Nonmonotonic Reasoning

and ASP
Classical Logic and KR

As Robert Moore observed, classical logic is terrific for representing \textit{incomplete} information. For example:

- $\exists x \text{ Loves}(\text{mary}, x)$.

 \textit{But who?}
As Robert Moore observed, classical logic is terrific for representing incomplete information. For example:

- $\exists x \text{ Loves}(\text{mary}, x)$.
 But who?

- $\forall x (\text{Duck}(x) \supset \text{Bird}(x))$.
 What is the set of ducks?
As Robert Moore observed, classical logic is terrific for representing *incomplete* information. For example:

- $\exists x \text{ Loves}(mary, x)$.
 But who?

- $\forall x (\text{Duck}(x) \supset \text{Bird}(x))$.
 What is the set of ducks?

- $\text{On}(A, B) \lor \text{On}(A, \text{table})$.
 But which?
As Robert Moore observed, classical logic is terrific for representing incomplete information. For example:

- $\exists x \, \text{Loves}(\text{mary}, x)$.

 But who?

- $\forall x \, (\text{Duck}(x) \supset \text{Bird}(x))$.

 What is the set of ducks?

- $\text{On}(A, B) \lor \text{On}(A, \text{table})$.

 But which?

- $\neg \text{AtSchool}(\text{mary})$

 But where is she?
Classical Logic and KR

- But FOL is limited in the forms of inference that it permits, since the conclusion must be *guaranteed* by the premisses.
 - E.g. ask: Is Ralph, a raven, black?
 - To *derive* this information, we can (effectively) only reason from facts about Ralph, or general knowledge about ravens.
Classical Logic and KR

• But FOL is limited in the forms of inference that it permits, since the conclusion must be *guaranteed* by the premisses.
 • E.g. ask: Is Ralph, a raven, black?
 • To *derive* this information, we can (effectively) only reason from facts about Ralph, or general knowledge about ravens.

• Commonsense knowledge and reasoning are not like this.
 • Often we want to obtain *plausible* conclusions, . . .
 • . . . that fill in our incomplete information.
Generic Statements

Observe: Most of the properties of objects or topics in everyday life hold *normally* or *usually* or *in general*.

For example:

- “Ravens are black”.
- “Medication \(x \) is used to treat ailment \(y \)”
- “John goes for coffee at 10:00”.

In fact, in commonsense domains, there are almost no interesting conditionals that hold universally.
Generic Statements

Observe: Most of the properties of objects or topics in everyday life hold *normally* or *usually* or *in general*.

For example:

- “Ravens are black”.

 Every raven? Albinos? A raven you’re told isn’t black?
Generic Statements

Observe: Most of the properties of objects or topics in everyday life hold *normally* or *usually* or *in general*.

For example:

- “Ravens are black”.

 Every raven? Albinos? A raven you’re told isn’t black?

- “Medication x is used to treat ailment y”
Generic Statements

Observe: Most of the properties of objects or topics in everyday life hold normally or usually or in general.

For example:

• “Ravens are black”.
 Every raven? Albinos? A raven you’re told isn’t black?

• “Medication x is used to treat ailment y”
 Always? What if the patient is allergic to x?.
Generic Statements

Observe: Most of the properties of objects or topics in everyday life hold *normally* or *usually* or *in general*.

For example:

- “Ravens are black”.
 Every raven? Albinos? A raven you’re told isn’t black?

- “Medication x is used to treat ailment y”
 Always? What if the patient is allergic to x?

- “John goes for coffee at 10:00”
Generic Statements

Observe: Most of the properties of objects or topics in everyday life hold *normally* or *usually* or *in general*.

For example:

- “Ravens are black”. *Every raven? Albinos? A raven you’re told isn’t black?*
- “Medication x is used to treat ailment y” *Always? What if the patient is allergic to x?*
- “John goes for coffee at 10:00” *Invariably? Even if he is sick or has a meeting?*
Generic Statements

Observe: Most of the properties of objects or topics in everyday life hold *normally* or *usually* or *in general*.

