Extending the Basic Reasoning System

CMPT 411/721
Topics

- Adding integrity constraints: Horn clauses
 - Assumption-Based Reasoning
- The closed world assumption
 - The Fitting operator
 - Datalog
- Adding disjunction
Beyond Definite Knowledge

• We first consider two extensions to the definite clause language:
 1. Add *integrity constraints* to definite clauses, giving *Horn clauses*.
 2. Adopt the *closed world assumption*, the assumption that our rules express *all* information about an atom.
Beyond Definite Knowledge

• We first consider two extensions to the definite clause language:
 1. Add *integrity constraints* to definite clauses, giving *Horn clauses*.
 2. Adopt the *closed world assumption*, the assumption that our rules express *all* information about an atom.

• Both extensions add a limited form of negation to our basic system.
 • Will later extend this further, in considering *answer set programming*.

• Following this we consider
 3. generalising the approach to effectively obtain propositional logic.
Integrity Constraints and Horn Clauses

- We now allow rules with the special atom \textit{false} at the head of rules.
 - \textit{false} is false in all interpretations
- Clauses of the form
 \[\textit{false} \leftarrow a_1 \land \cdots \land a_k \] are called \textit{integrity constraints}.
Integrity Constraints and Horn Clauses

- We now allow rules with the special atom *false* at the head of rules.
 - *false* is false in all interpretations
- Clauses of the form
 \[\text{false} \leftarrow a_1 \land \cdots \land a_k \] are called *integrity constraints*.
- A *Horn clause* is a definite clause or an integrity constraint.
- Integrity constraints allow us to express that some combinations of atoms can’t all be true.
- That is, \(\text{false} \leftarrow a_1 \land \cdots \land a_k \) says that \(a_1, \ldots, a_k \) can’t all be true.

Example: In the circuits domain, there is nothing to prevent a port having value both on and off.

With *false* we can assert \(\text{false} \leftarrow \text{value}(X, \text{on}) \land \text{value}(X, \text{off}) \).
Integrity Constraints and Horn Clauses

- We now allow rules with the special atom \texttt{false} at the head of rules.
 - \texttt{false} is false in all interpretations
- Clauses of the form
 \[\texttt{false} \leftarrow a_1 \land \cdots \land a_k \] are called \emph{integrity constraints}.
- A \emph{Horn clause} is a definite clause or an integrity constraint.
- Integrity constraints allow us to express that some combinations of atoms can’t all be true.
- That is,
 \[\texttt{false} \leftarrow a_1 \land \cdots \land a_k \] says that \(a_1, \ldots, a_k \) can’t all be true.
- Example: In the circuits domain, there is nothing to prevent a port having value both \texttt{on} and \texttt{off}.
 - With \texttt{false} we can assert
 \[\texttt{false} \leftarrow \text{value}(X, \text{on}) \land \text{value}(X, \text{off}) \]
Integrity Constraints and Horn Clauses

• Example:

\[T_1 = \{ false \iff a \land b, \ a \iff c, \ b \iff c \} \]

• We conclude that \(c \) is \textit{false} in all models of \(T_1 \).

• In propositional logic we would write \(T_1 \models \neg c \).
 • Could also write this as \(T_1 \models false \iff c \).

\[\text{Note that } \neg \text{ isn't part of the KB language, so writing } \]
\[T_1 \models false \iff c \text{ is better.} \]
Example (continued)

- Consider

\[T_2 = \{ \text{false} \iff a \land b, \ a \iff c, \ b \iff d, \ b \iff e \} \]

- Write \(\alpha \lor \beta \) for a formula that is true in interpretation \(\mathcal{I} \) iff \(\alpha \) is true in \(\mathcal{I} \) or \(\beta \) is true in \(\mathcal{I} \) (or both).

Again, \(\lor \) isn’t a symbol in our object language.

- Given this notation we have:

\[T_2 \models \neg c \lor \neg d \text{ and } T_2 \models \neg c \lor \neg e. \]

I.e. we have that

\[T_2 \models \text{false} \iff c \land d \text{ and } T_2 \models \text{false} \iff c \land e. \]

- Note that we cannot handle unrestricted disjunctions and negations.

