
Nonmonotonic Reasoning

and ASP



Classical Logic and KR

As Robert Moore observed, classical logic is terrific for representing
incomplete information. For example:

• ∃x Loves(mary , x).
But who?

• ∀x (Duck(x) ⊃ Bird(x)).
What is the set of ducks?

• On(A,B) ∨ On(A, table).
But which?

• ¬AtSchool(mary)
But where is she?
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Classical Logic and KR

• But FOL is limited in the forms of inference that it permits,
since the conclusion must be guaranteed by the premisses.
• E.g. ask: Is Ralph, a raven, black?
• To derive this information, we can (effectively) only reason

from facts about Ralph, or general knowledge about ravens.

• Commonsense knowledge and reasoning are not like this.
• Often we want to obtain plausible conclusions, . . .
• . . . that fill in our incomplete information.



Classical Logic and KR

• But FOL is limited in the forms of inference that it permits,
since the conclusion must be guaranteed by the premisses.
• E.g. ask: Is Ralph, a raven, black?
• To derive this information, we can (effectively) only reason

from facts about Ralph, or general knowledge about ravens.

• Commonsense knowledge and reasoning are not like this.
• Often we want to obtain plausible conclusions, . . .
• . . . that fill in our incomplete information.



Generic Statements

Observe: Most of the properties of objects or topics in everyday
life hold normally or usually or in general.

For example:

• “Ravens are black”.

Every raven? Albinos? A raven you’re told isn’t black?

• “Medication x is used to treat ailment y”
Always? What if the patient is allergic to x?.

• “John goes for coffee at 10:00”
Invariably? Even if he is sick or has a meeting?

• and similarly for everyday topics including trees, pens, games,
weddings, coffee, temporal persistence, etc.

+ In fact, in commonsense domains, there are almost no
interesting conditionals that hold universally.
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Types of Defaults

Call a statement of the form “P’s are Q’s” that allows exceptions
a default.

Types of defaults:

• Normality: Birds normally fly.

• Prototypicality: The prototypical apple is red.

• Statistical: Most students know CPR.

• Conventional: Stop for a red light.

• Persistence: Things tend to remain the same unless something
causes a change.

• and many others.



Nonmonotonic Reasoning

General Goal:
Given that P’s are normally Q’s holds and that P(a) is
true, want to conclude Q(a) unless there is a good reason
not to.

• Classical inference clearly isn’t sufficient.
• For example, listing exceptional conditions:

∀x P(x) ∧ ¬Ex1(x) ∧ · · · ∧ ¬Exn (x) ⊃ Q(x)
doesn’t work since
• we can’t list all exceptional conditions Ex1 , . . . ,Exn , and
• we don’t want to have to prove ¬Ex1(a), . . . ,¬Exn (a) in order

to conclude Q(a).

+ Need theories of how plausible conclusions may be drawn
from uncertain, partial evidence.
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Nonmonotonic Reasoning

In the notation of FOL:

Monotonic: If Γ ` α then Γ,∆ ` α.
Non-monotonic: If Γ ` α, possibly Γ,∆ 6` α.

• Classical logic is monotonic.
• For nonmonotonic reasoning we will have to alter the classical

notions of logical entailment and of proof.

• In nonmonotonic theories, an inference may depend on a lack
of information.
• E.g. conclude that a bird flys, unless you have a reason to

believe otherwise

• A rule P’s are (normally, usually) Q’s is called a default.

• The goal is to account for default reasoning (not to be
confused with Default Logic, which is a specific approach).
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Nonmonotonic Reasoning

There are several major approaches to NMR.

• Closed World Assumption: A fact is assumed to be false if it
cannot be shown to be true.

• Default Logic: Add rules of the form α:β
γ to classical logic.

Roughly: If α is true and β is consistent then conclude γ.

• Autoepistemic Logic: Roughly, if something were true, I’d
know it.

• Circumscription: Formalise the notion that a predicate applies
to as few individuals as possible.
Then can write ∀x(P(x) ∧ ¬ab(x) ⊃ Q(x)).

