
Data Storage and Query AnsweringData Storage and Query Answering

Indexing and Hashing (2)Indexing and Hashing (2)

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 2 / 19

Summary So FarSummary So Far
Conventional index

Basic Ideas: sparse, dense, multi-level…
Duplicate Keys
Secondary Indexes

Advantage:
- Simple
- Index is sequential file, good for scans

Disadvantage:
- Inserts expensive, and/or
- Lose sequentiality & balance

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 3 / 19

ExampleExample
Example Index (sequential)

continuous

free space

10
20
30

40
50
60

70
80
90

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 4 / 19

Example (cont.)Example (cont.)
Example Index (sequential)

continuous

free space

10
20
30

40
50
60

70
80
90

39
31
35
36

32
38
34

33

overflow area
(not sequential)

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 5 / 19

B+B+--TreeTree
NEXT: Another type of index

Give up on sequentiality of index
Try to get “balance”

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 6 / 19

Root

B+Tree Example n=3

10
0

12
0

15
0

18
0

30

3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

B+B+--Tree ExampleTree Example

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 7 / 19

B+B+--TreesTrees
Introduction

B+-trees are balanced, i.e. all leaves at same level.
This guarantees efficient access.
B+-trees use small space utilization.
n (order): maximum number of keys per node,
minimum number of keys is roughly n/2.
Exception: root may have one key only.
m + 1 pointers in node, m actual number of keys.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 8 / 19

B+B+--TreesTrees

Introduction

Index Entries
(inner nodes)

Data Entries
(leaf nodes)

 leaf nodes are linked in sequential order

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 9 / 19

B+B+--TreesTrees
Introduction

Node format: (p1,k1, . . ., pn,kn,pn+1)
pi: pointer, ki: search key
Node with m pointers has m children and
corresponding sub-trees.
n+1-th index entry has only pointer. At leaf level, this
pointer references the next leaf node.
Search key property: i-th subtree contains data
entries with search key k <ki, i+1-th subtree contains
data entries with search key k >= ki.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 10 / 19

B+B+--TreesTrees

Example
Root n = 3

10
0

12
0

15
0

18
0

30

3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 11 / 19

B+B+--TreesTrees
Example

to keys to keys to keys to keys

< 57 57 k<81 81k<95 95

57 81 95

Non-leaf
(inner) node

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 12 / 19

B+B+--TreesTrees

Example

From non-leaf node

to next leaf
in sequence

57 81 95

To
 r

ec
or

d
w

ith
 k

ey
 5

7

To
 r

ec
or

d
w

ith
 k

ey
 8

1

To
 r

ec
or

d
w

ith
 k

ey
 8

5

Leaf node

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 13 / 19

In TextbookIn Textbook’’s Notations Notation

Leaf:

Non-leaf:

30 35
30

30 35

30

N=3

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 14 / 18

Don’t want nodes to be too empty

• Use at least

Non-leaf: (n+1)/2 pointers

Leaf: (n+1)/2 pointers to data

• Size of nodes: n+1 pointers
n keys

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 15 / 19

B+B+--TreesTrees

Space utilization

full node min. node

Non-leaf

Leaf

12
0

15
0

18
0

30

3 5 11 30 35

co
un

ts
 e

ve
n

if
nu

ll

n = 3

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 16 / 19

B+B+--TreesTrees

Space utilization

Number of pointers/keys for B-tree

Non-leaf
(non-root) n+1 n (n+1)/2 (n+1)/2- 1

Leaf
(non-root) n+1 n

Root n+1 n 1 1

Max Max Min Min
ptrs keys ptrsdata keys

(n+1)/2 (n+1)/2

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 17 / 19

B+B+--TreesTrees

)(log 2/ NO n

Equality Queries
To search for key k, start from root.
At a given node, find “nearest key” ki and
follow left (pi) or right (pi+1) pointer
depending on comparison of k and ki.
Continue, until leaf node reached.
Explores one path from root to leaf node.
Height of B-tree is
where N: number of records indexed

 runtime complexity)(log NO

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 18 / 19

B+B+--TreesTrees

Example
Root n = 3

10
0

12
0

15
0

18
0

30

3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Indexing and Hashing (2)Indexing and Hashing (2) 19 / 19

To DiscussTo Discuss
How to construct a B+-Tree

Insertion?
Deletion?