- However we can derive disjunctions of negations of atoms.
Reasoning with Horn Clauses

- We can use our previous top-down and bottom-up reasoners with Horn clauses.
- If $KB \models false$ then KB is inconsistent.
 Example: $KB = \{false \iff a., a.\}$.
- If the KB is consistent, then to derive (positive) atoms we can ignore integrity constraints. (Why?)
- However, we can exploit HC reasoning, as discussed next.
Assumption-Based Reasoning

The addition of integrity constraints seems minor; however it turns out to be a powerful tool.

- In many activities it is useful to know that some combination of truths are incompatible.
- Here we give an example in diagnosis.
- We will use the circuit example of the previous section.
 - Previously, given inputs, we could predict outputs.
 - For diagnosis, we may be given inputs, but the outputs may not have the expected values.
 - In this case we would like to prove what could be wrong with the circuit.
Assumption-Based Reasoning

- Define the *assumables* to be the atoms which we could accept as part of a (disjunctive) answer.
- Intuitively, assumables are things that we want to assume are true, if consistently possible.
 - In the circuit example, we will *assume* that a gate is *not broken*, where possible.
- If T is a set of clauses, a *conflict* of T is a set of assumables that, given T, imply *false*.
 - I.e. $C = \{c_1, \ldots, c_r\}$ is a conflict if

$$T \models false \iff c_1 \land \cdots \land c_r$$

that is,

$$T \models \neg c_1 \lor \cdots \lor \neg c_r.$$
Assumption-Based Reasoning

• A *minimal conflict* is a conflict s.t. no subset is a conflict.

• Example:

\[T_2 = \{ false \leftarrow a \land b, \ a \leftarrow c, \ b \leftarrow d, \ b \leftarrow e \} \]

• In \(T_2 \), if \(\{ c, d, e \} \) are the assumables, then \(\{ c, d \} \) and \(\{ c, e \} \) are minimal conflicts.
Consider our circuit example from before.

• For the clauses involving how gates work, we add a predicate ok expressing that the gate is working.

• For and gates we have:

\[
\begin{align*}
\text{value}(\text{out}(D), \text{on}) & \iff \text{gate}(D, \text{and}) \land ok(D) \\
& \quad \land \text{value}(\text{in}(1, D), \text{on}) \\
& \quad \land \text{value}(\text{in}(2, D), \text{on}).
\end{align*}
\]

\[
\begin{align*}
\text{value}(\text{out}(D), \text{off}) & \iff \text{gate}(D, \text{and}) \land ok(D) \land \text{value}(\text{in}(1, D), \text{off}).
\end{align*}
\]

\[
\begin{align*}
\text{value}(\text{out}(D), \text{off}) & \iff \text{gate}(D, \text{and}) \land ok(D) \land \text{value}(\text{in}(2, D), \text{off}).
\end{align*}
\]
• \(ok(D) \) will be assumable.
• We add the clause

\[
false \iff \text{value}(X, \text{on}) \land \text{value}(X, \text{off})\text{.}
\]

• Given a set of observations (input and output) we want to ask whether there is a gate that is not \(ok \):

\(\mathop{?}\quad \neg \text{ok}(D) \)
We test our circuit by giving it the following inputs.

\[
\text{value}((in(1, adder), on), \\
\text{value}((in(2, adder), off), \\
\text{value}((in(3, adder), on), \\
\text{value}((out(1, adder), on), \\
\text{value}((out(2, adder), off)).}
\]

With these values, the circuit cannot be operating correctly.
Example

• There are two minimal conflicts:
 \{ok(x_1), ok(x_2)\}
 \{ok(x_1), ok(a_2), ok(o_1)\}

• Hence:
 • (At least) one of the exclusive-or gates is faulty.
 • One of the gates \(x_1, a_2, o_1\) is faulty.

• We can distribute the answers to get the logically equivalent result:
 \(\neg ok(x_1) \lor (\neg ok(x_2) \land \neg ok(a_2)) \lor (\neg ok(x_2) \land \neg ok(o_1))\).

• Each conjunction in this disjunction is called a diagnosis.
Implementation: Bottom-up algorithm

The bottom-up implementation is an augmentation of the bottom-up algorithm presented earlier.