For example:

- “Ravens are black”.

 Every raven? Albinos? A raven you’re told isn’t black?

- “Medication x is used to treat ailment y”

 Always? What if the patient is allergic to x?

- “John goes for coffee at 10:00”

 Invariably? Even if he is sick or has a meeting?

- and similarly for everyday topics including trees, pens, games, weddings, coffee, temporal persistence, etc.
Generic Statements

Observe: Most of the properties of objects or topics in everyday life hold *normally* or *usually* or *in general*.

For example:

- “Ravens are black”.

 Every raven? Albinos? A raven you’re told isn’t black?

- “Medication x is used to treat ailment y”

 Always? What if the patient is allergic to x?

- “John goes for coffee at 10:00”

 Invariably? Even if he is sick or has a meeting?

- and similarly for everyday topics including trees, pens, games, weddings, coffee, temporal persistence, etc.

> In fact, in commonsense domains, there are almost no interesting conditionals that hold universally.
Types of Defaults

Call a statement of the form “P’s are Q’s” that allows exceptions a default.

Types of defaults:

• **Normality**: *Birds normally fly.*
• **Prototypicality**: *The prototypical apple is red.*
• **Statistical**: *Most students know CPR.*
• **Conventional**: *Stop for a red light.*
• **Persistence**: Things tend to remain the same unless something causes a change.
• and many others.
Nonmonotonic Reasoning

General Goal:
Given that P’s are normally Q’s holds and that $P(a)$ is true, want to conclude $Q(a)$ unless there is a good reason not to.

Classical inference clearly isn’t sufficient.

For example, listing exceptional conditions:

$$\forall x \ P(x) \land \neg E_x^1(x) \land \cdots \land \neg E_x^n(x) \supset Q(x)$$

doesn’t work since

• we can’t list all exceptional conditions E_x^1, \ldots, E_x^n, and
• we don’t want to have to prove $\neg E_x^1(a), \ldots, \neg E_x^n(a)$ in order to conclude $Q(a)$.

Need theories of how plausible conclusions may be drawn from uncertain, partial evidence.
Nonmonotonic Reasoning

General Goal:

Given that \(P \)'s are normally \(Q \)'s holds and that \(P(a) \) is true, want to conclude \(Q(a) \) unless there is a good reason not to.

- Classical inference clearly isn't sufficient.
 - For example, listing exceptional conditions:
 \[
 \forall x \ P(x) \land \neg E_{x_1}(x) \land \cdots \land \neg E_{x_n}(x) \supset Q(x)
 \]
 doesn't work since
 - we can't list all exceptional conditions \(E_{x_1}, \ldots, E_{x_n}, \) and
 - we don't want to have to prove \(\neg E_{x_1}(a), \ldots, \neg E_{x_n}(a) \) in order to conclude \(Q(a) \).
Nonmonotonic Reasoning

General Goal:

Given that P’s are normally Q’s holds and that $P(a)$ is true, want to conclude $Q(a)$ unless there is a good reason not to.

- Classical inference clearly isn’t sufficient.
 - For example, listing exceptional conditions:
 \[
 \forall x \ P(x) \land \neg E_{x_1}(x) \land \cdots \land \neg E_{x_n}(x) \supset Q(x)
 \]
 doesn’t work since
 - we can’t list all exceptional conditions E_{x_1}, \ldots, E_{x_n}, and
 - we don’t want to have to prove $\neg E_{x_1}(a), \ldots, \neg E_{x_n}(a)$ in order to conclude $Q(a)$.

- Need theories of how plausible conclusions may be drawn from uncertain, partial evidence.
Nonmonotonic Reasoning

In the notation of FOL:

Monotonic: If $\Gamma \vdash \alpha$ then $\Gamma, \Delta \vdash \alpha$.
Non-monotonic: If $\Gamma \vdash \alpha$, possibly $\Gamma, \Delta \not\vdash \alpha$.
Nonmonotonic Reasoning

In the notation of FOL:

Monotonic: If $\Gamma \vdash \alpha$ then $\Gamma, \Delta \vdash \alpha$.
Non-monotonic: If $\Gamma \vdash \alpha$, possibly $\Gamma, \Delta \nvdash \alpha$.

