Data Storage and Query Answering

Indexing and Hashing (2)

Summary So Far

E Conventional index
e Basic ldeas: sparse, dense, multi-level...
¢ Duplicate Keys
® Secondary Indexes

Advantage:

- Simple
- Index is sequential file, good for scans

Disadvantage:
- Inserts expensive, and/or
- Lose sequentiality & balance

CMPT 454: Database Systems Il — Indexing and Hashing (2)

Example Index (sequential)
10 T
20 T
30 N
continuous (
40 [—f—
50 T
free space 60 —

70 [——
80 | —4—
Q0 | —+—

CMPT 454: Database Systems Il — Indexing and Hashing (2)

Example (cont.)

Example

continuous

free space

CMPT 454: Database Systems Il — Indexing and Hashing (2)

Index (sequential)

10

20

30

39
/ BT
35

33

40

50

60

/0

80

90

/

ey
32 \‘/
T

38| —
34 -

overflow area
(not sequential)

B+-Tree

E NEXT: Another type of index

#Give up on sequentiality of index

e Try to get "balance”

Balanced versus unbalanced tree
— Searching a balanced search tree O(log n)
— Searching an unbalanced search tree can be O(n)

CMPT 454: Database Systems Il — Indexing and Hashing (2)

n=3

Root

Q2
Q.
g
X

LU
[0
o

7
+

0

B+Tree Example

CMPT 454: Database Systems Il — Indexing and Hashing (2)

B+-Trees

/ntroduction

B B+-trees are balanced, i1.e. all leaves at same level.
This guarantees efficient access.

B B+-trees use small space utilization.

E n (ordern): maximum number of keys per node,
minimum number of keys is roughly n/2.

E Exception: root may have one key only.
E m+ 1 pointers in node, m actual number of keys.

CMPT 454: Database Systems Il — Indexing and Hashing (2)

B+-Trees

Introduction

Index Entries
(inner nodes)

/ N\

Data Entries

(leaf nodes)

—> leaf nodes are linked in sequential order

CMPT 454: Database Systems Il — Indexing and Hashing (2)

B+-Trees

Introduction
B Node format: (p4,K4, . . ., Pr,KnsPps1)
pi: pointer, ki: search key
¥ Node with m pointers has m children and
corresponding sub-trees.

¥ n+7-th index entry has only pointer. At leaf level, this
pointer references the next leaf node.

¥ Search key property. Fth subtree contains data
entries with search key A<k, A1-th subtree contains
data entries with search key A>= k.

CMPT 454: Database Systems Il — Indexing and Hashing (2)

2.
[0
O
7l
+
a0

Example

n=23

Root

08T

0ST

.

e
AN
N
(@)]
£
1o
n
Q]
I
©
c
Q)]
(@)]
S
X
(<))
©
£
I
(/2]
S
O
-—
(72)
>
()]
(]
n
®
0
©
i
®
)]
<
Lo
4
T
o
=
@)

B+-Trees

Example

/

Non-leaf
(inner) node | u"/

—i
00

/

to keys to keys
<57 57< k<81

to keys
81<k<95

to keys
295

CMPT 454: Database Systems Il — Indexing and Hashing (2)

B+-Trees

Example

From non-leaf node

/

to next leaf

1 —»

in sequence

N~ — LO
|_eaf node S =2 09
——
N~ —i Lo
T DO DO
@) @) o
3L g8 g
OB oX oE
=2 F=2 F=2

CMPT 454: Database Systems Il — Indexing and Hashing (2)

In Textbook's Notation

N=3
Leaf: QW T 30 | 35
| | N T
| |
Non-leaf: o 30
| “ | 1]
[| |

CMPT 454: Database Systems Il — Indexing and Hashing (2)

Don't want nodes to be too empty

(

e Size of nodes: n+1 pointers
i
n keys

\

o Use at least
Non-leaf: [(n+1)/2 |pointers

L eaf: | (n+1)/2] pointers to data

CMPT 454: Database Systems Il — Indexing and Hashing (2)

B+-Trees

Space utilization
n=3
full node min. node
AN AN
r A r N
.
Non-leaf o6 o
< N D O D
il .
- T T
Leaf i 1. BRI~
y ™ 10 T RSB |3
] | S
N Voo .o S

CMPT 454: Database Systems Il — Indexing and Hashing (2)

B+-Trees

Space utilization

Number of pointers/keys for B-tree

Max | Max| Min Min
ptrs | keys| ptrs»data | keys
Nomieaty [n+1) n | [+1y2] |[()/2] o
(no%e-?cgot) n+1| n | L(n+vy/2] | L(n+1)/2]
Root n+1| n 1 1

CMPT 454: Database Systems Il — Indexing and Hashing (2)

B+-Trees

Equality Queries

B To search for key k, start from root.

B Ata given node, find “nearest key” k; and
follow left (p;) or right (p;,;) pointer
depending on comparison of k and k..

B Continue, until leaf node reached.
B Explores one path from root to leaf node.

B Height of B-tree is O(log /2 N)
where N: number of records indexed

- runtime complexity O(log N)

CMPT 454: Database Systems Il — Indexing and Hashing (2)

2.
[0
O
7l
+
a0

Example

n=23

Root

08T

0ST

.

e
AN
N
(@)]
£
1o
n
Q]
I
©
c
Q)]
(@)]
S
X
(<))
©
£
I
(/2]
S
O
-—
(72)
>
()]
(]
n
®
0
©
i
®
)]
<
Lo
4
T
o
=
@)

To Discuss

¥ How to construct a B+-Tree
® Insertion?
@ Deletion?

CMPT 454: Database Systems Il — Indexing and Hashing (2)