- The conclusion is a set of pairs \(\langle a, A \rangle \) where \(a \) is an atom and \(A \) is a set of assumables that together with the rules imply \(a \).
- Initially the conclusion set \(C \) is \(\{ \langle a, \{a\} \rangle \mid a \text{ is assumable} \} \).
- Rules can be used to form new conclusions:

 If there is a rule

 \[
 h \leftarrow b_1 \land \cdots \land b_m
 \]

 such that for each \(i \) there is \(A_i \) such that \(\langle b_i, A_i \rangle \in C \), then add \(\langle h, A_1 \cup \cdots \cup A_m \rangle \) to \(C \).

- If we generate \(\langle \text{false}, A \rangle \), the assumptions in \(A \) form a conflict.
 *So if \(A = \{a_1, \ldots, a_k\} \) then \(T \models \neg a_1 \lor \cdots \lor \neg a_k \).
A Bottom-up Procedure

First, we get rid of variables by grounding all rules.

- Each rule is replaced by the set of its ground instances.
- We can do this here since we have a finite domain.
A Bottom-up Procedure

Algorithm:

\[C := \{ \langle a, \{a\} \rangle \mid a \text{ is assumable} \}; \]

repeat

- choose \(r \in T \) such that
- \(r \) is ‘\(h \leftarrow b_1 \land \cdots \land b_m \)’
- \(\langle b_i, A_i \rangle \in C \) for all \(i \), and
- \(A = A_1 \cup \cdots \cup A_m \) and
- \(\langle h, A \rangle \notin C \);
- \(C := C \cup \{ \langle h, A \rangle \} \)

until no more choices
Example:

• Assume we have three and-gates, where the outputs from a_1 and a_2 are connected to the inputs of a_3.

• We observe that inputs on/off/on/on give output on.

• Initially C has the value:

\[
\{ \langle ok(a_1), \{ ok(a_1) \} \rangle, \\
\langle ok(a_2), \{ ok(a_2) \} \rangle, \\
\langle ok(a_3), \{ ok(a_3) \} \rangle \} \]
Example

- The following shows a possible sequence of values added to C:
 \[
 \langle value(in(2, a_1), off), \{\} \rangle \\
 \langle gate(a_1, and), \{\} \rangle \\
 \langle ok(a_1), \{ok(a_1)\} \rangle \\
 \langle value(out(a_1), off), \{ok(a_1)\} \rangle \\
 \langle connected(out(a_1), in(1, a_3)), \{\} \rangle \\
 \langle value(in(1, a_3), off), \{ok(a_1)\} \rangle \\
 \langle gate(a_3, and), \{\} \rangle \\
 \langle ok(a_3), \{ok(a_3)\} \rangle \\
 \langle value(out(a_3), off), \{ok(a_1), ok(a_3)\} \rangle \\
 \langle value(out(a_3), on), \{\} \rangle \\
 \langle false, \{ok(a_1), ok(a_3)\} \rangle \\
 \]

- Thus we can prove $\neg ok(a_1) \lor \neg ok(a_3)$.
Extending the Basic Approach II: Negation as Failure

• We can distinguish two types of “negative” situations with respect to trying to prove a query G:
 • We are able to show that $\neg G$ holds.
 • We are unable to show that G holds.

• Sometimes for the second case we want to assume that G is in fact false.

• This is known as *negation as (finite) failure* (naf).
Negation as Failure

- With our rule-based approach, we can justify naf if we assume that our rules express *all* knowledge about an atom.
- In this case, we can just store what is true, and so if we cannot derive something, it must be false. This is exactly the assumption made by relational databases.
- Thus an atom is false if none of the bodies implying the atom is true.
The Complete Knowledge Assumption

• For the ground case, consider where we have rules for atom a:

$$ a \iff b_1 $$
$$ \ldots $$
$$ a \iff b_n $$

• The Complete Knowledge Assumption says that if a is true then it must have been derived by one of the b_i’s.

• Hence one of the b_i must be true.