- Classical logic is monotonic.
 - For nonmonotonic reasoning we will have to alter the classical notions of logical entailment and of proof.
Nonmonotonic Reasoning

In the notation of FOL:

Monotonic: \(\Gamma \vdash \alpha \) then \(\Gamma, \Delta \vdash \alpha \).

Non-monotonic: \(\Gamma \vdash \alpha \), possibly \(\Gamma, \Delta \not\vdash \alpha \).

- Classical logic is monotonic.
 - For nonmonotonic reasoning we will have to alter the classical notions of logical entailment and of proof.

- In nonmonotonic theories, an inference may depend on a lack of information.
 - E.g. conclude that a bird flies, unless you have a reason to believe otherwise.

Nonmonotonic Reasoning

In the notation of FOL:

Monotonic: If $\Gamma \vdash \alpha$ then $\Gamma, \Delta \vdash \alpha$.

Non-monotonic: If $\Gamma \vdash \alpha$, possibly $\Gamma, \Delta \nvdash \alpha$.

- Classical logic is monotonic.
 - For nonmonotonic reasoning we will have to alter the classical notions of logical entailment and of proof.
- In nonmonotonic theories, an inference may depend on a lack of information.
 - E.g. conclude that a bird flys, *unless you have a reason to believe otherwise*
- A rule *P’s are (normally, usually) Q’s* is called a *default*.
- The goal is to account for *default reasoning* (not to be confused with *Default Logic*, which is a specific approach).
Nonmonotonic Reasoning

There are several major approaches to NMR.

- **Closed World Assumption**: A fact is assumed to be false if it cannot be shown to be true.

- **Default Logic**: Add rules of the form $\alpha: \beta \gamma$ to classical logic. Roughly: If α is true and β is consistent then conclude γ.

- **Autoepistemic Logic**: Roughly, if something were true, I’d know it.

- **Circumscription**: Formalise the notion that a predicate applies to as few individuals as possible. Then can write $\forall x (P(x) \land \neg ab(x) \supset Q(x))$.

- **Nonmonotonic Inference Relations**: Formalise a notion of nonmonotonic inference $\alpha \not\rightarrow \beta$.

We’ll use ASP, which is strongly related to Default Logic, to formalise default reasoning.
Nonmonotonic Reasoning

There are several major approaches to NMR.

• *Closed World Assumption:* A fact is assumed to be false if it cannot be shown to be true.

• *Default Logic:* Add rules of the form $\alpha; \beta \vdash \gamma$ to classical logic. Roughly: If α is true and β is consistent then conclude γ.
Nonmonotonic Reasoning

There are several major approaches to NMR.

- **Closed World Assumption**: A fact is assumed to be false if it cannot be shown to be true.

- **Default Logic**: Add rules of the form $\frac{\alpha: \beta}{\gamma}$ to classical logic. Roughly: If α is true and β is consistent then conclude γ.

- **Autoepistemic Logic**: Roughly, if something were true, I’d know it.

- **Circumscription**: Formalise the notion that a predicate applies to as few individuals as possible. Then can write $\forall x (P(x) \land \neg ab(x) \supset Q(x))$.

- **Nonmonotonic Inference Relations**: Formalise a notion of nonmonotonic inference $\alpha \models \not\beta$. We’ll use ASP, which is strongly related to Default Logic, to formalise default reasoning.
Nonmonotonic Reasoning

There are several major approaches to NMR.

- **Closed World Assumption**: A fact is assumed to be false if it cannot be shown to be true.

- **Default Logic**: Add rules of the form $\frac{\alpha; \beta}{\gamma}$ to classical logic. Roughly: If α is true and β is consistent then conclude γ.

