Data Storage and Query Answering

Indexing and Hashing (2)

Summary So Far

- Conventional index
 - Basic Ideas: sparse, dense, multi-level...
 - Duplicate Keys
 - Secondary Indexes

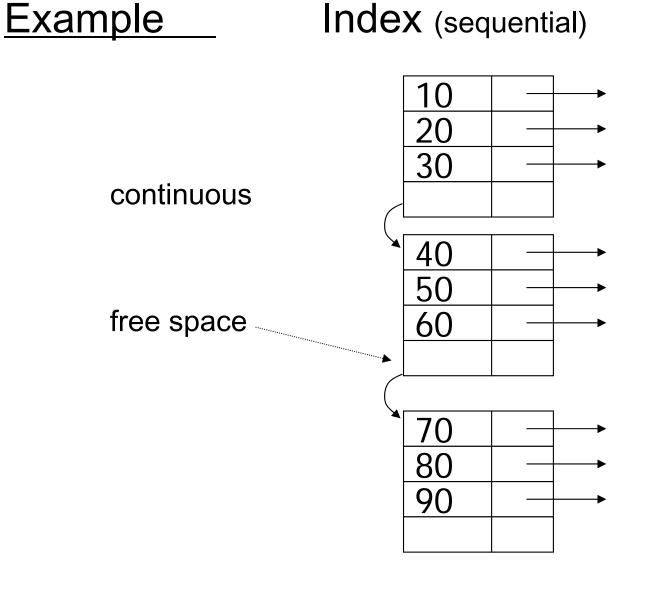
Advantage:

- Simple
- Index is sequential file, good for scans

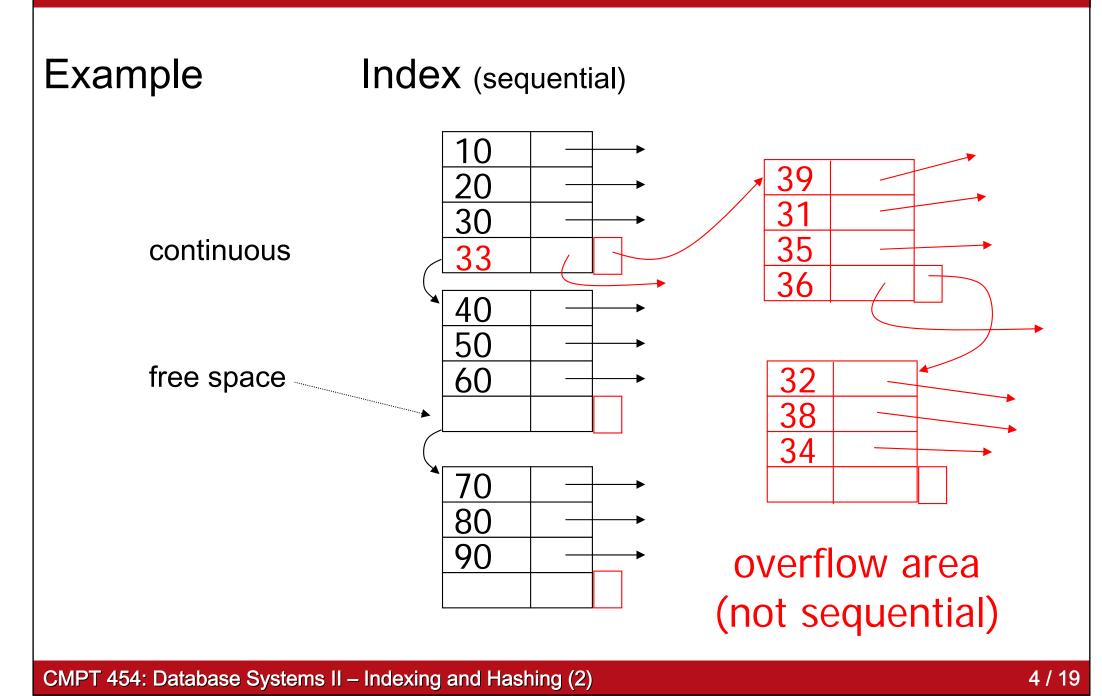
Disadvantage:

- Inserts expensive, and/or
- Lose sequentiality & balance

Example



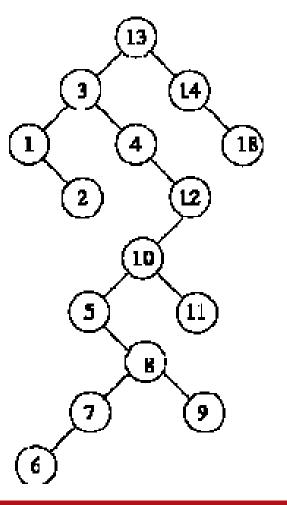
Example (cont.)



