Data Storage and Query Answering

Indexing and Hashing (1)

Introduction

We have discussed the organization of records
in secondary storage blocks.

Records have an address, either logical or
physical.

But SQL queries reference attribute values, not
record addresses.

SELECT * FROM R WHERE a=10;

How to find the records that have certain
specified attribute values?

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Why Index?

« Table Students (id, name, major, address)

« Query 1: find student with id 200830782

— Scanning the table to find the student — O(n) time, can be costly
— Sort all students on id into a sorted list, conduct a binary search on the
sorted list — O(log n) query time, fast
+ What if the sorted list cannot be held into main memory?
« Query 2: find students majoring in computer science
— Can the sorted list on id help?
— Sort all students on major into a sorted list, conduct a binary search on the
sorted list — O(n log n) construction time, O(log n) query time, O(n) space
« Some issues
— An update to table Students has to be propagated to both sorted lists

— Tradeoff between time and space — we cannot afford to construct a
separate sorted list for each query

— Queries may be raised ad hoc — we may not gain to construct a separate
sorted list on the fly for each query

CMPT 454: Database Systems Il — Indexing and Hashing (1)

What is Index?

— Efficient — construction, query answering,
space, and maintenance

+ |ssues in iIndex construction

— Query types — what kinds of queries that an
index can support

— Query answering time
— Construction time and space cost
— Maintenance cost
» Search key — an attribute or a set of Linear SearéR
attributes used to look up records in a file

— An index is built to facilitate searching on a
search key

— A search key may not be unique — different
from key in database design

- An index is an (efficient) data structure that Anindex structure provides

splooal Buipjoy s)20|q Jo Jaquinu abieT

can facilitate answering a set of queries links to target tuples with
— General — can be used to answer a setof = minoroverheads
queries

=

Index

7structure

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Indices Can Make Big Difference

SELECT *

FROM Table1 Table2

WHERE P1 AND P2

— P1 and P2 are on Table1 and Table2, respectively

« Table1 and Table2 contain 1 million tuples each,
P1(Table1) and P2(Table2) contain 100 tuples
each

* Without index, 1072 tuples will be read!
* With index, only 10,000 tuples will be read!

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Index Structures: Concepts

B Storage structures consist of files.
B Data files store, e.g., the records of a relation.

B Search key: one or more attributes for which we
want to be able to search efficiently.

B [ndex file over a data file for some search key
associates search key values with pointers to

(recordID = rid) data file records that have this
value.

B Sequential file: records sorted according to their

primary key.

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Sequential File

Sequential File

10
20

30
40

50
60

/0
80

90
100

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Data Entries

B Three alternatives for data entries k*:
- record with key value k
- <k, rid of record with search key value k>
- <k, list of rids of records with search key k>

E Choice is orthogonal to the indexing technique
used to locate entries k*

® Two major indexing techniques:

- free-structures
- hash tables.

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Index-Structure Basics

Dense index: one index entry for every record in
the data file.

Sparse index: index entries only for some of the

record in the data file. Typically, one entry per
block of the data file.

Primary index: determines the location of data file
records, i.e. order of index entries same as order
of data records.

Secondary index does not determine data location.

Can only have one primary index, but multiple
secondary indexes.

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Index-Structure Basics

Dense Index Sequential File
10 10
20 120
30| 4—— =5
0L o410
s0[+——
01 6o
o \& 70
o[4. 189

90

100
o 1 T

100

120 \§:

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Index-Structure Basics

Sparse Index Sequential File
; E:
30| -~
70 \ 40
90|
110, .| 50
130 60
150 70
170 80
190, | 90
219 100
230

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Index-Structure Basics

Duplicate key values
— sparse index
— Index may point to first instance of each value only
. —10
10| — 10
20| —
30 \\ 10
40 20
20
30
30
30
40
45

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Index-Structure Basics

E Sparse index:
- requires less index space per record,
- can keep more of index in memory,
- needed for secondary indexes.

E Dense index:

- can tell if any record exists without accessing
data file,

- better for insertions.

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Index-Structure Basics

E |ndex file can become very large, e.g. at least one

tenth of data file size for records with ten attributes
of same length.

E To speed-up index access, add a second index level

on top of the first index level, a third level on top of
the second one, . ..