- **Autoepistemic Logic**: Roughly, if something were true, I’d know it.

- **Circumscription**: Formalise the notion that a predicate applies to as few individuals as possible.
 Then can write $\forall x (P(x) \land \neg ab(x) \supset Q(x))$.

We’ll use ASP, which is strongly related to Default Logic, to formalise default reasoning.
Nonmonotonic Reasoning

There are several major approaches to NMR.

- **Closed World Assumption:** A fact is assumed to be false if it cannot be shown to be true.

- **Default Logic:** Add rules of the form $\frac{\alpha; \beta}{\gamma}$ to classical logic. Roughly: If α is true and β is consistent then conclude γ.

- **Autoepistemic Logic:** Roughly, if something were true, I’d know it.

- **Circumscription:** Formalise the notion that a predicate applies to as few individuals as possible. Then can write $\forall x (P(x) \land \neg ab(x) \supset Q(x))$.

- **Nonmonotonic Inference Relations:** Formalise a notion of nonmonotonic inference $\alpha \models \beta$.

We’ll use ASP, which is strongly related to Default Logic, to formalise default reasoning.
Nonmonotonic Reasoning

There are several major approaches to NMR.

- **Closed World Assumption:** A fact is assumed to be false if it cannot be shown to be true.

- **Default Logic:** Add rules of the form $\frac{\alpha; \beta}{\gamma}$ to classical logic. Roughly: If α is true and β is consistent then conclude γ.

- **Autoepistemic Logic:** Roughly, if something were true, I’d know it.

- **Circumscription:** Formalise the notion that a predicate applies to as few individuals as possible. Then can write $\forall x (P(x) \land \neg ab(x) \supset Q(x))$.

- **Nonmonotonic Inference Relations:** Formalise a notion of nonmonotonic inference $\alpha \vdash \sim \beta$.

We’ll use ASP, which is strongly related to Default Logic, to formalise default reasoning.
Representing Defaults in ASP

- We’ll assume that we have classical negation in our rules. (Recall that we can encode classical negation in ASP.)
 - Consider the assertion “birds (normally) fly”.
 - For a given bird, we want to conclude “by default” that it flies.
Representing Defaults in ASP

- We’ll assume that we have classical negation in our rules. (Recall that we can encode classical negation in ASP.)
 - Consider the assertion “birds (normally) fly”.
 - For a given bird, we want to conclude “by default” that it flies.
 - Q: What does this mean?

\[
\text{fly}(X) \leftarrow \text{bird}(X), \neg \neg \text{fly}(X)
\]
Representing Defaults in ASP

We’ll assume that we have classical negation in our rules. (Recall that we can encode classical negation in ASP.)

- Consider the assertion “birds (normally) fly”.
- For a given bird, we want to conclude “by default” that it flies.
- Q: What does this mean?
 A: Want to conclude that a bird flies if
 - there is no reason to believe that it doesn’t fly,
We’ll assume that we have classical negation in our rules. (Recall that we can encode classical negation in ASP.)

- Consider the assertion “birds (normally) fly”.
- For a given bird, we want to conclude “by default” that it flies.
- Q: What does this mean?
 A: Want to conclude that a bird flies if
 - there is no reason to believe that it doesn’t fly,
 - i.e. it is consistent that it flies.
Representing Defaults in ASP

- We’ll assume that we have classical negation in our rules. (Recall that we can encode classical negation in ASP.)
 - Consider the assertion “birds (normally) fly”.
 - For a given bird, we want to conclude “by default” that it flies.
- Q: What does this mean?
 - A: Want to conclude that a bird flies if
 - there is no reason to believe that it doesn’t fly,
 - i.e. it is consistent that it flies.
- Can express this with the rule:

 \[
 \text{fly}(X) \leftarrow \text{bird}(X), \text{not } \neg \text{fly}(X)
 \]
Example

• Consider:
 \[\text{bird(tweety)}.\]
 \[\text{bird(opus)}.\]
 \[\neg\text{fly(opus)}.\]
 \[\text{fly}(X) \leftarrow \text{bird}(X), \text{not } \neg\text{fly}(X).\]
Example

• Consider:
 \[bird(tweety) \].
 \[bird(opus) \].
 \[\neg fly(opus) \].
 \[fly(X) \leftarrow bird(X), \text{not } \neg fly(X) \].

