
A Basic Logic:

Classical Propositional Logic

CMPT 411/721

Propositional Logic

• Classical propositional logic is the best known logic and one of
the simplest.
• Aside: There are lots of propositional logics (which is why

“classical” is used above) but when we talk about
“propositional logic” we’ll mean the standard approach that
you (should) have seen in earlier courses.

• Basic unit: atoms or atomic formulas which can be either true
or false.
• Think of as strings like a, p, john is happy .

• These can be combined into more complex formulas by
connectives like ∧ (and), ¬ (not), and others.

• E.g. if a stands for “Robin is a student” and b for “Chris is a
student” then a ∨ b stands for “Robin is a student or Chris is
a student”.

Using (Propositional) Logic

General Idea:

• A user will have some domain that they want to deal with
(e.g. general reasoning, planning, etc.)
• Encode what’s known about the domain in the knowledge

base
• I.e. encode (true) assertions about the domain
• Nearly always this information will be incomplete
• So this information underconstrains a domain

• Query the KB regarding these assertions
• Thus (assuming the KB is accurate), may learn something new

about the domain

Logical Systems and Languages

• A language is a collection of strings or sentences.

• (Informally) a logic is a formal language for representing
information, such that conclusions can be drawn from the
information.

A logic has three main parts:
• The syntax defines the sentences in the language

• Sentences are most often referred to as formulas.

• The semantics defines the “meaning” of formulas;
• i.e., defines truth of a formula in a world or domain.

• Inference procedures (or a proof theory) define a means of
deriving formulas from other formulas.

Logical Systems and Languages

• A language is a collection of strings or sentences.

• (Informally) a logic is a formal language for representing
information, such that conclusions can be drawn from the
information.

A logic has three main parts:
• The syntax defines the sentences in the language

• Sentences are most often referred to as formulas.

• The semantics defines the “meaning” of formulas;
• i.e., defines truth of a formula in a world or domain.

• Inference procedures (or a proof theory) define a means of
deriving formulas from other formulas.

Logical Systems and Languages

• A language is a collection of strings or sentences.

• (Informally) a logic is a formal language for representing
information, such that conclusions can be drawn from the
information.

A logic has three main parts:

• The syntax defines the sentences in the language
• Sentences are most often referred to as formulas.

• The semantics defines the “meaning” of formulas;
• i.e., defines truth of a formula in a world or domain.

• Inference procedures (or a proof theory) define a means of
deriving formulas from other formulas.

Logical Systems and Languages

• A language is a collection of strings or sentences.

• (Informally) a logic is a formal language for representing
information, such that conclusions can be drawn from the
information.

A logic has three main parts:
• The syntax defines the sentences in the language

• Sentences are most often referred to as formulas.

• The semantics defines the “meaning” of formulas;
• i.e., defines truth of a formula in a world or domain.

• Inference procedures (or a proof theory) define a means of
deriving formulas from other formulas.

Logical Systems and Languages

• A language is a collection of strings or sentences.

• (Informally) a logic is a formal language for representing
information, such that conclusions can be drawn from the
information.

A logic has three main parts:
• The syntax defines the sentences in the language

• Sentences are most often referred to as formulas.

• The semantics defines the “meaning” of formulas;
• i.e., defines truth of a formula in a world or domain.

• Inference procedures (or a proof theory) define a means of
deriving formulas from other formulas.

Logical Systems and Languages

• A language is a collection of strings or sentences.

• (Informally) a logic is a formal language for representing
information, such that conclusions can be drawn from the
information.

A logic has three main parts:
• The syntax defines the sentences in the language

• Sentences are most often referred to as formulas.

• The semantics defines the “meaning” of formulas;
• i.e., defines truth of a formula in a world or domain.

• Inference procedures (or a proof theory) define a means of
deriving formulas from other formulas.

Propositional Logic Overview: Syntax

• Propositional logic is a simple logic – illustrates the main ideas

• We begin with the proposition symbols or (atomic) formulas
or atoms: P = {p, q, . . . }.

