
Data Storage and Query AnsweringData Storage and Query Answering

Indexing and Hashing Indexing and Hashing (3)(3)

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 2 / 19

B+ Tree RulesB+ Tree Rules
(1) Each node is a disk block

An I/O access retrieves the whole block into main memory
(2) All leaves at same lowest level (balanced tree)
(3) Pointers in leaves point to records, except for
“sequence pointer”
(4) Number of pointers/keys for B+ tree (order n)

Non-leaf
(non-root) n+1 n (n+1)/2 (n+1)/2- 1

Leaf
(non-root) n+1 n

Root n+1 n 1 1

Max Max Min Min
ptrs keys ptrsdata keys

(n+1)/2 (n+1)/2

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 3 / 19

Root

B+ Tree Example n=3

10
0

12
0

15
0

18
0

30

3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

B+ Tree ExampleB+ Tree Example

Minimum: (n+1)/2 points

Minimum: (n+1)/2 keys

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 4 / 19

B+ TreesB+ Trees
Insertions

Always insert in corresponding leaf.
Tree grows bottom-up.
Four different cases:

Space available in leaf,
Leaf overflow,
Non-leaf overflow,
New root.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 5 / 19

B+ TreesB+ Trees
Insertions

Space available in leaf

3 5 11 30 31

30

10
0

32

Insert key 32

n = 3

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 6 / 19

B+ TreesB+ Trees
Insertions

Leaf overflow
split overflowing node into
two of (almost) same size
and copy middle (separating)
key to father node

3 5 11 30 31

30

10
0

3 5

7

7

n = 3

Insert key 7

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 7 / 19

B+ TreesB+ Trees
Insertions

Non-leaf overflow
split overflowing node
and push middle key

up to father node
10

0

12
0

15
0

18
0

15
0

15
6

17
9

18
0

20
0

16
0

18
0

16
0

17
9

Insert key 160

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 8 / 19

B+ TreesB+ Trees
Insertions

New root
split can propagate
up to the root and

result in new root
10 20 30

1 2 3 10 12 20 25 30 32 40 40 45

40

30new root

Insert key 45

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 9 / 19

B+ TreesB+ Trees

Deletions

Locate corresponding leaf node.
Delete specified entry.
Four different cases:

Leaf node has still enough entries,
Coalesce with neighbor (sibling),
Re-distribute keys,
Coalesce or re-distribute at non-leaf.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 10 / 19

B+ TreesB+ Trees

Deletions

Coalesce with neighbor (sibling)
if node underflows
and sibling has enough
space, coalesce
the two nodes 10 40 10

0

10 20 30 40 5040

Delete key 50

n=4

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 11 / 19

B+ TreesB+ Trees
Deletions

Redistribute keys
if node underflows
and sibling has extra
entry, re-distribute
entries of the
two nodes

Delete key 50

n=410 40 10
0

10 20 30 35 40 5035

35

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 12 / 19

B+ TreesB+ Trees
Deletions

Non-leaf coalesce Delete key 37

n=4

40 4530 3725 2620 2210 141 3

10 20 30 4040

30

25

25

new root

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 13 / 19

B+ TreesB+ Trees

B+ Trees in Practice

Often, coalescing is not implemented.
It is too hard and typically does not gain a lot
of performance.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 14 / 19

B+ TreesB+ Trees
B+ Trees in Practice

Typical order: 200, typical space utilization:
67%, i.e., average fanout = 133.
Typical capacities:

Height 4: 1334 = 312,900,700 records,
Height 3: 1333 = 2,352,637 records.

Can often hold top levels in buffer pool:
Level 1 = 1 blocks = 8 Kbytes,
Level 2 = 133 blocks = 1 Mbyte,
Level 3 = 17,689 blocks = 133 Mbytes.

Fanout: the
number of
pointers in a
node

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 15 / 19

B+ TreesB+ Trees
B+ Trees in Practice

Order (n) concept replaced by physical space
criterion in practice (‘at least half-full’).
Inner nodes can typically hold many more
entries than leaf nodes.
Variable sized records and search keys mean
different nodes will contain different numbers
of entries.
Even with fixed length fields, multiple records
with the same search key value (duplicates) can
lead to variable-sized data entries.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 16 / 19

Interesting ProblemInteresting Problem

For B+ tree, how large should n be?

…

n is number of keys / node

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 17 / 19

Sample AssumptionsSample Assumptions
(1) Time to read node from disk is

(S+Tn) msec.
(2) Once block in memory, use binary

search to locate key:
(a + b LOG2 n) msec.

For some constants a,b; Assume a << S

(3) Assume B+ tree is full, i.e.,
nodes to examine is LOGn N
where N = # records

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 18 / 19

Get: Get: f(nf(n)) = time to find a record= time to find a record

f(n)

nopt n

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 19 / 19

FIND FIND nnoptopt by by ff’’(n(n)) = 0= 0

Answer is nopt = “few hundred”

 What happens to nopt as

• Disk gets faster?
• CPU get faster?