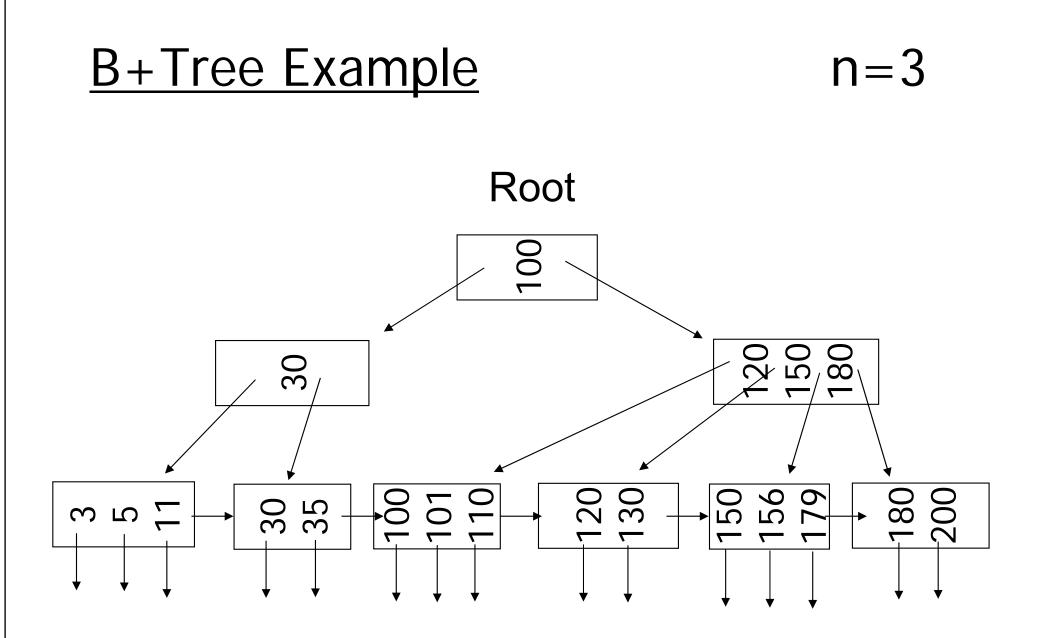
NEXT: Another type of index
Give up on sequentiality of index
Try to get "balance"

Balanced versus unbalanced tree

- Searching a balanced search tree O(log n)
- Searching an unbalanced search tree can be O(n)



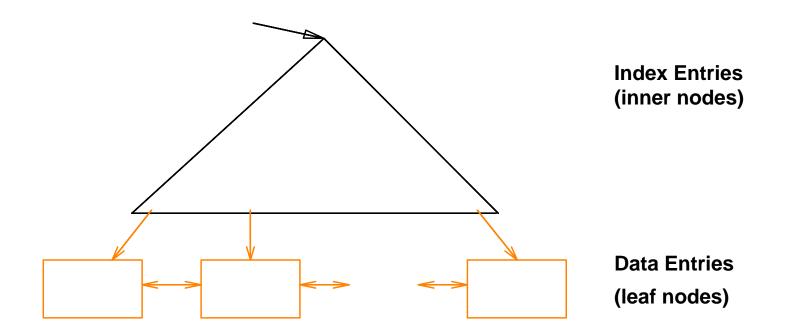
B+-Tree Example



Introduction

- B+-trees are *balanced*, i.e. all leaves at same level. This guarantees efficient access.
- B+-trees use small space utilization.
- n (*order*): maximum number of keys per node, minimum number of keys is roughly n/2.
- Exception: root may have one key only.
- m + 1 pointers in node, m actual number of keys.