E First level can be dense, other levels are sparse.

E Why? Can we build a dense, 2nd level index for a
dense index?

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Index-Structure Basics

Sparse 2nd level Sequential File
10 > 10 > %8
90| - 30| -

170 50 _ 30
2 o \40
90|
S\ s
. 130 60
490 150
o2/0 70
170 80
190| . 90
219 100
230

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Secondary Indexes

Sequence

field
\

30
50

20
/0

80
40

100
10

90
60

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Secondary Indexes

! Seqguence
e Sparse Index field

- ——130

30|
20 \\ 50
80| - 20
90| 380
40
100
10
90
60

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Secondary Indexes

e Sparse Index

30

—

20

8

i\

90

N

does not make sensel

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Sequence

field
\

30

50

20

/0

80

40

100

10

90

60

Secondary Indexes

Sequence

e Dense index field \

30
50

20
/0

80
40

100
10

90
60

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Secondary Indexes

e Dense index

10

20

/

Sequence

field
\

30

30

\

50

40

20

/0

50

60

80

/0

40

CMPT 454: Database Systems Il — Indexing and Hashing (1)

100

10

90

60

e Dense index

Secondary Indexes

Sequence

field
\

30

/

\

50

20

/0

10
30

80

40

col 40
90 5
\ 60

narse 70

evel

CMPT 454: Database Systems Il — Indexing and Hashing (1)

100

10

90

60

With Secondary Indexes:

B Lowest level is dense
E Other levels are sparse

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Duplicate values & secondary indexes

20
10

20
40

10
40

10
40

30
40

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Duplicate values & secondary indexes

one option...

10

20

10

10

10

20

/

20

20

30

40

40

VML

40

[\

40

40

10

40

10

40

30

/

CMPT 454: Database Systems Il — Indexing and Hashing (1)

40

Duplicate values & secondary indexes

one option...

Problem:

excess overhead!
 disk space
e search time

10| N 20
0] . 10
10
20| 4 20
40
20| —
30| ~ 10
40| - 40
40|
10
40| 40
40| —
\\ 30
\ 40

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Duplicate values & secondary indexes

another option...

20
10

20
40

10
40

10
40

30

10

20

N/

30
40

NIWARNY

l

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Duplicate values & secondary indexes

another option...

Problem:
variable size
records In
Index!

10

20

N/

30

40

NIWARNY

l

CMPT 454: Database Systems Il — Indexing and Hashing (1)

20

10

20

40

10

40

10

40

30

40

Duplicate values & secondary indexes

20 A
10 —~10 d
20
{20 :
30| .
40| — 40
10]
50
60| 40 D
10 A
40]
30 x)
Another idea: 40 L
Chain records with same key?

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Duplicate values & secondary indexes

20 A
10 —~10 ’
20| +— -
0] 1 :
10]
ZIm 40 .
10 A
40]
\ 30 x)
Problems: 40 -
e Need to add fields to records
e Need to follow chain to know records

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Duplicate values & secondary indexes

40

30
40

7
//

buckets

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Why “bucket” idea is useful

Indexes Records

Name: primary EMP (name,dept,floor,...)
Dept: secondary
Floor: secondary

CMPT 454: Database Systems Il — Indexing and Hashing (1)

Query: Get employees in

Dept. Ino

Toy|

CMPT 454: Database Systems Il — Indexing and Hashing (1)

EMP

00r Index

"~ 12nd

Query: Get employees in

Dept. index EMP Floor index

/ _ // '\\
7

— Intersect toy bucket and 2nd Floor
bucket to get set of matching EMP’s

CMPT 454: Database Systems Il — Indexing and Hashing (1)

This idea used in text information retrieval

Documents

...the cat Is
fat ...

...was raining
cats and dogs...

...Fido the
dog ...

CMPT 454: Database Systems Il — Indexing and Hashing (1)

This idea used in text information retrieval

Documents

cat —

...the cat Is
fat ...

dog \\ \ ...was raining

—— | cats and dogs...

...Fido the
dog ...

Inverted lists

CMPT 454: Database Systems Il — Indexing and Hashing (1)

=ind articles with “cat” and “dog”
e Find articles with “cat” or “dog”
E Find articles with “cat” and not “dog”

CMPT 454: Database Systems Il — Indexing and Hashing (1)