• Then the language is recursively defined:
• The atomic formulas provide a base case and
• more complex formulas are formed with

• the unary operator ¬ (negation) and
• binary operators ∧ (conjunction), ∨ (disjunction), ⊃

(implication), ≡ (biconditional)

• ¬, ∧, ∨, ⊃, ≡ (and parentheses) are the logical symbols,
whose meaning is fixed.

• Elements of P are the nonlogical symbols, whose meaning
depends on the domain.

Propositional Logic Overview: Syntax

• Propositional logic is a simple logic – illustrates the main ideas

• We begin with the proposition symbols or (atomic) formulas
or atoms: P = {p, q, . . . }.
• Then the language is recursively defined:

• The atomic formulas provide a base case and
• more complex formulas are formed with

• the unary operator ¬ (negation) and
• binary operators ∧ (conjunction), ∨ (disjunction), ⊃

(implication), ≡ (biconditional)

• ¬, ∧, ∨, ⊃, ≡ (and parentheses) are the logical symbols,
whose meaning is fixed.

• Elements of P are the nonlogical symbols, whose meaning
depends on the domain.

Propositional Logic Overview: Syntax

• Propositional logic is a simple logic – illustrates the main ideas

• We begin with the proposition symbols or (atomic) formulas
or atoms: P = {p, q, . . . }.
• Then the language is recursively defined:

• The atomic formulas provide a base case and
• more complex formulas are formed with

• the unary operator ¬ (negation) and
• binary operators ∧ (conjunction), ∨ (disjunction), ⊃

(implication), ≡ (biconditional)

• ¬, ∧, ∨, ⊃, ≡ (and parentheses) are the logical symbols,
whose meaning is fixed.

• Elements of P are the nonlogical symbols, whose meaning
depends on the domain.

Propositional Logic Overview: Semantics

• For a formula, such as
(p ∧ ¬(q ∨ (¬p ⊃ r)) ∨ (¬p ∨ r))

we may want to be able to tell if the formula is true or false.

+ In general this is impossible, unless we know whether each of
p, q, r are true or false.

• If we know the truth value of every member of P then we can
determine the truth value of any formula.

Propositional Logic Overview: Semantics

• An interpretation assigns true or false to each proposition
symbol

• A simple recursive process can then evaluate an arbitrary
formula.

Q: If P contains n elements, how many interpretations are there?

Propositional Logic Overview: Semantics

• An interpretation assigns true or false to each proposition
symbol

• A simple recursive process can then evaluate an arbitrary
formula.

Q: If P contains n elements, how many interpretations are there?

Truth tables for connectives

P Q ¬P P ∧ Q P ∨ Q P ⊃ Q P ≡ Q

true true false true true true true
true false false false true false false
false true true false true true false
false false true false false true true

More Formally: The Language of PC

• Logical symbols: ¬, ∧, ∨, ⊃, ≡. (Parentheses are used for
grouping.)
• Nonlogical symbols: Atomic formulas, P = p, q, r , . . .

• A literal is an atom or its negation.

• Formulas are defined recursively as follows:
• A string φ is a formula iff

• φ is an atomic formula
• φ is of the form ¬ψ, (ψ ∧ γ), (ψ ∨ γ), (ψ ⊃ γ), (ψ ≡ γ),

where ψ and γ are formulas.

+ If there is no ambiguity, parentheses may be omitted.

Semantics

• An interpretation for P is a mapping I : P→ {true, false}.
• In KR, sometimes the term world is used for interpretation,

since an interpretation describes a possible state of the world.

• Given an interpretation, truth and falsity for all sentences is
defined as follows:
• I |= p iff I(p) = true.
• I |= ¬φ iff I 6|= φ.
• I |= φ ∧ ψ iff I |= φ and I |= ψ.
• I |= φ ∨ ψ iff I |= φ or I |= ψ.
• I |= φ ⊃ ψ iff I 6|= φ or I |= ψ.
• I |= φ ≡ ψ iff (I |= φ iff I |= ψ).

• The above is easily shown to be equivalent to the truth table
definition.

• Often convenient to take (say) ¬ and ⊃ as primitive, and
define the other connectives in terms of them.