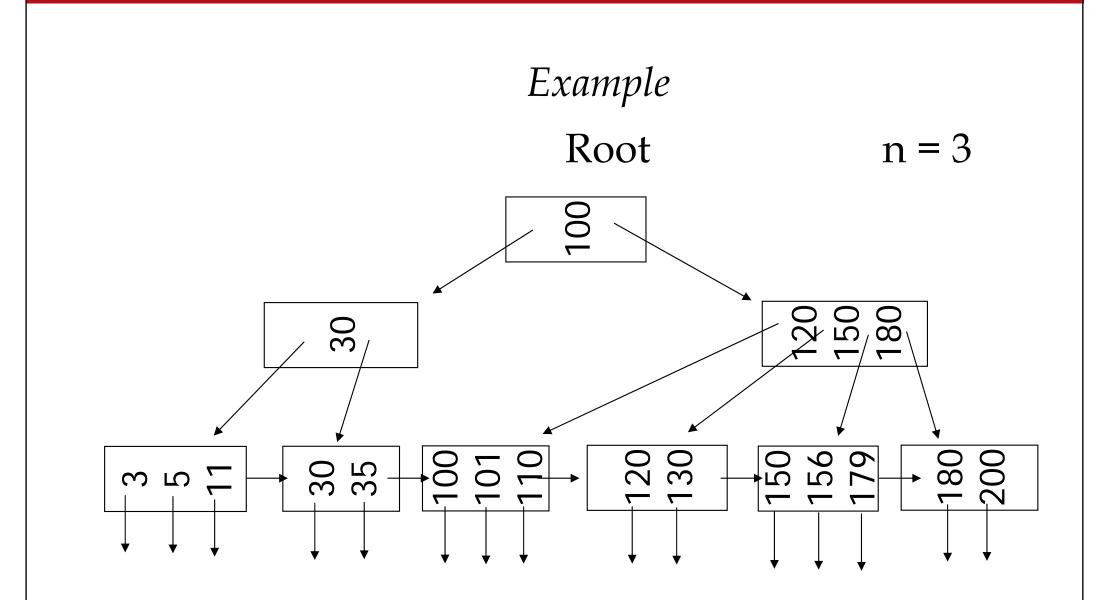
Introduction

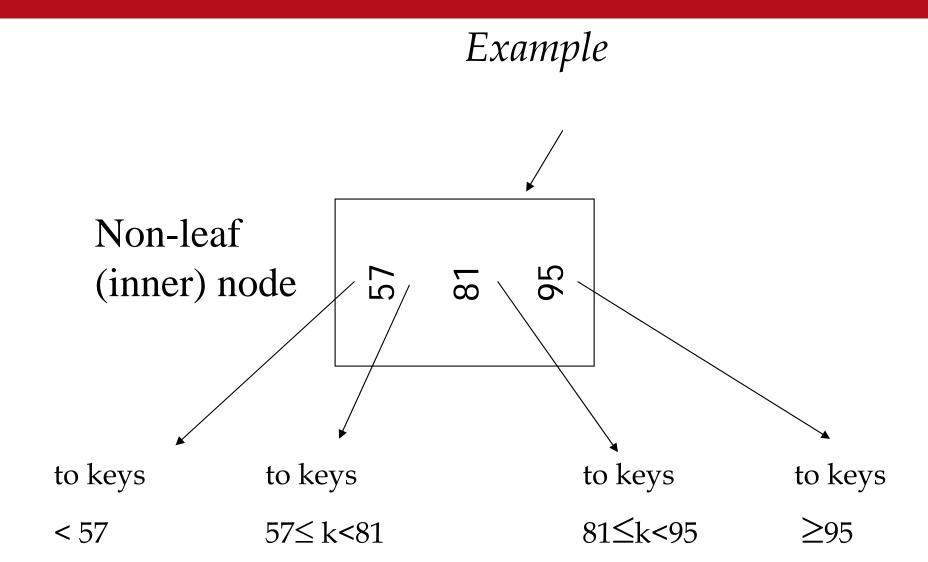


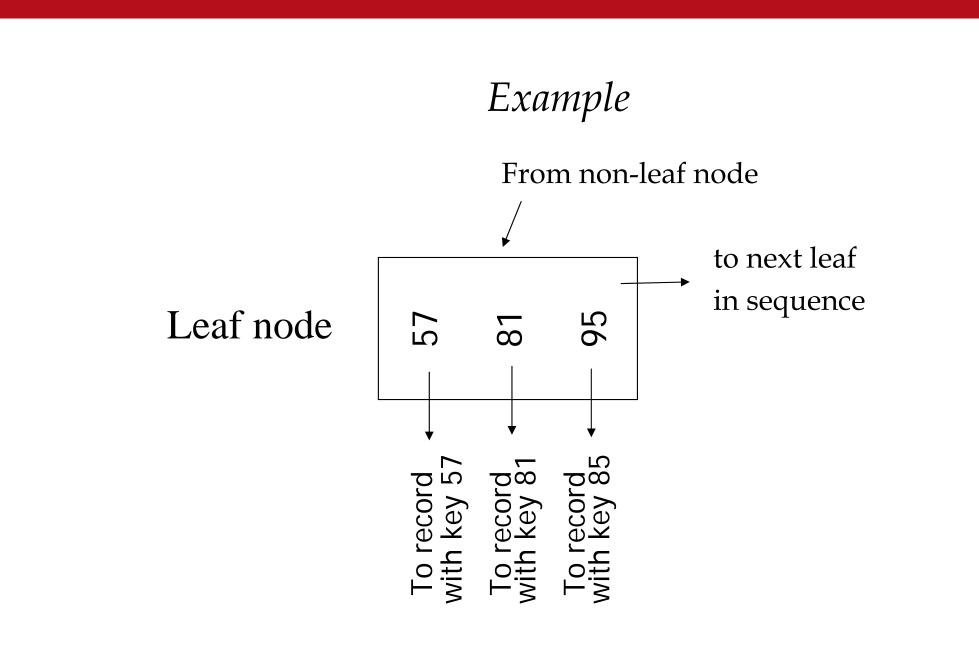
 \rightarrow leaf nodes are linked in sequential order