• I.e. $a \Rightarrow b_1 \lor \cdots \lor b_n$, and thus

$$ a \Leftrightarrow b_1 \lor \cdots \lor b_n. $$

• This is called the completion of a.
The Complete Knowledge Assumption

• For example, if
 \[student \iff \text{grad} \]
 \[student \iff \text{ugrad} \]

 then the completion is:
 \[student \iff \text{grad} \lor \text{ugrad}. \]

• We won’t go into it here, but this leads to a semantic account of the complete knowledge assumption (and negation as failure) known as the *Clark completion*.
Implementation: Fitting Operator

• The bottom-up implementation incorporating naf is an extension of the procedure for definite clauses.
 • We now allow literals of the form $\neg p$ in the bodies of rules.
 • $\neg p$ expresses that p finitely fails.
 • I.e. $\neg p$ holds if we are unable to show that p holds.
 • Can also add atoms of the form $\neg p$ to the set C of consequences.

From the complete knowledge assumption we have that:
 • The head atom of a rule must be true if the rule's body is true.
 • An atom p must be false if the body of each rule having p as a head is false.
 • This leads to a three-valued model, in which atoms may be true, false, or undetermined.

The Fitting operator can be implemented to run in linear time.
Implementation: Fitting Operator

- The bottom-up implementation incorporating naf is an extension of the procedure for definite clauses.
 - We now allow literals of the form \(\sim p \) in the bodies of rules.
 - \(\sim p \) expresses that \(p \) finitely fails.
 - I.e. \(\sim p \) holds if we are unable to show that \(p \) holds.
 - Can also add atoms of the form \(\sim p \) to the set \(C \) of consequences.
- From the complete knowledge assumption we have that:
 - The head atom of a rule must be true if the rule’s body is true.
 - An atom \(p \) must be false if the body of each rule having \(p \) as a head is false.
- This leads to a three-valued model, in which atoms may be true, false, or undetermined.
- The Fitting operator can be implemented to run in linear time.
Example Rules

\[p \iff q \land \sim r \]
\[p \iff s \]
\[q \iff \sim s \]
\[r \iff \sim t \]
\[t \]
\[s \iff w \]
A Bottom-up Procedure:

\(C := \{\}; \)
repeat
 either
 choose \(r \in A \) such that
 \(r \) is \(h \iff b_1 \land \cdots \land b_m \)
 \(b_i \in C \) for all \(i \), and
 \(h \not\in C \);
 \(C := C \cup \{h\} \)
 or
 choose \(h \) such that for every rule
 \(h \iff b_1 \land \cdots \land b_m \)
 either for some \(b_i \) we have \(\sim b_i \in C \)
 or some \(b_i = \sim g \) and \(g \in C \)
 \(C := C \cup \{\sim h\} \)
 until no more choices
Example

- Consider:
 \[p \iff q \land \sim r \]
 \[p \iff s \]
 \[q \iff \sim s \]
 \[r \iff \sim t \]
 \[t \]
 \[s \iff w \]

- The following is a sequence of atoms added to \(C \):
 \[t, \sim r, \sim w, \sim s, q, p. \]
Top-down Procedure

The top-down procedure proceeds by *negation as finite failure*.

- Consider:

\[
a \leftarrow b_1 \\
\vdots \\
a \leftarrow b_n
\]

- If we try to prove each \(b_i \) and fail each time, we can conclude that each \(b_i \) is false, and so is \(a \).

- See a text on logic programming for more.
Logic in Databases: Datalog

- **Datalog** is a database query language based on definite clauses with negation as failure.
- A Datalog program consists of a finite set of *facts* and *rules*.
- Facts are assertions about the world, such as “John is the father of Harry”.
- Rules allow us to deduce facts from other facts.

 E.g. “If X is a parent of Y and if Y is a parent of Y, then X is a grandparent of Y”.

“Pure” Datalog: Syntax

• Facts and rules are represented as definite clauses of the form

\[L_0 \leftarrow L_1, \ldots, L_n \]

where

• each \(L_i \) is a literal of the form \(P(t_1, \ldots, t_k) \)
• such that \(P \) is a predicate symbol and the \(t_i \) are terms.
• and a term is either a constant or a variable.

So no functions

• E.g. \(gp(Z, X) \leftarrow par(Y, X), \ par(Z, Y) \)

• The left-hand side of a Datalog clause is called its \textit{head} and the right-hand side is called its \textit{body}.

