Primitive DB Operations of Transactions

e INPUT(X) = copy the disk block containing
database element X to a memory buffer.

e READ(X,t) = if the block containing database
element X is not in a memory buffer then
INPUT (X). Next, assign the value of X to local
variable .

e WRITE(X,t) = if the block containing
database element X is not in a memory buffer
then INPUT (X). Next, copy the value of ¢ to X
in the buffer.

e (QUTPUT(X) = copy the buffer containing X to
disk.

Scott (Bin) Zhou
矩形

xample

A, B are database values; constraint A = B
must hold.

Transaction 1" =
A = A%2;

:= B*2;
Execution of T' involves reading A, B from
disk, performing arithmetic in memory, and
writing new A, B to disk.

Action t Mem A Mem B Disk A Disk B
READ(A,t) 8 8 8 8
t 1= t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t 1= t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

Problem: what happens if there is a system
failure just before QUTPUT (B)?

Scott (Bin) Zhou
矩形

Undo Logging

Create a log of all important actions (due to Hansel
and Gretel, 782 AD: improved to durable undo
logging in 784).

° <START T> = transaction 1 started.

o <T,X,v> = database element X was
modified; it used to have value wv.

e <COMMIT 7> = transaction 1" has completed,
and all its changes have been output to the
database.

Intention

If there is a crash before transaction finishes, the
log will tell us how to restore old values for any DB
elements changed on disk.

Difficulties

e If the log isn’t on disk, it too can be lost.

e If we have to write every log entry to disk, we

do a lot of disk I/O.

Scott (Bin) Zhou
矩形

Undo (Write-Ahead) Logging

e C(reate a log record for every action.

e Log records for DB element X must be on
disk (or other nonvolatile storage) before any
database modification to X appears on disk.

e Before commit record appears on disk, all
database modifications of the transaction must
appear on disk.

4 Flush log = write any log entries to disk if
they are not already there.

Scott (Bin) Zhou
矩形

Example

Action t M-A M-B D-A D-B Log
READ(A,t) 8 8 8 8 <START 1>
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8<T A 8>
READ(B,t) 8 16 8§ 8 8

t:=t*2 16 16 8§ 8 8
WRITE(B,t) 16 16 16 8 8<T.B,8>
FLUSH LOG

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16 <COMMIT 1>

FLUSH LOG

Scott (Bin) Zhou
矩形

Scott (Bin) Zhou
矩形

Abort Actions

Sometimes a transaction cannot complete, e.g.:

1. It detects an error condition such as faulty
data.

2. It gets involved in a deadlock, competing for
resources or data with other transactions.

If so, the transaction aborts; it does not write any
of its DB modifications to disk, and it issues an
<ABORT T'> record to the log.

Scott (Bin) Zhou
矩形

Recovery With Undo Logging

Suppose there is a system crash, say just before
OUTPUT (B). Do the following:

1. Examine the log to identify all transactions T°
such that <START T'> appears in the log, but
neither <COMMIT 1'> nor <ABORT 1'> does.

4 (Call such transactions incomplete.

2. Examine each log entry <7, X, v> from most
recent to earliest.

a) If T is not an incomplete transaction, do
nothing.

b) If T is incomplete, do WRITE(X,V) ;
OUTPUT (X).

3. For each incomplete transaction 17" add
<ABORT 1> to the log, and flush the log.

Scott (Bin) Zhou
矩形

Checkpointing

Problem: in principle recovery requires looking at
entire log. Simple solution: occasional checkpoint
operation during which we:

1. Stop accepting new transactions.

2. Wait until all current transactions commit or
abort.

3. Flush log to disk and all memory buffers to
disk.

4 Should have occurred anyway in common
log methods.

4. Enter a <CHECKPOINT> record in the log and
flush to disk.

At this point, transactions may resume.

e If recovery is necessary, we know that all
transactions prior to a recorded checkpoint
have committed and need not be undone.