Introduction

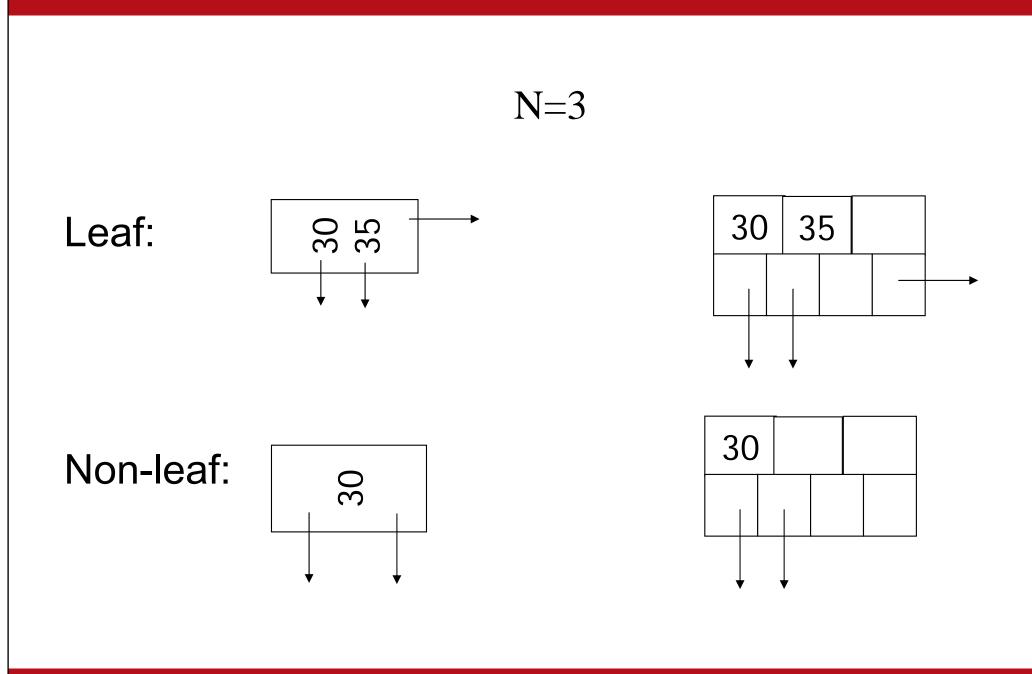
- Node format: (p₁,k₁, . . ., p_n,k_n,p_{n+1}) p_i: pointer, k_i: search key
- Node with *m* pointers has *m* children and corresponding sub-trees.
- *n+1*-th index entry has only pointer. At leaf level, this pointer references the next leaf node.
- Search key property: *i*-th subtree contains data entries with search key k < k_i, *i*+1-th subtree contains data entries with search key k >= k_i.







