Nonmonotonic Reasoning

and ASP
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e Jx Loves(mary, x).
But who?
® Vx (Duck(x) D Bird(x)).
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® —AtSchool(mary)
But where is she?
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® But FOL is limited in the forms of inference that it permits,
since the conclusion must be guaranteed by the premisses.

® E.g. ask: Is Ralph, a raven, black?
® To derive this information, we can (effectively) only reason
from facts about Ralph, or general knowledge about ravens.

® Commonsense knowledge and reasoning are not like this.

® Often we want to obtain plausible conclusions, ...
® .. .that fill in our incomplete information.
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Generic Statements

Observe: Most of the properties of objects or topics in everyday
life hold normally or usually or in general.
For example:

® “Ravens are black”.
Every raven? Albinos? A raven you're told isn't black?

® “Medication x is used to treat ailment y"
Always? What if the patient is allergic to x?.

® “John goes for coffee at 10:00"
Invariably? Even if he is sick or has a meeting?

® and similarly for everyday topics including trees, pens, games,
weddings, coffee, temporal persistence, etc.

iz |n fact, in commonsense domains, there are almost no
interesting conditionals that hold universally.



Types of Defaults

Call a statement of the form “P’s are Q's" that allows exceptions
a default.
Types of defaults:

® Normality: Birds normally fly.

® Prototypicality: The prototypical apple is red.

e Statistical: Most students know CPR.

e Conventional: Stop for a red light.

® Persistence: Things tend to remain the same unless something
causes a change.

® and many others.
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General Goal:
Given that P’s are normally Q's holds and that P(a) is

true, want to conclude Q(a) unless there is a good reason
not to.

o (lassical inference clearly isn't sufficient.
® For example, listing exceptional conditions:
Vx P(x) A =Eq (X) A+ A=Eg (x) D Q(x)
doesn’t work since
® we can't list all exceptional conditions E, , ..., Ex,, and
® we don't want to have to prove =E, (a),...,E,(a) in order
to conclude Q(a).

1= Need theories of how plausible conclusions may be drawn
from uncertain, partial evidence.
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Monotonic: If I+« then T, AF a.
Non-monotonic:  If '+ «, possibly I', A F a.

e (lassical logic is monotonic.
® For nonmonotonic reasoning we will have to alter the classical
notions of logical entailment and of proof.
® In nonmonotonic theories, an inference may depend on a lack
of information.
® E.g. conclude that a bird flys, unless you have a reason to
believe otherwise

® A rule P's are (normally, usually) Q's is called a default.

® The goal is to account for default reasoning (not to be
confused with Default Logic, which is a specific approach).
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Nonmonotonic Reasoning

There are several major approaches to NMR.

Closed World Assumption: A fact is assumed to be false if it
cannot be shown to be true.

Default Logic: Add rules of the form C“Tﬂ to classical logic.
Roughly: If « is true and (3 is consistent then conclude 7.
Autoepistemic Logic: Roughly, if something were true, I'd
know it.

Circumscription: Formalise the notion that a predicate applies
to as few individuals as possible.

Then can write  Vx(P(x) A —ab(x) D Q(x)).
Nonmonotonic Inference Relations: Formalise a notion of
nonmonotonic inference « |~ 5.

We'll use ASP, which is strongly related to Default Logic, to
formalise default reasoning.
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Representing Defaults in ASP

1w We'll assume that we have classical negation in our rules.
(Recall that we can encode classical nagation in ASP.)

Consider the assertion “birds (normally) fly".

® For a given bird, we want to conclude “by default” that it flies.
Q: What does this mean?
A: Want to conclude that a bird flies if

® there is no reason to believe that it doesn't fly,
® j.e. it is consistent that it flies.

Can express this with the rule:

fly(X) < bird(X), not —fly(X)
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Another Example

Consider:

q(rn).

r(rn).

p(X) « a(X), not —p(X).
—p(X) < r(X), not p(X).

Obtain two answer sets

{q(rn), r(rn), p(rn)}
{q(rn), r(rn), ~p(rn)}

What to believe?

First approximation:

Credulous: Choose an extension arbitrarily
Skeptical: Intersect the extensions.
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Interacting Defaults

Consider where we have that birds fly but penguins don’t fly:
penguin(opus).
fly(X) « bird(X), not —fly(X).
—fly(X) < penguin(X), not fly(X).
bird(X) < penguin(X).
Obtain two answer sets, one containing fly(opus) and one
containing —fly(opus).
Problem: Have an unwanted “transitivity”
Solution: Block by replacing the first rule by
fly(X) <« bird(X), not penguin(X), not —fly(X).
Aside: What if we replaced the rule by:
fly(X) <« bird(X), ~penguin(X), not —fly(X). ?



A Similar Problem

“Penguins are birds” is represented by a strict rule.

A transitivity involving only defaults is handled the same way.
E.g.:
® typically topics in ASP are topics in KR:
kr(X) < asp(X), not —kr(X)
® typically topics in KR are interesting:
int(X) < kr(X), not —int(X)
® typically topics in ASP are not interesting:
—int(X) « asp(X), not int(X)
For asp(co), get two answer sets with int(co) and —int(co).
® (Aside: co = “combinatorial optimization”)

Fix by replacing the second rule by
int(X) < kr(X), not asp(X), not —int(X)



Other Interacting Defaults

® Default may interact in other ways. E.g.:
® typically birds fly:
fly(X) < bird(X), not —fly(X)
® typically baby birds don't fly:
~fly(X) < bbird(X), not fly(X)
(Of course, if baby birds never fly, then one would use
=fly(X) « bbird(X).)

® For bbird(huey) we get two answer sets, and fix by using:

fly(X) < bird(X), not bbird(X), not —fly(X)



A Methodology for Interacting Defaults

Problem: One difficulty with the “fix" for avoiding unwanted
answer sets is that all exceptional conditions are added to a rule.

® May become cumbersome, difficult to read, or error prone.



A Methodology for Interacting Defaults
Problem: One difficulty with the “fix" for avoiding unwanted
answer sets is that all exceptional conditions are added to a rule.
® May become cumbersome, difficult to read, or error prone.

Methodology: Express a default like “birds normally fly” as:
fly(X) <= bird(X), not abpr(X), not —fly(X)

® |.e. “birds that are not known to be abnormal wrt flight, fly”
® Since penguins are abnormal in this regard, we would also have
abpr(X) < penguin(X).
® |n fact we could also assert:
abbf(X) — —\f/y(X)
and then have the simple default:
fly(X) < bird(X), not abps(X)



Another Example: Flying Birds

Assuming that (very!) exceptional penguins may fly:
bird(X) <« penguin(X).
fly(X) < bird(X), not abps(X), not —fly(X).
~fly(X) < penguin(X), not abps(X), not fly(X).
fly(X) <
penguin(X), very_fit(X), not abgep(X), not —fly(X).
abpr(X) < penguin(X).
abpr(X) < very_fit(X).
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