• Obtain one answer set containing
 \[fly(tweety) \].
Another Example

- Consider:

 \[q(rn). \]

 \[r(rn). \]

 \[p(X) \leftarrow q(X), \text{not} \neg p(X). \]

 \[\neg p(X) \leftarrow r(X), \text{not} p(X). \]
Another Example

- Consider:

 \[q(rn). \]

 \[r(rn). \]

 \[p(X) \leftarrow q(X), \text{not} \, \neg p(X). \]

 \[\neg p(X) \leftarrow r(X), \text{not} \, p(X). \]

- Obtain two answer sets

 \[\{ q(rn), r(rn), p(rn) \} \]

 \[\{ q(rn), r(rn), \neg p(rn) \} \]
Another Example

• Consider:
 \[q(rn) \]
 \[r(rn) \]
 \[p(X) \leftarrow q(X), \text{not } \neg p(X) \]
 \[\neg p(X) \leftarrow r(X), \text{not } p(X) \]

• Obtain two answer sets
 \{ q(rn), r(rn), p(rn) \}
 \{ q(rn), r(rn), \neg p(rn) \}

• What to believe?

 First approximation:

 Credulous: Choose an extension arbitrarily
 Skeptical: Intersect the extensions.
Interacting Defaults

- Consider where we have that birds fly but penguins don’t fly:
 \[\text{penguin}(\text{opus}).\]
 \[\text{fly}(X) \leftarrow \text{bird}(X), \text{not } \neg \text{fly}(X).\]
 \[\neg \text{fly}(X) \leftarrow \text{penguin}(X), \text{not } \text{fly}(X).\]
 \[\text{bird}(X) \leftarrow \text{penguin}(X).\]
Interacting Defaults

- Consider where we have that birds fly but penguins don’t fly:
 \(\text{penguin}(\text{opus}) \).

 \[
 \text{fly}(X) \leftarrow \text{bird}(X), \text{not } \neg \text{fly}(X).
 \]

 \[
 \neg \text{fly}(X) \leftarrow \text{penguin}(X), \text{not } \text{fly}(X).
 \]

 \[
 \text{bird}(X) \leftarrow \text{penguin}(X).
 \]

- Obtain two answer sets, one containing \(\text{fly}(\text{opus}) \) and one containing \(\neg \text{fly}(\text{opus}) \).

- **Problem**: Have an unwanted “transitivity”
Interacting Defaults

- Consider where we have that birds fly but penguins don’t fly:
 \[penguin(opus). \]

 \[
 fly(X) \leftarrow bird(X), \text{not} \neg fly(X).
 \]

 \[
 \neg fly(X) \leftarrow penguin(X), \text{not} fly(X).
 \]

 \[
 bird(X) \leftarrow penguin(X).
 \]

- Obtain two answer sets, one containing \(fly(opus) \) and one containing \(\neg fly(opus) \).

- **Problem:** Have an unwanted “transitivity”

 Solution: Block by replacing the first rule by

 \[
 fly(X) \leftarrow bird(X), \text{not} penguin(X), \text{not} \neg fly(X).
 \]
Interacting Defaults

• Consider where we have that birds fly but penguins don’t fly:

 \(penguin(\text{opus}). \)

 \[
 \begin{align*}
 \text{fly}(X) \leftarrow \text{bird}(X), \text{not } \neg \text{fly}(X). \\
 \neg \text{fly}(X) \leftarrow penguin(X), \text{not } \text{fly}(X). \\
 \text{bird}(X) \leftarrow penguin(X).
 \end{align*}
 \]

• Obtain two answer sets, one containing \(\text{fly}(\text{opus}) \) and one containing \(\neg \text{fly}(\text{opus}) \).