Semantics: Key Terms

• For a formula φ, if there is an interpretation I that makes φ
true, then
• φ is satisfiable, and
• I is model of φ, or I satisfies φ, written I |= φ.

+ Be careful: Some texts use the term model for
interpretation. (E.g. Russell and Norvig).

• Some formulas are true or false based on their form alone, and
independent of an interpretation.
• E.g. p ⊃ (q ⊃ p).

• A formula φ that is true in every interpretation is called valid
or, in propositional logic, a tautology.
• A formula that is false in every interpretation is unsatisfiable.

Semantics: Key Terms

• For a formula φ, if there is an interpretation I that makes φ
true, then
• φ is satisfiable, and
• I is model of φ, or I satisfies φ, written I |= φ.

+ Be careful: Some texts use the term model for
interpretation. (E.g. Russell and Norvig).

• Some formulas are true or false based on their form alone, and
independent of an interpretation.
• E.g. p ⊃ (q ⊃ p).

• A formula φ that is true in every interpretation is called valid
or, in propositional logic, a tautology.
• A formula that is false in every interpretation is unsatisfiable.

Semantics: Entailment

• Entailment means that one thing follows from another:

• Knowledge base KB entails sentence φ if and only if:
• φ is true in all interpretations/worlds in which KB is true
• Or: if KB is true then φ must be true.

Semantics: Interpretations

• Write KB |= φ for KB entails φ.
• So: KB |= φ iff for every interpretation I,

if I |= KB then I |= φ.
• Or: If M(φ) is the set of all models of φ, then

KB |= φ iff M(KB) ⊆ M(φ)

• Note: |= is overloaded, since we also write I |= φ.

• E.g., “the Leafs won” entails “the Leafs won or the Canucks
won”.

• Entailment is a relationship between sentences (i.e., syntax)
that is based on semantics

Example

Consider:

• If it rains John takes an umbrella

• If John takes an umbrella he doesn’t get wet

• If it doesn’t rain then John doesn’t get wet.

Show: John doesn’t get wet.

Propositions

• r : It rains

• u: John takes an umbrella

• w : John gets wet.

{r ⊃ u, u ⊃ ¬w , ¬r ⊃ ¬w}

Example

Consider:

• If it rains John takes an umbrella

• If John takes an umbrella he doesn’t get wet

• If it doesn’t rain then John doesn’t get wet.

Show: John doesn’t get wet.

Propositions

• r : It rains

• u: John takes an umbrella

• w : John gets wet.

{r ⊃ u, u ⊃ ¬w , ¬r ⊃ ¬w}

Example

Consider:

• If it rains John takes an umbrella

• If John takes an umbrella he doesn’t get wet

• If it doesn’t rain then John doesn’t get wet.

Show: John doesn’t get wet.

Propositions

• r : It rains

• u: John takes an umbrella

• w : John gets wet.

Encode:

{r ⊃ u, u ⊃ ¬w , ¬r ⊃ ¬w}

Example

Consider:

• If it rains John takes an umbrella

• If John takes an umbrella he doesn’t get wet

• If it doesn’t rain then John doesn’t get wet.

Show: John doesn’t get wet.

Propositions

• r : It rains

• u: John takes an umbrella

• w : John gets wet.

Query

{r ⊃ u, u ⊃ ¬w , ¬r ⊃ ¬w} |= ¬w

Example

Prove that: {r ⊃ u, u ⊃ ¬w , ¬r ⊃ ¬w} |= ¬w

One possibility:
Assume that I is an interpretation that satisfies the LHS.

• Either I |= r or I |= ¬r
• Assume that I |= r

• Since I |= r ⊃ u, so I 6|= r or I |= u.
Hence I |= u.

• But I |= u ⊃ ¬w and so I 6|= u or I |= ¬w
• Therefore I |= ¬w .

• Assume that I |= ¬r
• Since I |= ¬r ⊃ ¬w , so I |= r or I |= ¬w .

Hence I |= ¬w .

• Since in both cases I |= ¬w , we conclude I |= ¬w .

• We have shown for arbitrary I that if I |= LHS then I |= ¬w .

