Primitive DB Operations of Transactions

e INPUT(X) = copy the disk block containing
database element X to a memory buffer.

e READ(X,t) = if the block containing database
element X is not in a memory buffer then
INPUT (X). Next, assign the value of X to local
variable .

e WRITE(X,t) = if the block containing
database element X is not in a memory buffer
then INPUT (X). Next, copy the value of ¢ to X
in the buffer.

e (QUTPUT(X) = copy the buffer containing X to
disk.
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xample

A, B are database values; constraint A = B
must hold.

Transaction 1" =
A = A%2;

:= B*2;
Execution of T' involves reading A, B from
disk, performing arithmetic in memory, and
writing new A, B to disk.

Action t Mem A Mem B Disk A Disk B
READ(A,t) 8 8 8 8
t 1= t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t 1= t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

Problem: what happens if there is a system
failure just before QUTPUT (B)?
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Undo Logging

Create a log of all important actions (due to Hansel
and Gretel, 782 AD: improved to durable undo
logging in 784).

° <START T> = transaction 1 started.

o <T,X,v> = database element X was
modified; it used to have value wv.

e <COMMIT 7> = transaction 1" has completed,
and all its changes have been output to the
database.

Intention

If there is a crash before transaction finishes, the
log will tell us how to restore old values for any DB
elements changed on disk.

Difficulties

e If the log isn’t on disk, it too can be lost.

e If we have to write every log entry to disk, we

do a lot of disk I/O.
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Undo (Write-Ahead) Logging

e C(reate a log record for every action.

e Log records for DB element X must be on
disk (or other nonvolatile storage) before any
database modification to X appears on disk.

e Before commit record appears on disk, all
database modifications of the transaction must
appear on disk.

4 Flush log = write any log entries to disk if
they are not already there.
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Example

Action t M-A M-B D-A D-B Log
READ(A,t) 8 8 8 8 <START 1>
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8  8<T A 8>
READ(B,t) 8 16 8§ 8 8

t:=t*2 16 16 8§ 8 8
WRITE(B,t) 16 16 16 8 8<T.B,8>
FLUSH LOG

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16 <COMMIT 1>

FLUSH LOG
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Abort Actions

Sometimes a transaction cannot complete, e.g.:

1. It detects an error condition such as faulty
data.

2. It gets involved in a deadlock, competing for
resources or data with other transactions.

If so, the transaction aborts; it does not write any
of its DB modifications to disk, and it issues an
<ABORT T'> record to the log.
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Recovery With Undo Logging

Suppose there is a system crash, say just before
OUTPUT (B). Do the following:

1. Examine the log to identify all transactions T°
such that <START T'> appears in the log, but
neither <COMMIT 1'> nor <ABORT 1'> does.

4 (Call such transactions incomplete.

2.  Examine each log entry <7, X, v> from most
recent to earliest.

a) If T is not an incomplete transaction, do
nothing.

b) If T is incomplete, do WRITE(X,V) ;
OUTPUT (X).

3. For each incomplete transaction 17" add
<ABORT 1> to the log, and flush the log.
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Checkpointing

Problem: in principle recovery requires looking at
entire log. Simple solution: occasional checkpoint
operation during which we:

1. Stop accepting new transactions.

2. Wait until all current transactions commit or
abort.

3. Flush log to disk and all memory buffers to
disk.

4 Should have occurred anyway in common
log methods.

4. Enter a <CHECKPOINT> record in the log and
flush to disk.

At this point, transactions may resume.

e If recovery is necessary, we know that all
transactions prior to a recorded checkpoint
have committed and need not be undone.
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Nonquiescent Checkpointing

Problem: we may not want to stop transactions
from entering system. Solution:

1. Write <START CKPT(11,...,1%)> record to log,
where T;’s are all active transactions.

2.  Allow active transactions to commit, but do
not prohibit new transactions.

3.  Write END CKPT> record to log.
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Recovery With Nonquiescent Checkpoints

e If the crash follows <END CKPT> we can restrict

ourselves to transactions that began after the
<START CKPT>.

e If the crash occurs between <START CKPT> and
<END CKPT>, we need to undo

1. All those transactions 1" with <START 1>
after the <START CKPT> but but no
<COMMIT T>.

2. All transactions 1" on the list associated
with <START CKPT> with no <COMMIT T'>.
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Redo Logging

e (Commit before writing data to disk.

e Redo-log entries contain new values:

4 <T,X,v> = “transaction 7' modified X
and the new value is v.”

