Extending the Basic Reasoning System

CMPT 411/721

Topics

Topics
® Adding integrity constraints: Horn clauses
® Assumption-Based Reasoning
® The closed world assumption
® The Fitting operator
® Datalog

® Adding disjunction

Beyond Definite Knowledge

e \We first consider two extensions to the definite clause
language:

1.

Add integrity constraints to definite clauses, giving Horn
clauses.

. Adopt the closed world assumption, the assumption that our

rules express all information about an atom.

Beyond Definite Knowledge

® We first consider two extensions to the definite clause
language:
1. Add integrity constraints to definite clauses, giving Horn
clauses.
2. Adopt the closed world assumption, the assumption that our
rules express all information about an atom.

® Both extensions add a limited form of negation to our basic
system.
® Will later extend this further, in considering answer set
programming.
® Following this we consider

3. generalising the approach to effectively obtain propositional
logic.

Integrity Constraints and Horn Clauses

® We now allow rules with the special atom false at the head of
rules.

® false is false in all interpretations

® Clauses of the form

false <= a1 A - -+ A\ ay are called integrity constraints.

Integrity Constraints and Horn Clauses

We now allow rules with the special atom false at the head of
rules.

® false is false in all interpretations

Clauses of the form

false <= a1 A - -+ A\ ay are called integrity constraints.
A Horn clause is a definite clause or an integrity constraint.

Integrity constraints allow us to express that some
combinations of atoms can't all be true.

That is, false <= a1 A --- A ax

says that a,...,ak can't all be true.

Integrity Constraints and Horn Clauses

We now allow rules with the special atom false at the head of
rules.

® false is false in all interpretations

Clauses of the form

false <= a1 A - -+ A\ ay are called integrity constraints.
A Horn clause is a definite clause or an integrity constraint.
Integrity constraints allow us to express that some
combinations of atoms can’t all be true.
That is, false <= a1 A --- A ax
says that a,...,ak can't all be true.

Example: In the circuits domain, there is nothing to prevent a
port having value both on and off.

® \With false we can assert

false <= value(X, on) A value(X, off)

Integrity Constraints and Horn Clauses
® Example:
Ti={false <=anb, a<=c, b<c}

® We conclude that c is false in all models of T7.

® In propositional logic we would write T; = —c.
® Could also write this as T; |= false < c.

== Note that — isn’t part of the KB language, so writing
T1 = false <= c is better.

Example (continued)

e Consider
T, ={false =aAb,a<c, b<d, b« e}

® Write o V 3 for a formula that is true in interpretation Z iff «
is true in Z or f3 is true in Z (or both).
= Again, V isn't a symbol in our object language.
® Given this notation we have:
To=-cV-dand Ty |E—cV—e.
l.e. we have that
T, = false = cANd and T, |= false <= c A e.

® Note that we cannot handle unrestricted disjunctions and
negations.

® However we can derive disjunctions of negations of atoms.

Reasoning with Horn Clauses

We can use our previous top-down and bottom-up reasoners
with Horn clauses.

If KB = false then KB is inconsistent.
Example: KB = {false <= a., a.}.

If the KB is consistent, then to derive (positive) atoms we can
ignore integrity constraints. (Why?)

However, we can exploit HC reasoning, as discussed next.

Assumption-Based Reasoning

The addition of integrity constraints seems minor; however it turns
out to be a powerful tool.
® |n many activities it is useful to know that some combination
of truths are incompatible.
® Here we give an example in diagnosis.
® We will use the circuit example of the previous section.

® Previously, given inputs, we could predict outputs.
® For diagnosis, we may be given inputs, but the outputs may

not have the expected values.
® |n this case we would like to prove what could be wrong with

the circuit.

Assumption-Based Reasoning

® Define the assumables to be the atoms which we could accept
as part of a (disjunctive) answer.
® |ntuitively, assumables are things that we want to assume are
true, if consistently possible.
® |n the circuit example, we will assume that a gate is not
broken, where possible.
e If T is a set of clauses, a conflict of T is a set of assumables
that, given T, imply false.
® le. C={cy,...,c} is a conflict if

TEfalse =cA---Ac, thatis, TE-qV---V-c,.

Assumption-Based Reasoning

® A minimal conflict is a conflict s.t. no subset is a conflict.

® Example:
To={false =anb, a<=c, b<d, b<e}

® In Ty, if {c,d, e} are the assumables, then {c,d} and {c, e}
are minimal conflicts.

Consistency-Based Diagnosis

Consider our circuit example from before.

® For the clauses involving how gates work, we add a predicate
ok expressing that the gate is working.

® For and gates we have:

value(out(D),on) <« gate(D, and) A ok(D)
A value(in(1, D), on)
A value(in(2, D), on).
value(out(D), off) <= gate(D, and)Nok(D)Avalue(in(1, D), off).

(
value(out(D), off) < gate(D, and)Nok(D)Avalue(in(2, D), off).

Example

® ok(D) will be assumable.

® We add the clause
false <= value(X, on) A value(X, off).

® Given a set of observations (input and output) we want to ask
whether there is a gate that is not ok:
? —0k(D)

Example

® We test our circuit by giving it the following inputs.
value(in(1, adder), on),
value(in(2, adder), off),
value(in(3, adder), on),

value(out(1, adder), on),
value(out(2, adder), off).

= With these values, the circuit cannot be operating correctly.