Example

Prove that: {r ⊃ u, u ⊃ ¬w , ¬r ⊃ ¬w} |= ¬w
One possibility:
Assume that I is an interpretation that satisfies the LHS.

• Either I |= r or I |= ¬r
• Assume that I |= r

• Since I |= r ⊃ u, so I 6|= r or I |= u.
Hence I |= u.

• But I |= u ⊃ ¬w and so I 6|= u or I |= ¬w
• Therefore I |= ¬w .

• Assume that I |= ¬r
• Since I |= ¬r ⊃ ¬w , so I |= r or I |= ¬w .

Hence I |= ¬w .

• Since in both cases I |= ¬w , we conclude I |= ¬w .

• We have shown for arbitrary I that if I |= LHS then I |= ¬w .

Example

Prove that: {r ⊃ u, u ⊃ ¬w , ¬r ⊃ ¬w} |= ¬w
One possibility:
Assume that I is an interpretation that satisfies the LHS.

• Either I |= r or I |= ¬r

• Assume that I |= r
• Since I |= r ⊃ u, so I 6|= r or I |= u.

Hence I |= u.
• But I |= u ⊃ ¬w and so I 6|= u or I |= ¬w
• Therefore I |= ¬w .

• Assume that I |= ¬r
• Since I |= ¬r ⊃ ¬w , so I |= r or I |= ¬w .

Hence I |= ¬w .

• Since in both cases I |= ¬w , we conclude I |= ¬w .

• We have shown for arbitrary I that if I |= LHS then I |= ¬w .

Example

Prove that: {r ⊃ u, u ⊃ ¬w , ¬r ⊃ ¬w} |= ¬w
One possibility:
Assume that I is an interpretation that satisfies the LHS.

• Either I |= r or I |= ¬r
• Assume that I |= r

• Since I |= r ⊃ u, so I 6|= r or I |= u.
Hence I |= u.

• But I |= u ⊃ ¬w and so I 6|= u or I |= ¬w
• Therefore I |= ¬w .

• Assume that I |= ¬r
• Since I |= ¬r ⊃ ¬w , so I |= r or I |= ¬w .

Hence I |= ¬w .

• Since in both cases I |= ¬w , we conclude I |= ¬w .

• We have shown for arbitrary I that if I |= LHS then I |= ¬w .

Example

Prove that: {r ⊃ u, u ⊃ ¬w , ¬r ⊃ ¬w} |= ¬w
One possibility:
Assume that I is an interpretation that satisfies the LHS.

• Either I |= r or I |= ¬r
• Assume that I |= r

• Since I |= r ⊃ u, so I 6|= r or I |= u.
Hence I |= u.

• But I |= u ⊃ ¬w and so I 6|= u or I |= ¬w
• Therefore I |= ¬w .

• Assume that I |= ¬r
• Since I |= ¬r ⊃ ¬w , so I |= r or I |= ¬w .

Hence I |= ¬w .

• Since in both cases I |= ¬w , we conclude I |= ¬w .

• We have shown for arbitrary I that if I |= LHS then I |= ¬w .

Example

Prove that: {r ⊃ u, u ⊃ ¬w , ¬r ⊃ ¬w} |= ¬w
One possibility:
Assume that I is an interpretation that satisfies the LHS.

• Either I |= r or I |= ¬r
• Assume that I |= r

• Since I |= r ⊃ u, so I 6|= r or I |= u.
Hence I |= u.

• But I |= u ⊃ ¬w and so I 6|= u or I |= ¬w
• Therefore I |= ¬w .

• Assume that I |= ¬r
• Since I |= ¬r ⊃ ¬w , so I |= r or I |= ¬w .

Hence I |= ¬w .

• Since in both cases I |= ¬w , we conclude I |= ¬w .

• We have shown for arbitrary I that if I |= LHS then I |= ¬w .

Example

Prove that: {r ⊃ u, u ⊃ ¬w , ¬r ⊃ ¬w} |= ¬w
One possibility:
Assume that I is an interpretation that satisfies the LHS.

• Either I |= r or I |= ¬r
• Assume that I |= r

• Since I |= r ⊃ u, so I 6|= r or I |= u.
Hence I |= u.

