
Data Storage and Query AnsweringData Storage and Query Answering

Data Storage and Disk Data Storage and Disk
Structure (4)Structure (4)

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Data Storage and Disk Structure (4)Data Storage and Disk Structure (4) 2 / 20

IntroductionIntroduction

We have introduced secondary storage devices,
in particular disks.
Disks use blocks as basic units of transfer and
storage.
In a DBS, we have to manage entities, typically
represented as records with attributes (relational
model).
Attribute values (data items) can be complex:
texts, images, videos.
How to organize records on disk?

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Data Storage and Disk Structure (4)Data Storage and Disk Structure (4) 3 / 20

IntroductionIntroduction

Data Items

Records

Blocks

Files

Memory

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Data Storage and Disk Structure (4)Data Storage and Disk Structure (4) 4 / 20

What are the data items we want to store?What are the data items we want to store?

a salary
a name
a date
a picture

What we have available: Bytes

8
bits

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Data Storage and Disk Structure (4)Data Storage and Disk Structure (4) 5 / 20

Data ItemsData Items

Short Integer, unsigned (16 Bits)

e.g., 35 is

Short Integer, signed

e.g., -35 is

00000000 00100011

25 + 21 + 20

10000000 00100011

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Data Storage and Disk Structure (4)Data Storage and Disk Structure (4) 6 / 20

Data ItemsData Items

Floating point (32 Bits, single precision)
1 bit for sign, m for exponent, n bits for

mantissa

value = (-1)sign x 2exponent – bias x 1.fraction
bias = 2m-1-1 = 127

= 0.15625

124 1.01 (binary) = 1.25 (decimal)

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Data Storage and Disk Structure (4)Data Storage and Disk Structure (4) 7 / 20

Data ItemsData Items

Characters
various coding schemes suggested
most popular is ASCII

1 Character = 1 Byte = 8 Bits
examples
A: 1000001
a: 1100001
5: 0110101
LF: 0001010

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Data Storage and Disk Structure (4)Data Storage and Disk Structure (4) 8 / 20

Data ItemsData Items

String of characters
NULL-terminated

e.g.,

length indicator
e.g.,

fixed length
do not need terminating NULL

or length indicator

c ta m uo es

c ta 53 m uo es

VA
RC

H
AR

CH
AR

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Data Storage and Disk Structure (4)Data Storage and Disk Structure (4) 9 / 20

RecordsRecords

Fixed format
e.g., relational data model

record is list of data items
number and type of data items fixed

vs. variable format
e.g., XML

number of data items variable
Fixed length
vs. variable length

e.g., VARCHAR, repeating fields

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Data Storage and Disk Structure (4)Data Storage and Disk Structure (4) 10 / 20

RecordsRecords

Record header keeps general information about
the record.
Header contains (some of) the following:
- pointer to schema,
- record types,
- record length

(to skip record without consulting schema),
- timestamp of last access,
- pointers (offsets) to record attributes.

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Data Storage and Disk Structure (4)Data Storage and Disk Structure (4) 11 / 20

FixedFixed--Length RecordsLength Records

Fixed length records are the simplest format.
Header contains only pointer to schema, record
length and timestamp.
Example
(1) id, 2 byte integer
(2) name, 10 char. Schema
(3) dept, 2 byte code

55 s m i t h 02

83 j o n e s 01
Records

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Data Storage and Disk Structure (4)Data Storage and Disk Structure (4) 12 / 20

VariableVariable--Length RecordsLength Records

Variable length records first store fixed length
fields, followed by variable-length fields.
Header contains also pointers (offsets) to
variable-length fields (except first one).
NULL values can be efficiently represented by
null pointers in the header.

header birthdate name address

fixed variable

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Data Storage and Disk Structure (4)Data Storage and Disk Structure (4) 13 / 20

Variable Format RecordsVariable Format Records

Variable format records are self-describing.
Simplest representation as sequence of tagged
fields.
Record header contains number of fields.
Tag contains
- attribute name,
- attribute type,
- field length

(if not apparent from attribute type).

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Data Storage and Disk Structure (4)Data Storage and Disk Structure (4) 14 / 20

Variable Format RecordsVariable Format Records

Example

4I52 4S DROF46
#

 F
ie

ld
s

Co
de

 id
en

tif
yi

ng
fie

ld
 a

s
E#

In
te

ge
r

ty
pe

Va
lu

e

Co
de

 f
or

 E
N

am
e

St
rin

g
ty

pe
Le

ng
th

 o
f

st
r.

Va
lu

e

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Data Storage and Disk Structure (4)Data Storage and Disk Structure (4) 15 / 20

How to pack records into blocks?
Three important issues to be addressed:

Separating records;
Spanned vs. unspanned;
Ordering.

Packing Records Into BlocksPacking Records Into Blocks

blocks ...

a file

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Data Storage and Disk Structure (4)Data Storage and Disk Structure (4) 16 / 20

Separating records

for fixed-length records, no need to separate
for variable-length records use special marker
or store record lengths (or offsets)

- within each record
- in block header

Packing Records Into BlocksPacking Records Into Blocks

R2R1 R3

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Data Storage and Disk Structure (4)Data Storage and Disk Structure (4) 17 / 20

Spanned vs. unspanned
Unspanned records on a single block

block 1 block 2

Spanned records split into fragments
that are distributed over multiple blocks

block 1 block 2

Packing Records Into BlocksPacking Records Into Blocks

R1 R2 R3 R4 R5

R1 R2 R3
(a)

R3
(b) R6R5R4 R7

(a)

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Data Storage and Disk Structure (4)Data Storage and Disk Structure (4) 18 / 20

Packing Records Into BlocksPacking Records Into Blocks

Spanned vs. unspanned
Spanning necessary if records do not fit in a
block, e.g. if they have very long fields.
Spanning useful for better space utilization,
even if records fit in a block.

2050 bytes wasted 2046 2050 bytes wasted 2046

R1 R2

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Data Storage and Disk Structure (4)Data Storage and Disk Structure (4) 19 / 20

Packing Records Into BlocksPacking Records Into Blocks
Spanned vs. unspanned

Spanned records requires extra header
information in records and record fragments:
- is it fragment? (bit)
- if fragment, is it first or last? (bit)
- if applicable, pointers to previous/next

fragment.

need indication need indication
of partial record of continuation
“pointer” to rest (+ from where?)

R1 R2 R3
(a)

R3
(b) R6R5R4 R7

(a)

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Data Storage and Disk Structure (4)Data Storage and Disk Structure (4) 20 / 20

Packing Records Into BlocksPacking Records Into Blocks

Ordering records
Want to efficiently read records in order
Ordering records in file and block by some key
value (sequential file)
Implementation options
- next record physically contiguous

- link to next record

Next (R1)R1

R1 Next (R1)