Scott (Bin) Zhou
矩形

Scott (Bin) Zhou
矩形

Nonquiescent Checkpointing

Problem: we may not want to stop transactions
from entering system. Solution:

1. Write <START CKPT(11,...,1%)> record to log,
where T;’s are all active transactions.

2. Allow active transactions to commit, but do
not prohibit new transactions.

3. Write END CKPT> record to log.

Scott (Bin) Zhou
矩形

Recovery With Nonquiescent Checkpoints

e If the crash follows <END CKPT> we can restrict

ourselves to transactions that began after the
<START CKPT>.

e If the crash occurs between <START CKPT> and
<END CKPT>, we need to undo

1. All those transactions 1" with <START 1>
after the <START CKPT> but but no
<COMMIT T>.

2. All transactions 1" on the list associated
with <START CKPT> with no <COMMIT T'>.

Scott (Bin) Zhou
矩形

Redo Logging

e (Commit before writing data to disk.

e Redo-log entries contain new values:

4 <T,X,v> = “transaction 7' modified X
and the new value is v.”

Redo Logging Rules

1. Generate new-value log entry whenever an
element is modified (in buffer).

2. Before modifying DB element X on disk,
transaction must be committed, and COMMIT
record written to log.

3. Before modifying DB element X on disk, flush
all log entries involving X (including commit)
to disk.

Scott (Bin) Zhou
矩形

Example

Action t M-A M-B D-A D-B Log

READ(A,t) 8 8 8 8 <START 1>

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8<T,A, 16>

READ(B,t) 8 16 8§ 8 8

t:=t*2 16 16 8§ 8 8

WRITE(B,t) 16 16 16 8 8<T,B,16>
<COMMIT 1>

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

FLUSH LOG

Scott (Bin) Zhou
矩形

Recovery for Redo Logging

1. Find set of committed transactions from the
log.

4 Look back to previous checkpoint only.

2. Examine log forward, from earliest to latest.
For each <T', X, v> in log:

WRITE(X,v);
QUTPUT (X) ;

e Notice that no uncommitted transaction can
have any effect on the DB.

Problem

If we use nonquiescent checkpointing with redo
logging, how do we simplify recovery.

e Hint: If a transaction doesn’t make the
“active” list at START CKPT, then it not only
has committed, but all its changes have been
written to the DB’s disk.

Scott (Bin) Zhou
矩形

Undo/Redo Logging

Problem: both previous methods have some
downside:

e Redo requires keeping all modified blocks
buftered until atter commit.

e Undo can lose effects of transaction that
appear (to the user) to have completed.

Undo/Redo Log

Log entries <7, X, v, w>, means transaction 7T
updated DB element X from old value v to new
value w.

Undo/Redo Rules

1. Generate a new/old record on the log
whenever a DB element is modified (in buffer).

2. Flush the log before updating X on disk.
3. Flush log after writing a <COMMIT 1'> record.

e But there is no constraint about whether DB
elements are flushed to disk before or after
commit point.

Scott (Bin) Zhou
矩形

Example
One possibility:

Action t M-A M-B D-A D-B Log
READ(A,t) 8 8 8 8 <START 1>
t = t*x2 16 8 8 8

WRITE(A,t) 16 16 8 8<T,A,8, 16>
READ(B,t) 8 16 8§ 8 8

t:=t*2 16 16 8§ 8 8

WRITE(B,t) 16 16 16 8 8<T7,B,8,16>
FLUSH LOG

OUTPUT(A) 16 16 16 16 8 <COMMIT 7>
OUTPUT(B) 16 16 16 16 16

FLUSH LOG

Scott (Bin) Zhou
矩形

Redo/Undo Recovery

1.

Find set of problematic transactions:

4 Go back to previous checkpoint; include
all that either started after the checkpoint
began or are on the “active” list at
START CKPT.

If a transaction has no COMMIT record, undo it.
4 Must proceed latest to earliest.
If the transaction has a COMMIT record, redo it.

4 Must proceed earliest to latest.

Scott (Bin) Zhou
矩形

Scott (Bin) Zhou
矩形

Idempotence

An operation is idempotent if the result of
repeating it several times is the same as doing it
once.

e Example: f(z) defined by “execute x := x+1”
is not idempotent; f; f does not have the same
effect as f.

e Example: g(x) defined by “execute x := 10 is
idempotent; g; g has exactly the same effect as

g.

4 Thus, the recovery steps recommended for
undo, redo, and undo/redo logging are all
idempotent.

Problem

What if the transaction involves an inherently

nonidempotent operation, such as spitting out cash
from an ATM?

e How would you log withdrawals, and how
would you recover in a situation where “spit
out cash” can be neither undone nor redone?

Scott (Bin) Zhou
矩形

	slides12.pdf
	slides13

