Data Storage and Query Answering

Data Storage and Disk Structure (1)
A Database Management System (DBMS) is a software package designed to store, manage and retrieve databases.

A Database System (DBS) consists of two components:
- The DBMS;
- The database.
Why use a DBS?

- Logical data independence.
- Physical data independence.
- Efficient access.
- Reduced application development time.
- Data integrity and security.
- Concurrent access / concurrency control.
- Recovery from crashes.
A Simple Implementation of DBMS

• One file per table
 – Students(name, id, dept) in a file Students
 – A meta symbol “#” to separate attributes
 Smith#123#CS
 Johnson#522#EE
 …

• Database schema in a special file Schema
 Students#name#STR#id#INT#dept#STR
 Depts#name#STR#office#Str
 …
Naïve Query Answering

```
SELECT * FROM Students WHERE dept = 'CS' | CSStud
```

- Read file Schema to determine the attributes of relation Student and their types
- Check that condition dept = 'CS' is semantically valid for Students
- Create a new file CSStud
- Read file Students, for each line
 - Check condition dept = 'CS', if it is true then write the line as a tuple to file CSStud
- Add to the file Schema a line about CSStud
- Problems
 - If we change EE to ECON in one tuple in Students, the entire file has to be rewritten
 - Even if we look for one student, we have to read the whole file
 - If multiple users read/write file Students simultaneously, what would happen?
Handling Joins

```
SELECT office FROM Students, Depts
WHERE Students.name = 'Smith' AND Students.dept = Depts.name;
```

- **Algorithm**

 FOR each tuple s in Students DO

 FOR each tuple d in depts DO

 IF s.name = 'Smith' AND s.dept = d.dept THEN
 write d.office as a tuple to the output

- **More problems**

 - Why do we need to match a student “Cindy” with all departments?

 - I/O Complexity: $O(n^2)$, costly!

 - What if the system crashes?
Storage Device Hierarchy

- How should we store data on disks so that queries can be answered efficiently?
- How can we organize disks effectively so that a database built on top can be more efficient and robust?
The Memory Hierarchy

- Swapping, Main-memory DBMS’s

- Tertiary Storage: Tape, Network Backup

- Virtual Memory
- Disk-Cache (2-16MB)
- File System

- Disk

- Main Memory

- CPU
 - L1/L2-Cache (256KB–4MB)
 - Main Memory
 - CPU

Speeds:
- Disk: 300 MB/s (SATA-300)
- Memory: 16 GB/s (64bit@2GHz)
- Main Memory: 6,400 MB/s – 12,800 MB/s (DDR2, dual channel, 800MHz)
- Virtual Memory: 3,200 MB/s (DDR-SDRAM @200MHz)

Latencies:
- CPU-to-L1-Cache: ~5 cycles initial latency, then “burst” mode
- CPU-to-Main-Memory: ~200 cycles latency
The Memory Hierarchy (cont.)

- **Cache**
 - Data and instructions in cache when needed by CPU.
 - On-board (L1) cache on same chip as CPU, L2 cache on separate chip.
 - Capacity ~ 1MB, access time a few nanoseconds.

- **Main memory**
 - All active programs and data need to be in main memory.
 - Capacity ~ 1 GB, access time 10-100 nanoseconds.
Secondary storage
- Secondary storage is used for permanent storage of large amounts of data, typically a magnetic disk.
- Capacity up to 1 TB, access time ~ 10 milliseconds.

Tertiary storage
- To store data collections that do not fit onto secondary storage, e.g. magnetic tapes or optical disks.
- Capacity ~ 1 PB, access time seconds / minutes.
Volatile / Non-Volatile Device

- **Trade-off**
 - The larger the capacity of a storage device, the slower the access (and vice versa).

- A **volatile** storage device forgets its contents when power is switched off, a **non-volatile** device remembers its content.

- Secondary storage and tertiary storage is non-volatile, all others are volatile.

- DBS needs non-volatile (secondary) storage devices to store data permanently.
Memory / Disk

- RAM (main memory) for subset of database used by current transactions.
- Disk to store current version of entire database (secondary storage).
- Tapes for archiving older versions of the database (tertiary storage).
Virtual Memory

- Typically programs are executed in virtual memory of size equal to the address space of the processor.

- **Virtual memory** is managed by the operating system, which keeps the most relevant part in the main memory and the rest on disk.

- A DBS manages the data itself and does not rely on the virtual memory.

- However, main memory DBS do manage their data through virtual memory.
Gordon Moore in 1965 observed that the density of integrated circuits (i.e., number of transistors per unit) increased at an exponential rate, thus roughly doubles every 18 months.

Parameters that follow Moore’s law:

- Number of instructions per second that can be executed for unit cost;
- Number of main memory bits that can be bought for unit cost;
- Number of bytes on a disk that can be bought for unit cost.
Moore’s Law (cont.)

- But some other important hardware parameters do not follow Moore’s law and grow much slower.
- Theses are, in particular,
 - Speed of main memory access;
 - Speed of disk access.
- For example, disk latencies (seek times) have almost stagnated for past 5 years.
- Thus, moving data from one level of the memory hierarchy to the next becomes progressively larger.