In Textbook's Notation



Don't want nodes to be too empty

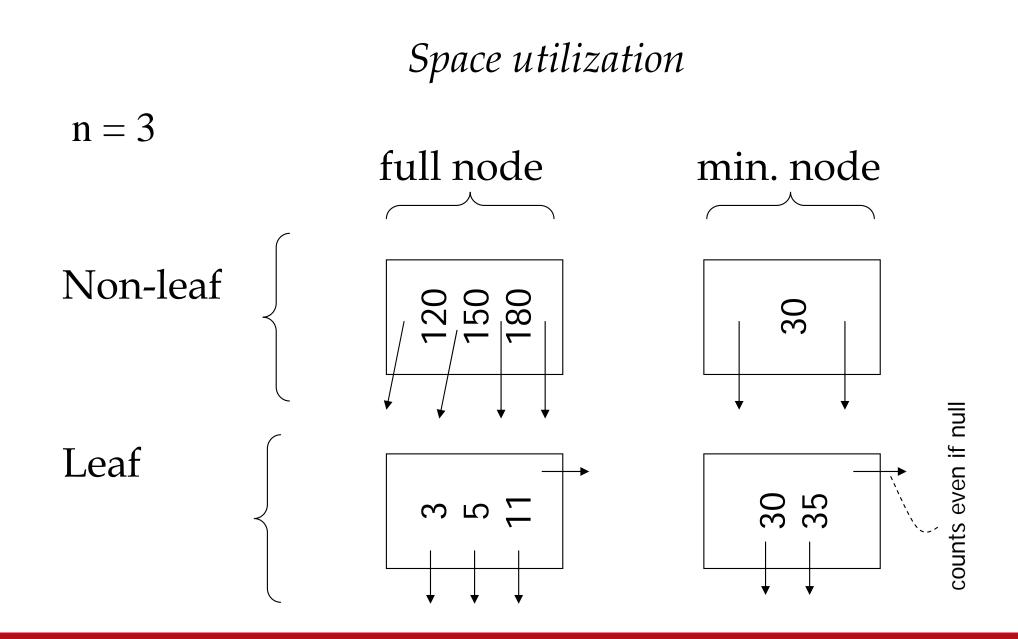
• Size of nodes:

n+1 pointers n keys

• Use at least

Non-leaf: $\lceil (n+1)/2 \rceil$ pointers

Leaf: $\lfloor (n+1)/2 \rfloor$ pointers to data



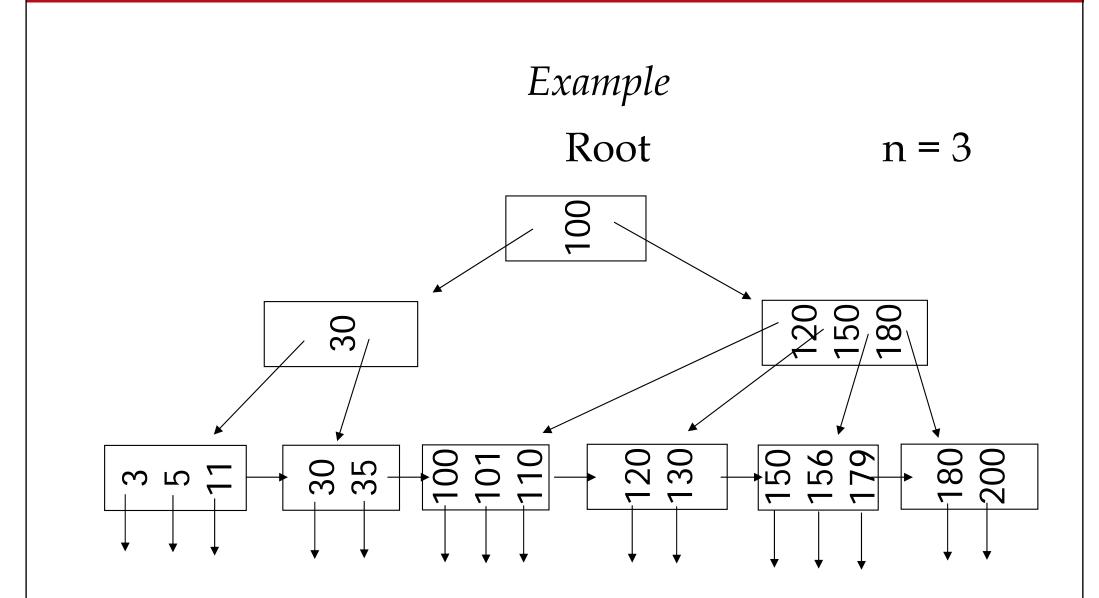
Space utilization

Number of pointers/keys for B-tree

	Max ptrs	Max keys	Min ptrs→data	Min keys
Non-leaf (non-root)	n+1	n	「(n+1)/2ヿ	[(n+1)/2]- 1
Leaf (non-root)	n+1	n	[(n+1)/2]	[(n+1)/2]
Root	n+1	n	1	1

Equality Queries

- To search for key k, start from root.
- At a given node, find "nearest key" k_i and follow left (p_i) or right (p_{i+1}) pointer depending on comparison of k and k_i .
- Continue, until leaf node reached.
- Explores one path from root to leaf node.
- Height of B-tree is $O(\log_{n/2} N)$ where N: number of records indexed
- \rightarrow runtime complexity $O(\log N)$



To Discuss

How to construct a B+-Tree

- Insertion?
- Deletion?