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Summary So FarSummary So Far
Conventional index

Basic Ideas: sparse, dense, multi-level…
Duplicate Keys
Secondary Indexes

Advantage:
- Simple
- Index is sequential file, good for scans

Disadvantage:
- Inserts expensive, and/or
- Lose sequentiality & balance
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ExampleExample
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Example (cont.)Example (cont.)
Example Index (sequential)
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B+B+--TreeTree
NEXT: Another type of index

Give up on sequentiality of index
Try to get “balance”
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Root

B+Tree Example n=3
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B+B+--TreesTrees
Introduction

B+-trees are balanced, i.e. all leaves at same level. 
This guarantees efficient access.
B+-trees use small space utilization.
n (order): maximum number of keys per node, 
minimum number of keys is roughly n/2.
Exception: root may have one key only.
m + 1 pointers in node, m actual number of keys.



CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 8 / 19

B+B+--TreesTrees

Introduction 

Index Entries
(inner nodes)

Data Entries
(leaf nodes)

 leaf nodes are linked in sequential order
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B+B+--TreesTrees
Introduction

Node format: (p1,k1, . . ., pn,kn,pn+1)
pi: pointer, ki: search key
Node with m pointers has m children and 
corresponding sub-trees.
n+1-th index entry has only pointer. At leaf level, this 
pointer references the next leaf node.
Search key property: i-th subtree contains data 
entries with search key k <ki,  i+1-th subtree contains 
data entries with search key k >= ki. 
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B+B+--TreesTrees

Example 
Root n = 3
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B+B+--TreesTrees
Example 

to keys to keys to keys  to keys

< 57 57 k<81 81k<95 95

57 81 95

Non-leaf 
(inner) node
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B+B+--TreesTrees

Example 

From non-leaf node

to next leaf
in sequence
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In TextbookIn Textbook’’s Notations Notation

Leaf:

Non-leaf:
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30 35
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Don’t want nodes to be too empty

• Use at least

Non-leaf: (n+1)/2 pointers

Leaf: (n+1)/2 pointers to data

• Size of nodes: n+1 pointers
n keys
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B+B+--TreesTrees

Space utilization 

full node min. node
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B+B+--TreesTrees

Space utilization 

Number of pointers/keys for B-tree

Non-leaf
(non-root) n+1 n (n+1)/2 (n+1)/2- 1

Leaf
(non-root) n+1 n

Root n+1 n 1 1

Max   Max Min             Min
ptrs keys  ptrsdata keys

(n+1)/2 (n+1)/2
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B+B+--TreesTrees

)(log 2/ NO n

Equality Queries 
To search for key k, start from root.
At a given node, find “nearest key” ki and 
follow left (pi) or right (pi+1) pointer 
depending on comparison of k and ki.
Continue, until leaf node reached.
Explores one path from root to leaf node.
Height of B-tree is 
where N: number of records indexed

 runtime complexity )(log NO
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B+B+--TreesTrees

Example 
Root n = 3
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To DiscussTo Discuss
How to construct a B+-Tree

Insertion?
Deletion?