• Clauses with an empty body represent facts.
Datalog and Relational Databases

Consider two sets of clauses:

- **Extensional database (EDB):** Set of relations (ground facts) stored in the database.
 - Corresponds to a standard relational database instance
- **Intentional database (IDB):** A set of rules where the head does not appear in the EDB.
 - The IDB represents *derived* relations.
 - Can be thought of as *views*.
Pure and Extended Datalog

• “Datalog” has slightly different meanings depending on the reference.

• Pure Datalog is the language where rules are composed of positive (EDB and IDB) predicates only.

• The standard or extended version of Datalog adds:
 • Built-in special predicate symbols such as $>$, $<$, \geq, \leq, $=$, \neq.
 • These symbols can occur only in the body of a rule.
 • E.g. $X < 100$, $X + Y + 5 > Z$
 • Negation as failure.
 • \sim can precede any predicate symbol in the body of a rule.
 • E.g. $Ugrad(X) \leftarrow St(X), \sim Grad(X)$

• We’ll henceforth deal with the extended version.
Examples

\[\text{ExpProduct}(X) \iff \text{Product}(X, C, P), \ P > 1000 \]
\[\text{BritProduct}(X) \iff \text{Product}(X, C, P), \ \text{Company}(C, "UK") \]
\[\text{StrictAbove}(X, Y) \iff \text{Above}(X, Y), \ \sim \text{On}(X, Y) \]
Safety

- A *safe* Datalog program should always have a finite output
 - i.e., the relations defined by a Datalog program must be finite.

Unsafe rules:
- \(Q(X, Y, Z) \leftarrow R(X, Y) \)
- \(Q(X, Y, Z) \leftarrow R(X, Y), X < Z \)
- \(Q(X, Y, Z) \leftarrow R(X, Y), \sim S(X, Y, Z) \)

In each case an infinity of \(Z \)'s can satisfy the rule, even though \(R \) and \(S \) are finite relations.
Safety

- A **safe** Datalog program should always have a finite output
 - I.e., the relations defined by a Datalog program must be finite.
- A program P is safe if, for every rule in P:

 Every variable that appears anywhere in the query must appear also in a relational, nonnegated atom in the body of the query.
Safety

- A **safe** Datalog program should always have a finite output
 - I.e., the relations defined by a Datalog program must be finite.
- A program \(P \) is safe if, for every rule in \(P \):
 Every variable that appears anywhere in the query must appear also in a relational, nonnegated atom in the body of the query.

- Unsafe rules:
 - \(Q(X, Y, Z) \leftarrow R(X, Y) \)
 - \(Q(X, Y, Z) \leftarrow R(X, Y), X < Z \)
 - \(Q(X, Y, Z) \leftarrow R(X, Y), \sim S(X, Y, Z) \)

 In each case an infinity of \(Z \)'s can satisfy the rule, even though \(R \) and \(S \) are finite relations.
Datalog as a Database Query Language

Example:
Find employees participating in projects that don’t involve their department heads:

\[\text{EmpInv}(X, P, H) \leftarrow \text{Proj}(P, X), \text{Empl}(X, N), \text{Dept}(N, H) \]

\[\text{DHInv}(X, P, H) \leftarrow \text{Proj}(P, H), \text{Empl}(X, N), \text{Dept}(N, H) \]

Answer \(X \leftarrow \text{EmpInv}(X, P, H), \sim \text{DHInv}(X, P, H) \).
Datalog as a Database Query Language

Example:
Find employees participating in projects that don’t involve their department heads:

\[\text{EmpInv}(X, P, H) \iff \text{Proj}(P, X), \: \text{Empl}(X, N), \: \text{Dept}(N, H) \]
\[\text{DHInv}(X, P, H) \iff \text{Proj}(P, H), \: \text{Empl}(X, N), \: \text{Dept}(N, H) \]
\[\text{Answer}(X) \iff \text{EmpInv}(X, P, H), \: \sim \text{DHInv}(X, P, H). \]
From Relational Algebra to Datalog