• Problem: Have an unwanted “transitivity”
 Solution: Block by replacing the first rule by

 \[
 \begin{align*}
 \text{fly}(X) \leftarrow \text{bird}(X), \text{not } penguin(X), \text{not } \neg \text{fly}(X).
 \end{align*}
 \]

• Aside: What if we replaced the rule by:
 \[
 \begin{align*}
 \text{fly}(X) \leftarrow \text{bird}(X), \neg penguin(X), \text{not } \neg \text{fly}(X).
 \end{align*}
 \]
A Similar Problem

• “Penguins are birds” is represented by a strict rule.

• A transitivity involving only defaults is handled the same way.
 E.g.:
 • typically topics in ASP are topics in KR:
 \[kr(X) \leftarrow asp(X), \text{not } \neg kr(X) \]
 • typically topics in KR are interesting:
 \[int(X) \leftarrow kr(X), \text{not } \neg int(X) \]
 • typically topics in ASP are not interesting:
 \[\neg int(X) \leftarrow asp(X), \text{not } int(X) \]

• For \(asp(co) \), get two answer sets with \(int(co) \) and \(\neg int(co) \).
 • (Aside: \(co = \text{“combinatorial optimization”} \))

• Fix by replacing the second rule by
 \[int(X) \leftarrow kr(X), \text{not } asp(X), \text{not } \neg int(X) \]
Other Interacting Defaults

- Default may interact in other ways. E.g.:
 - typically birds fly:
 \[\text{fly}(X) \leftarrow \text{bird}(X), \text{not } \neg \text{fly}(X) \]
 - typically baby birds don't fly:
 \[\neg \text{fly}(X) \leftarrow \text{bbird}(X), \text{not } \text{fly}(X) \]
 (Of course, if baby birds never fly, then one would use
 \[\neg \text{fly}(X) \leftarrow \text{bbird}(X). \])
 - For \text{bbird}(huey) we get two answer sets, and fix by using:
 \[\text{fly}(X) \leftarrow \text{bird}(X), \text{not } \text{bbird}(X), \text{not } \neg \text{fly}(X) \]
A Methodology for Interacting Defaults

Problem: One difficulty with the “fix” for avoiding unwanted answer sets is that all exceptional conditions are added to a rule.

- May become cumbersome, difficult to read, or error prone.
A Methodology for Interacting Defaults

Problem: One difficulty with the “fix” for avoiding unwanted answer sets is that all exceptional conditions are added to a rule.

• May become cumbersome, difficult to read, or error prone.

Methodology: Express a default like “birds normally fly” as:

\[\text{fly}(X) \leftarrow \text{bird}(X), \text{not } ab_{bf}(X), \text{not } \neg\text{fly}(X) \]

• I.e. “birds that are not known to be abnormal wrt flight, fly”

• Since penguins are abnormal in this regard, we would also have

\[ab_{bf}(X) \leftarrow \text{penguin}(X). \]

• In fact we could also assert:

\[ab_{bf}(X) \leftarrow \neg \text{fly}(X) \]

and then have the simple default:

\[\text{fly}(X) \leftarrow \text{bird}(X), \text{not } ab_{bf}(X) \]
Another Example: Flying Birds

Assuming that (very!) exceptional penguins may fly:

\[
\begin{align*}
bird(X) & \leftarrow penguin(X). \\
fly(X) & \leftarrow bird(X), \text{ not } ab_{bf}(X), \text{ not } \neg fly(X). \\
\neg fly(X) & \leftarrow penguin(X), \text{ not } ab_{pf}(X), \text{ not } fly(X). \\
fly(X) & \leftarrow \\
& \quad penguin(X), \text{ very } _\text{fit}(X), \text{ not } ab_{fitp}(X), \text{ not } \neg fly(X). \\
ab_{bf}(X) & \leftarrow penguin(X). \\
ab_{pf}(X) & \leftarrow \text{ very } _\text{fit}(X).
\end{align*}
\]