• But I |= u ⊃ ¬w and so I 6|= u or I |= ¬w
• Therefore I |= ¬w .

• Assume that I |= ¬r

• Since I |= ¬r ⊃ ¬w , so I |= r or I |= ¬w .
Hence I |= ¬w .

• Since in both cases I |= ¬w , we conclude I |= ¬w .

• We have shown for arbitrary I that if I |= LHS then I |= ¬w .

Example

Prove that: {r ⊃ u, u ⊃ ¬w , ¬r ⊃ ¬w} |= ¬w
One possibility:
Assume that I is an interpretation that satisfies the LHS.

• Either I |= r or I |= ¬r
• Assume that I |= r

• Since I |= r ⊃ u, so I 6|= r or I |= u.
Hence I |= u.

• But I |= u ⊃ ¬w and so I 6|= u or I |= ¬w
• Therefore I |= ¬w .

• Assume that I |= ¬r
• Since I |= ¬r ⊃ ¬w , so I |= r or I |= ¬w .

Hence I |= ¬w .

• Since in both cases I |= ¬w , we conclude I |= ¬w .

• We have shown for arbitrary I that if I |= LHS then I |= ¬w .

Example

Prove that: {r ⊃ u, u ⊃ ¬w , ¬r ⊃ ¬w} |= ¬w
One possibility:
Assume that I is an interpretation that satisfies the LHS.

• Either I |= r or I |= ¬r
• Assume that I |= r

• Since I |= r ⊃ u, so I 6|= r or I |= u.
Hence I |= u.

• But I |= u ⊃ ¬w and so I 6|= u or I |= ¬w
• Therefore I |= ¬w .

• Assume that I |= ¬r
• Since I |= ¬r ⊃ ¬w , so I |= r or I |= ¬w .

Hence I |= ¬w .

• Since in both cases I |= ¬w , we conclude I |= ¬w .

• We have shown for arbitrary I that if I |= LHS then I |= ¬w .

Example

Prove that: {r ⊃ u, u ⊃ ¬w , ¬r ⊃ ¬w} |= ¬w
One possibility:
Assume that I is an interpretation that satisfies the LHS.

• Either I |= r or I |= ¬r
• Assume that I |= r

• Since I |= r ⊃ u, so I 6|= r or I |= u.
Hence I |= u.

• But I |= u ⊃ ¬w and so I 6|= u or I |= ¬w
• Therefore I |= ¬w .

• Assume that I |= ¬r
• Since I |= ¬r ⊃ ¬w , so I |= r or I |= ¬w .

Hence I |= ¬w .

• Since in both cases I |= ¬w , we conclude I |= ¬w .

• We have shown for arbitrary I that if I |= LHS then I |= ¬w .

Discussion

• The preceding proof worked fine for showing a desired
entailment.

• However, it is not clear how it would be generalised to
arbitrary sets of formulas and queries.

• What we want is a systematic means of generating
entailments

• This is the subject of the next section

But first: In the example, how would you answer the question
“Is it possible that John takes an umbrella?”

Discussion

• The preceding proof worked fine for showing a desired
entailment.

• However, it is not clear how it would be generalised to
arbitrary sets of formulas and queries.

• What we want is a systematic means of generating
entailments

• This is the subject of the next section

But first: In the example, how would you answer the question
“Is it possible that John takes an umbrella?”

Inference

• So far we have looked at notions dealing with truth and
logical entailment.
• Our main goal however is to compute entailments.

• Entailment says what things are implicitly true in a KB.
• Inference is a procedure for computing entailments.
• Key point: Inference is purely syntactic

• Assume that we have some understood inference procedure.
• KB ` φ means that φ can be derived from KB by that

procedure.

• Desiderata:
• Soundness: An inference procedure is sound if

whenever KB ` φ, we also have KB |= φ.
• Completeness: An inference procedure is complete if

whenever KB |= φ, we also have KB ` φ.

Inference

• So far we have looked at notions dealing with truth and
logical entailment.
• Our main goal however is to compute entailments.