Selection: $\sigma_{X>10}(R)$

$Result(X, Y) \leftarrow R(X, Y), \; X > 10$
From Relational Algebra to Datalog

Selection: $\sigma_{X>10}(R)$

$Result(X, Y) \leftarrow R(X, Y), \ X > 10$

Projection: $\Pi_{X,Y}(R)$

$Result(X, Y) \leftarrow R(X, Y, Z)$
From Relational Algebra to Datalog

Selection: $\sigma_{X>10}(R)$

$Result(X, Y) \leftarrow R(X, Y), \ X > 10$

Projection: $\Pi_{X,Y}(R)$

$Result(X, Y) \leftarrow R(X, Y, Z)$

Cartesian Product: $R \times T$

$Result(X, Y, Z, W) \leftarrow R(X, Y), \ T(Z, W)$
From Relational Algebra to Datalog

Selection: $\sigma_{X>10}(R)$

$Result(X, Y) \leftarrow R(X, Y), \; X > 10$

Projection: $\Pi_{X,Y}(R)$

$Result(X, Y) \leftarrow R(X, Y, Z)$

Cartesian Product: $R \times T$

$Result(X, Y, Z, W) \leftarrow R(X, Y), \; T(Z, W)$

Natural Join: $R \Join T$

$Result(X, Y, Z) \leftarrow R(X, Y), \; T(Y, Z)$
From Relational Algebra to Datalog

Selection: \(\sigma_{X>10}(R) \)

\[
Result(X, Y) \Leftarrow R(X, Y), \ X > 10
\]

Projection: \(\Pi_{X,Y}(R) \)

\[
Result(X, Y) \Leftarrow R(X, Y, Z)
\]

Cartesian Product: \(R \times T \)

\[
Result(X, Y, Z, W) \Leftarrow R(X, Y), \ T(Z, W)
\]

Natural Join: \(R \bowtie T \)

\[
Result(X, Y, Z) \Leftarrow R(X, Y), \ T(Y, Z)
\]

Theta Join: \(R \bowtie_{R.X>T.Z} T \)

\[
Result(X, Y, Z, W) \Leftarrow R(X, Y), \ T(Z, W), \ X > Z
\]
From Relational Algebra to Datalog II

Intersection: \(R(X, Y) \cap T(X, Y) \)

\[\text{Result} (X, Y) \leftarrow R(X, Y), T(X, Y) \]
Intersection: \(R(X, Y) \cap T(X, Y) \)

\[\text{Result}(X, Y) \leftarrow R(X, Y), T(X, Y) \]

Union: \(R(X, Y) \cup T(X, Y) \)

\[\text{Result}(X, Y) \leftarrow R(X, Y) \]
\[\text{Result}(X, Y) \leftarrow T(X, Y) \]
From Relational Algebra to Datalog II

Intersection: \(R(X, Y) \cap T(X, Y) \)

\[
\text{Result}(X, Y) \leftarrow R(X, Y), T(X, Y)
\]

Union: \(R(X, Y) \cup T(X, Y) \)

\[
\text{Result}(X, Y) \leftarrow R(X, Y) \\
\text{Result}(X, Y) \leftarrow T(X, Y)
\]

Difference: \(R(X, Y) \setminus T(X, Y) \)

\[
\text{Result}(X, Y) \leftarrow R(X, Y), \sim T(X, Y)
\]
Expressivity

- Datalog, as we’ve used it so far, is as expressive as the *relational algebra*.
 - So Datalog can be used as a query language in a relational DB.
- If we include recursive definitions (next slide), it is *more* expressive than the relational algebra.
 - However, still not Turing complete.
Recursive Datalog

- E.g. Can define the notion of a path in a graph by:

 \[
 \text{Path}(X, Y) \iff \text{Edge}(X, Y) \\
 \text{Path}(X, Y) \iff \text{Path}(X, Z), \text{Edge}(Z, Y)
 \]

- This corresponds with transitive closure, which cannot be expressed in first-order logic.
Recursive Datalog

• E.g. Can define the notion of a *path* in a graph by:
 \[\text{Path}(X, Y) \leftarrow \text{Edge}(X, Y) \]
 \[\text{Path}(X, Y) \leftarrow \text{Path}(X, Z), \text{Edge}(Z, Y) \]

• This corresponds with *transitive closure*, which *cannot* be expressed in first-order logic.