Redo Logging Rules

1. Generate new-value log entry whenever an
element is modified (in buffer).

2. Before modifying DB element X on disk,
transaction must be committed, and COMMIT
record written to log.

3. Before modifying DB element X on disk, flush
all log entries involving X (including commit)
to disk.
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Example

Action t M-A M-B D-A D-B Log

READ(A,t) 8 8 8 8 <START 1>

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8<T,A, 16>

READ(B,t) 8 16 8§ 8 8

t:=t*2 16 16 8§ 8 8

WRITE(B,t) 16 16 16 8 8<T,B,16>
<COMMIT 1>

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

FLUSH LOG
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Recovery for Redo Logging

1. Find set of committed transactions from the
log.

4 Look back to previous checkpoint only.

2. Examine log forward, from earliest to latest.
For each <T', X, v> in log:

WRITE(X,v);
QUTPUT (X) ;

e Notice that no uncommitted transaction can
have any effect on the DB.

Problem

If we use nonquiescent checkpointing with redo
logging, how do we simplify recovery.

e Hint: If a transaction doesn’t make the
“active” list at START CKPT, then it not only
has committed, but all its changes have been
written to the DB’s disk.
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Undo/Redo Logging

Problem: both previous methods have some
downside:

e Redo requires keeping all modified blocks
buftered until atter commit.

e Undo can lose effects of transaction that
appear (to the user) to have completed.

Undo/Redo Log

Log entries <7, X, v, w>, means transaction 7T
updated DB element X from old value v to new
value w.

Undo/Redo Rules

1. Generate a new/old record on the log
whenever a DB element is modified (in buffer).

2. Flush the log before updating X on disk.
3. Flush log after writing a <COMMIT 1'> record.

e But there is no constraint about whether DB
elements are flushed to disk before or after
commit point.
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Example
One possibility:

Action t M-A M-B D-A D-B Log
READ(A,t) 8 8 8 8 <START 1>
t = t*x2 16 8 8 8

WRITE(A,t) 16 16 8 8<T,A,8, 16>
READ(B,t) 8 16 8§ 8 8

t:=t*2 16 16 8§ 8 8

WRITE(B,t) 16 16 16 8 8<T7,B,8,16>
FLUSH LOG

OUTPUT(A) 16 16 16 16 8 <COMMIT 7>
OUTPUT(B) 16 16 16 16 16

FLUSH LOG
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Redo/Undo Recovery

1.

Find set of problematic transactions:

4 Go back to previous checkpoint; include
all that either started after the checkpoint
began or are on the “active” list at
START CKPT.

If a transaction has no COMMIT record, undo it.
4  Must proceed latest to earliest.
If the transaction has a COMMIT record, redo it.

4 Must proceed earliest to latest.
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Idempotence

An operation is idempotent if the result of
repeating it several times is the same as doing it
once.

e Example: f(z) defined by “execute x := x+1”
is not idempotent; f; f does not have the same
effect as f.

e Example: g(x) defined by “execute x := 10 is
idempotent; g; g has exactly the same effect as

g.

4 Thus, the recovery steps recommended for
undo, redo, and undo/redo logging are all
idempotent.

Problem

What if the transaction involves an inherently

nonidempotent operation, such as spitting out cash
from an ATM?

e How would you log withdrawals, and how
would you recover in a situation where “spit
out cash” can be neither undone nor redone?
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