Data Storage and Query Answering

Indexing and Hashing (2)




Summary So Far

E Conventional index
e Basic ldeas: sparse, dense, multi-level...
¢ Duplicate Keys
® Secondary Indexes

Advantage:

- Simple
- Index is sequential file, good for scans

Disadvantage:
- Inserts expensive, and/or
- Lose sequentiality & balance
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Example (cont.)
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B+-Tree

E NEXT: Another type of index

#Give up on sequentiality of index

e Try to get "balance”

Balanced versus unbalanced tree
— Searching a balanced search tree O(log n)
— Searching an unbalanced search tree can be O(n)
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B+-Trees

/ntroduction

B B+-trees are balanced, i1.e. all leaves at same level.
This guarantees efficient access.

B B+-trees use small space utilization.

E n (ordern): maximum number of keys per node,
minimum number of keys is roughly n/2.

E Exception: root may have one key only.
E m+ 1 pointers in node, m actual number of keys.
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B+-Trees

Introduction

Index Entries
(inner nodes)

/ N\

Data Entries

(leaf nodes)

—> leaf nodes are linked in sequential order
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B+-Trees

Introduction
B Node format: (p4,K4, . . ., Pr,KnsPps1)
pi: pointer, ki: search key
¥ Node with m pointers has m children and
corresponding sub-trees.

¥ n+7-th index entry has only pointer. At leaf level, this
pointer references the next leaf node.

¥ Search key property. Fth subtree contains data
entries with search key A<k, A1-th subtree contains
data entries with search key A>= k.

CMPT 454: Database Systems Il — Indexing and Hashing (2)



2.
[0
O
7l
+
a0

Example

n=23

Root

08T

0ST

.

e
AN
N
(@)]
£
1o
n
Q]
I
©
c
Q)]
(@)]
S
X
(<))
©
£
I
(/2]
S
O
-—
(72)
>
()]
(]
n
®
0
©
i
®
)]
<
Lo
4
T
o
=
@)




B+-Trees

Example
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B+-Trees

Example
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In Textbook's Notation
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Don't want nodes to be too empty

(

e Size of nodes: n+1 pointers
i
n keys

\

o Use at least
Non-leaf: [ (n+1)/2 |pointers

L eaf: | (n+1)/2] pointers to data
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B+-Trees

Space utilization
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B+-Trees

Space utilization

Number of pointers/keys for B-tree

Max | Max| Min Min
ptrs | keys| ptrs»data | keys
Nomieaty [n+1) n | [+1y2] |[()/2] o
(no%e-?cgot) n+1| n | L(n+vy/2] | L(n+1)/2]
Root n+1| n 1 1
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B+-Trees

Equality Queries

B To search for key k, start from root.

B Ata given node, find “nearest key” k; and
follow left (p;) or right (p;,;) pointer
depending on comparison of k and k..

B Continue, until leaf node reached.
B Explores one path from root to leaf node.

B Height of B-tree is O(log /2 N)
where N: number of records indexed

- runtime complexity O(log N)
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To Discuss

¥ How to construct a B+-Tree
® Insertion?
@ Deletion?
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