• There may be problems with recursion when combined with negation as failure.

• Example:
 \[P(X) \leftarrow R(X), \sim Q(X) \]
 \[Q(X) \leftarrow R(X), \sim P(X) \]
Solution: Stratified Datalog Programs

- A Datalog program P is **stratified** if
 - there is an assignment str of integers $0, 1, \ldots$ to the predicates p of P such that for each clause r in P the following holds:

 If p is the predicate in the head of r and q a predicate in the body of r, then
 - $\text{str}(p) \geq \text{str}(q)$ if q is positive, and
 - $\text{str}(p) > \text{str}(q)$ if q is negative.

- Example:

 - $\text{SignalError} \leftarrow \text{ValveClosed}, \neg \text{Signal} _1$
 - $\text{SignalError} \leftarrow \text{PressureLoss}, \neg \text{Signal} _2$
 - $\text{SignalError} \leftarrow \text{Overheat}, \neg \text{Signal} _3$
 - $\text{CheckSensors} \leftarrow \text{SignalError}$

 - Assign 1 to CheckSensors, SignalError and 0 to other atoms.

 Stratification condition is satisfied.
Solution: Stratified Datalog Programs

• A Datalog program \(P \) is \textit{stratified} if

 • there is an assignment \(\text{str} \) of integers 0, 1, \ldots to the predicates \(p \) of \(P \) such that for each clause \(r \) in \(P \) the following holds:

 If \(p \) is the predicate in the head of \(r \) and \(q \) a predicate in the body of \(r \), then
 • \(\text{str}(p) \geq \text{str}(q) \) if \(q \) is positive, and
 • \(\text{str}(p) > \text{str}(q) \) if \(q \) is negative.

• Example:

 • \(\text{SignalError} \Leftarrow \text{ValveClosed}, \sim \text{Signal}_1 \)
 \(\text{SignalError} \Leftarrow \text{PressureLoss}, \sim \text{Signal}_2 \)
 \(\text{SignalError} \Leftarrow \text{Overheat}, \sim \text{Signal}_3 \)
 \(\text{CheckSensors} \Leftarrow \text{SignalError} \)

 • Assign 1 to \(\text{CheckSensors}, \text{SignalError} \) and 0 to other atoms.
 \(\checkmark \) Stratification condition is satisfied.
Stratified Datalog Evaluation Algorithm

- Evaluate the lowest-stratum IDB predicates first
- Once evaluated, treat them as EDB
- Continue with next stratum, etc.
More on Stratification

Relation R depends on relation S if a rule with R in the head

- contains S in the body, or
- contains a predicate that depends on S in the body.

A relation R depends negatively on S if a rule with R in the head

- contains $\sim S$ in the body, or
- contains a predicate that depends negatively on S in the body.
More on Stratification

Relation R \textit{depends} on relation S if a rule with R in the head

- contains S in the body, or
- contains a predicate that depends on S in the body.

A relation R \textit{depends negatively} on S if a rule with R in the head

- contains $\sim S$ in the body, or
- contains a predicate that depends negatively on S in the body.
More on Stratification: Definition

A *stratified* program is one that can be divided into strata according to the algorithm:

- Stratum 0 contains relations that don’t depend on any other relation.
- Stratum 1 contains relations that
 - depend only on relations in stratum 0 or 1 or
 - depend negatively only on relations in stratum 0.
- In general, stratum \(i \) contains relations that
 - depend only on relations in stratum \(i \) or less.
 - depend negatively only on relations in stratum \((i - 1) \) or less.

This is exploited by the evaluation algorithm, which works stratum by stratum. A relation \(\sim R \) in the body is not a problem, since \(R \) has been completely evaluated when it is encountered.
A *stratified* program is one that can be divided into strata according to the algorithm:

- **Stratum 0** contains relations that don’t depend on any other relation.
- **Stratum 1** contains relations that
 - depend only on relations in stratum 0 or 1 or
 - depend negatively only on relations in stratum 0.
- In general, **stratum \(i \)** contains relations that
 - depend only on relations in stratum \(i \) or less.
 - depend negatively only on relations in stratum \((i - 1) \) or less.