• Nonmonotonic Inference Relations: Formalise a notion of
nonmonotonic inference α |∼ β.

+ We’ll use ASP, which is strongly related to Default Logic, to
formalise default reasoning.
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Representing Defaults in ASP

+ We’ll assume that we have classical negation in our rules.
(Recall that we can encode classical nagation in ASP.)

• Consider the assertion “birds (normally) fly”.

• For a given bird, we want to conclude “by default” that it flies.

• Q: What does this mean?

A: Want to conclude that a bird flies if
• there is no reason to believe that it doesn’t fly,
• i.e. it is consistent that it flies.

• Can express this with the rule:

fly(X )← bird(X ), not ¬fly(X )
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Another Example

• Consider:

q(rn).
r(rn).
p(X )← q(X ), not ¬p(X ).
¬p(X )← r(X ), not p(X ).

• Obtain two answer sets
{q(rn), r(rn), p(rn)}
{q(rn), r(rn), ¬p(rn)}

• What to believe?

First approximation:

Credulous: Choose an extension arbitrarily
Skeptical: Intersect the extensions.
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Interacting Defaults

• Consider where we have that birds fly but penguins don’t fly:
penguin(opus).

fly(X )← bird(X ), not ¬fly(X ).
¬fly(X )← penguin(X ), not fly(X ).
bird(X )← penguin(X ).

• Obtain two answer sets, one containing fly(opus) and one
containing ¬fly(opus).

• Problem: Have an unwanted “transitivity”
Solution: Block by replacing the first rule by

fly(X )← bird(X ), not penguin(X ), not ¬fly(X ).

• Aside: What if we replaced the rule by:
fly(X )← bird(X ),¬penguin(X ), not ¬fly(X ). ?
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A Similar Problem

• “Penguins are birds” is represented by a strict rule.

• A transitivity involving only defaults is handled the same way.
E.g.:
• typically topics in ASP are topics in KR:

kr(X )← asp(X ), not ¬kr(X )
• typically topics in KR are interesting:

int(X )← kr(X ), not ¬int(X )
• typically topics in ASP are not interesting:

¬int(X )← asp(X ), not int(X )

• For asp(co), get two answer sets with int(co) and ¬int(co).
• (Aside: co = “combinatorial optimization”)

• Fix by replacing the second rule by

int(X )← kr(X ), not asp(X ), not ¬int(X )



Other Interacting Defaults

• Default may interact in other ways. E.g.:
• typically birds fly:

fly(X )← bird(X ), not ¬fly(X )
• typically baby birds don’t fly:

¬fly(X )← bbird(X ), not fly(X )
(Of course, if baby birds never fly, then one would use
¬fly(X )← bbird(X ).)

• For bbird(huey) we get two answer sets, and fix by using:

fly(X )← bird(X ), not bbird(X ), not ¬fly(X )



A Methodology for Interacting Defaults

Problem: One difficulty with the “fix” for avoiding unwanted
answer sets is that all exceptional conditions are added to a rule.

• May become cumbersome, difficult to read, or error prone.

Methodology: Express a default like “birds normally fly” as:
fly(X )← bird(X ), not abbf (X ), not ¬fly(X )

• I.e. “birds that are not known to be abnormal wrt flight, fly”

• Since penguins are abnormal in this regard, we would also have
abbf (X )← penguin(X ).

• In fact we could also assert:
abbf (X )← ¬fly(X )

and then have the simple default:
fly(X )← bird(X ), not abbf (X )
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Another Example: Flying Birds

Assuming that (very!) exceptional penguins may fly:

bird(X )← penguin(X ).

fly(X )← bird(X ), not abbf (X ), not ¬fly(X ).
¬fly(X )← penguin(X ), not abpf (X ), not fly(X ).
fly(X )←

penguin(X ), very fit(X ), not abfitp(X ), not ¬fly(X ).

abbf (X )← penguin(X ).
abpf (X )← very fit(X ).
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