• Entailment says what things are implicitly true in a KB.
• Inference is a procedure for computing entailments.
• Key point: Inference is purely syntactic

• Assume that we have some understood inference procedure.
• KB ` φ means that φ can be derived from KB by that

procedure.

• Desiderata:
• Soundness: An inference procedure is sound if

whenever KB ` φ, we also have KB |= φ.
• Completeness: An inference procedure is complete if

whenever KB |= φ, we also have KB ` φ.

Inference

• So far we have looked at notions dealing with truth and
logical entailment.
• Our main goal however is to compute entailments.

• Entailment says what things are implicitly true in a KB.
• Inference is a procedure for computing entailments.
• Key point: Inference is purely syntactic

• Assume that we have some understood inference procedure.
• KB ` φ means that φ can be derived from KB by that

procedure.

• Desiderata:
• Soundness: An inference procedure is sound if

whenever KB ` φ, we also have KB |= φ.
• Completeness: An inference procedure is complete if

whenever KB |= φ, we also have KB ` φ.

Inference

• So far we have looked at notions dealing with truth and
logical entailment.
• Our main goal however is to compute entailments.

• Entailment says what things are implicitly true in a KB.
• Inference is a procedure for computing entailments.
• Key point: Inference is purely syntactic

• Assume that we have some understood inference procedure.
• KB ` φ means that φ can be derived from KB by that

procedure.

• Desiderata:
• Soundness: An inference procedure is sound if

whenever KB ` φ, we also have KB |= φ.
• Completeness: An inference procedure is complete if

whenever KB |= φ, we also have KB ` φ.

Inference

• An inference procedure is a (syntactic) procedure for deriving
some formulas from others.

• In propositional logic, we can use entailment to derive
conclusions by enumerating models.
• I.e. can use entailment to do inference.
• You have probably done this, in checking truth tables
• In first order logic we generally can’t enumerate all models

• there may be infinitely many models, even for a finite
knowledge base, and models may have infinite domains.

Inference by enumeration

In the following we compute whether M(KB) ⊆ M(φ).

PC.Entails?(KB, φ) returns Boolean
Inputs:

KB: the knowledge base, a sentence in propositional logic
φ: the query, a sentence in propositional logic

symbols ← a list of the proposition symbols in KB and φ
return Check(KB, φ, symbols, [])

Inference by enumeration

Check(KB, φ, symbols, interp) returns Boolean
Inputs:

KB: the knowledge base; φ: the query
symbols: atoms not yet assigned a truth value
interp: a partial interpretation

if Empty?(symbols) then
if Is.Model?(KB, interp) then return Is.Model?(φ, interp)

else return true
else do
P ← First(symbols);
rest ← Rest(symbols)
return Check(KB, φ, rest, interp ∪ {(P,true)}) and

Check(KB, φ, rest, interp ∪ {(P,false)})

Notes

• The procedure gives a depth-first enumeration of all
interpretations
• Hence, sound and complete

• Algorithm is O(2n) for n symbols; problem is co-NP-complete
• If KB is empty, then the procedure computes whether φ is a

tautology
• This corresponds to the usual technique of checking truth

tables.

Inference II: Axiomatic Proofs

If you have taken a course in logic, you’ve probably seen something
like the following.

Axiom Schemata:

1. φ ⊃ (ψ ⊃ φ)

2. (φ ⊃ (ψ ⊃ γ)) ⊃ ((φ ⊃ ψ) ⊃ (φ ⊃ γ))

3. (¬ψ ⊃ ¬φ) ⊃ ((¬ψ ⊃ φ) ⊃ ψ)

Rule of Inference:
Modus ponens: From φ and φ ⊃ ψ infer ψ

• Then KB ` φ just if there is a proof of φ from instances of
the axioms and KB, using modus ponens.

Notes

• One can show that
KB |= φ iff KB ` φ

• Q: So why not use such a system for doing proofs in KR?

A: It is almost impossible to control or direct the inference
“towards” proving φ.

Notes

• One can show that
KB |= φ iff KB ` φ

• Q: So why not use such a system for doing proofs in KR?
A: It is almost impossible to control or direct the inference
“towards” proving φ.