This is exploited by the evaluation algorithm, which works stratum by stratum.

A relation \(\sim R \) in the body is not a problem, since \(R \) has been completely evaluated when it is encountered.
Extending the Basic Approach III: Disjunctive Knowledge

• We extend the Horn clause language to allow full disjunctive and negative knowledge.

• E.g. if I know that either a friend or her spouse is picking me up at the airport, then I know that I have a ride, without knowing who will pick me up.

• We also allow the direct statement of negative information, rather than via negation as failure.
Disjunctive Knowledge and Negation as Failure

- Disjunctive knowledge is incompatible with negation as failure.
Disjunctive Knowledge and Negation as Failure

- Disjunctive knowledge is incompatible with negation as failure.
- E.g. Given $a \vee b$ we can’t prove a, and so can assume $\neg a$, and similarly for b.
Disjunctive Knowledge and Negation as Failure

• Disjunctive knowledge is incompatible with negation as failure.
• E.g. Given $a \lor b$ we can’t prove a, and so can assume $\neg a$, and similarly for b.
• However $\neg a, \neg b$ is inconsistent with the original sentence.
Syntax

- We add the following to our language:
 - A \textit{literal} is an atom or the negation of an atom.
 - A \textit{clause} has the form
 \[
 L_1 \lor \cdots \lor L_k \iff L_{k+1} \land \cdots \land L_n
 \]
 where the L_i are literals.

- So for a clause,
 - if $k = 1$ and all the literals are atoms we have a definite clause.
 - if $k = n$ we have a disjunction of literals.

- This has the same expressive power as propositional logic, but is syntactically restricted.
Semantics

• The meaning of clauses is as expected, with the standard account for \neg and \lor.
• Note that we can “move” literals over the \iff sign.
 • I.e. we can “swap” a literal over the \iff if we negate it.
 • Thus $p \lor q \iff r \land \neg s$ is equivalent to

 $p \iff \neg q \land r \land \neg s$ which is equivalent to

 $p \lor \neg r \iff \neg q \land \neg s$

• Hence any set of formulas in propositional logic can be written as a set of formulas of the form

\[P_1 \lor \cdots \lor P_k \iff P_{k+1} \land \cdots \land P_n \]

where each P_i is an atom.
Semantics

- The *normal form* of a general clause is an equivalent clause with no literals on the right hand side of the \Leftarrow sign.
 - That is, the normal form of
 \[L_1 \lor \cdots \lor L_k \Leftarrow L_{k+1} \land \cdots \land L_n \]
 is
 \[L_1 \lor \cdots \lor L_k \lor \neg L_{k+1} \lor \cdots \lor \neg L_n \Leftarrow \]
 - Then the \Leftarrow can be omitted.

- Our notion of a query and an answer remain the same.
 - So, an answer *answer* means that for some \vec{X}, $\text{answer}(\vec{X})$ is a logical consequence of the clause set C.
Example: Extended Circuit Diagnosis

- With the circuit diagnosis problem, there are some things that require disjunction.
- One is the **single fault assumption**, that says that there is only a single fault in the system.
 - This assumption allows some control over the combinatorial explosion of possible diagnoses.
 - It generalises to the n-fault assumption, for fixed n.
- For our circuit example we can express the single fault assumption as

 \[\text{ok}(G_1) \iff \neg \text{ok}(G_2) \land G_1 \neq G_2. \]

- For the adder example, if inputs were \text{on}/\text{off}/\text{on}, and outputs \text{on}/\text{off}, we could prove that there is only one fault, $\neg \text{ok}(x_1)$.
Example: Extended Circuit Diagnosis

• Another way to reduce the combinatorial explosion of possibilities is to assume that gates break down in a limited number of ways.

• This is the *limited failure assumption*.

• For example we might assume that a gate can only be *ok* or stuck *on* or stuck *off*:

 \[
 \begin{align*}
 ok(G) & \iff \neg stuckOn(G) \land \neg stuckOff(G) \\
 val(out(G), on) & \iff stuckOn(G) \\
 val(out(G), off) & \iff stuckOff(G)
 \end{align*}
 \]