+ Trees

B+ Trees in Practice

B Order (n) concept replaced by physical space
criterion in practice (‘at least half-full’).

B Inner nodes can typically hold many more
entries than leaf nodes.

B Variable sized records and search keys mean
different nodes will contain different numbers
of entries.

B Even with fixed length fields, multiple records
with the same search key value (duplicates) can
lead to variable-sized data entries.

CMPT 454: Database Systems Il — Indexing and Hashing (2)

Interesting Problem

For B+ tree, how large should nbe?

[/
ey \

11i1s number of keys / node

CMPT 454: Database Systems Il — Indexing and Hashing (2)

Sample Assumptions

(1) Time to read node from disk Is
(S+T7) msec.

(2) Once block in memory, use binary
search to locate key:
(a+ bLOG, n) msec.

For some constants a,0; Assume a << S

(3) Assume B+ tree is full, I.e.,
nodes to examine is LOG,, N
where N = # records

CMPT 454: Database Systems Il — Indexing and Hashing (2)

Get: f(n) = time to find a record

N

CMPT 454: Database Systems Il — Indexing and Hashing (2)

FIND n,, by f(n)=0

Answer is n, = “few hundred”

< What happens to 7, as

e Disk gets faster?
e CPU get faster?

CMPT 454: Database Systems Il — Indexing and Hashing (2)