Inference III: Resolution

• Satisfiability is connected to inference via the following:
KB |= φ if and only if KB ∪ {¬φ} is unsatisfiable

• Resolution is a rule of inference defined for formulas in
Conjunctive Normal Form (CNF)
• A formula or set of formulas is in CNF if it is expressed as a

conjunction of disjunctions of literals
• E.g., (p ∨ ¬q) ∧ (q ∨ ¬r ∨ ¬s).

+ Write as: (p ∨ ¬q), (q ∨ ¬r ∨ ¬s)

• A clause is a disjunction of literals.

+ Can always express a set of formulas as a set of clauses.

Inference III: Resolution

• Satisfiability is connected to inference via the following:
KB |= φ if and only if KB ∪ {¬φ} is unsatisfiable

• Resolution is a rule of inference defined for formulas in
Conjunctive Normal Form (CNF)
• A formula or set of formulas is in CNF if it is expressed as a

conjunction of disjunctions of literals
• E.g., (p ∨ ¬q) ∧ (q ∨ ¬r ∨ ¬s).

+ Write as: (p ∨ ¬q), (q ∨ ¬r ∨ ¬s)

• A clause is a disjunction of literals.

+ Can always express a set of formulas as a set of clauses.

Inference III: Resolution

• Satisfiability is connected to inference via the following:
KB |= φ if and only if KB ∪ {¬φ} is unsatisfiable

• Resolution is a rule of inference defined for formulas in
Conjunctive Normal Form (CNF)
• A formula or set of formulas is in CNF if it is expressed as a

conjunction of disjunctions of literals
• E.g., (p ∨ ¬q) ∧ (q ∨ ¬r ∨ ¬s).

+ Write as: (p ∨ ¬q), (q ∨ ¬r ∨ ¬s)

• A clause is a disjunction of literals.

+ Can always express a set of formulas as a set of clauses.

Resolution

• Resolution inference rule:
• Let p ∨ A and ¬p ∨ B be clauses (where A and B are arbitrary

disjunctions of literals)
• Then these clauses entail A ∨ B.

• A or B can be empty:
• p and ¬p ∨ B entail B
• p and ¬p entail � (a contradiction)

• Resolution is sound and complete for propositional logic
• That is:

A set of clauses is unsatisfiable iff � can be obtained from
the clauses via resolution.

Resolution

• Resolution inference rule:
• Let p ∨ A and ¬p ∨ B be clauses (where A and B are arbitrary

disjunctions of literals)
• Then these clauses entail A ∨ B.

• A or B can be empty:
• p and ¬p ∨ B entail B
• p and ¬p entail � (a contradiction)

• Resolution is sound and complete for propositional logic
• That is:

A set of clauses is unsatisfiable iff � can be obtained from
the clauses via resolution.

Using Resolution to Compute Entailments

To show whether KB |= φ, show instead that KB ∪ {¬φ} is
unsatisfiable:

1. Convert KB ∪ {¬φ} into conjunctive normal form.

2. Use resolution to determine whether KB ∪ {¬φ} is
unsatisfiable.

3. If so then KB |= φ; otherwise KB 6|= φ.

+ We’ll cover resolution in detail in going over first-order logic
(next).

Summary

• Propositional logic is often seen as lacking in expressive power.
• As well, determining satisfiability and entailment are

NP-complete and co-NP-complete respectively.
• I.e. it seems unlikely that there will be efficient procedures for

these tasks.

• Nonetheless, the concepts behind propositional logic are
common to (pretty much) all other logics.
• As well, in the last ∼20 years, very efficient satisfiability

(SAT) solvers have been developed.
• This has led to huge advances in areas such as verification and

model checking.

Summary (continued)

• Also, for applications expressed in first-order logic over a finite
domain, one can “compile” the FO theory into propositional
logic, and run a SAT solver.
• This is done via a procedure of “grounding” whereby variables

and quantifiers are eliminated.
• Areas such as planning have been addressed in this way.

	Propositional Logic
	Logical Systems and Languages
	Propositional Logic
	Semantics
	Inference