Example

There are two minimal conflicts:
{O/((Xl)7 Ok(X2)}
{ok(x1), ok(a2), ok(o1)}

Hence:

® (At least) one of the exclusive-or gates is faulty.
® One of the gates xq, ap, o1 is faulty.

We can distribute the answers to get the logically equivalent
result:
—0k(x1) V (—ok(x2) A —0k(a2)) V (—ok(x2) A —ok(o1)).

Each conjunction in this disjunction is called a diagnosis.

Implementation: Bottom-up algorithm
The bottom-up implementation is an augmentation of the
bottom-up algorithm presented earlier.

® The conclusion is a set of pairs (a, A) where a is an atom and
A is a set of assumables that together with the rules imply a.

e Initially the conclusion set C is {(a,{a}) | a is assumable}.

® Rules can be used to form new conclusions:
If there is a rule

h<b N - Abny

such that for each i there is A; such that (b;,A;) € C,
then add (h,AyU---UAp) to C.

e |If we generate (false, A), the assumptions in A form a conflict.
® Soif A={ay1,...,ax} then T |E—ay V- -V —ag.

A Bottom-up Procedure

First, we get rid of variables by grounding all rules.
® Each rule is replaced by the set of its ground instances.

® \We can do this here since we have a finite domain.

A Bottom-up Procedure
Algorithm:

C :={(a,{a}) | ais assumable};
repeat
choose r € T such that
ris'h<biAN---Nbpy’
(bi, A;) € C for all i, and
A=A1U---UA,, and
hA) ¢ C;
C:=CuU{(hA)}

until no more choices

Example:

® Assume we have three and-gates, where the outputs from a;
and ap are connected to the inputs of as.
® We observe that inputs on/off /on/on give output on.
® Initially C has the value:
{ (ok(a1), {ok(a1)}),
(ok(a2), {ok(a2)}),
(ok(as),{ok(a3)}) }

Example

® The following shows a possible sequence of values added to C:
(value(in(2, a1), off), {})

(gate(ar, and), {})

(ok(ar), {ok(a1)})

(value(out(ay), off), {ok(a1)})

(connected(out(ay1),in(1, a3)),{})

(value(in(1, a3), off), {ok(a1)})

(gate(as, and), {})

(ok(a3), {ok(a3)})

évalue(out(ag,), off),{ok(a1), ok(as)})

(

value(out(az), on), {})
false, {ok(a1), ok(a3)})

® Thus we can prove —ok(a1) V —ok(a3).

Extending the Basic Approach II:
Negation as Failure

® We can distinguish two types of “negative” situations with
respect to trying to prove a query G:

® \We are able to show that =G holds.
® \We are unable to show that G holds.

® Sometimes for the second case we want to assume that G is
in fact false.

e This is known as negation as (finite) failure (naf).

Negation as Failure

® With our rule-based approach, we can justify naf if we assume
that our rules express all knowledge about an atom.

® In this case, we can just store what is true, and so if we
cannot derive something, it must be false.
1= This is exactly the assumption made by relational
databases.

® Thus an atom is false if none of the bodies implying the atom
is true.

The Complete Knowledge Assumption
For the ground case, consider where we have rules for atom a:
a< b
2 < b,
The Complete Knowledge Assumption says that if a is true
then it must have been derived by one of the b;'s.

Hence one of the b; must be true.

le.a= by V---Vb,,
and thus
as by V-V b,

This is called the completion of a.

The Complete Knowledge Assumption

® For example, if
student < grad
student < ugrad

then the completion is:
student < grad V ugrad.

® We won't go into it here, but this leads to a semantic account
of the complete knowledge assumption (and negation as
failure) known as the Clark completion.

Implementation: Fitting Operator

® The bottom-up implementation incorporating naf is an
extension of the procedure for definite clauses.

® We now allow literals of the form ~p in the bodies of rules.
® ~p expresses that p finitely fails.

® |.e. ~p holds if we are unable to show that p holds.

® Can also add atoms of the form ~p to the set C of
consequences.

Implementation: Fitting Operator

The bottom-up implementation incorporating naf is an
extension of the procedure for definite clauses.

® We now allow literals of the form ~p in the bodies of rules.
® ~p expresses that p finitely fails.

® |.e. ~p holds if we are unable to show that p holds.
® Can also add atoms of the form ~p to the set C of
consequences.
From the complete knowledge assumption we have that:

® The head atom of a rule must be true if the rule’s body is true.
® An atom p must be false if the body of each rule having p as a
head is false.

This leads to a three-valued model, in which atoms may be
true, false, or undetermined.

The Fitting operator can be implemented to run in linear time.

p<&=gAn~r
p&s
g <= ~s
r < ~t

S<&=w

Example Rules

A Bottom-up Procedure:
C={k
repeat
either
choose r € A such that
ris'h<byA---Abp
b; € C for all i, and
h ¢ C;
C:=CuU{h}
or
choose h such that for every rule
h<biAN---Nby
either for some b; we have ~b; € C
or some bj =~g and g € C
C:=CU{~h}
until no more choices

Example

e Consider:
p<&=gAN~r

p<s
g <= n~s
r <= ~t
t

s<w

® The following is a sequence of atoms added to C:

t? Nr’ NW? NS’ q? p'

Top-down Procedure

The top-down procedure proceeds by negation as finite failure.

e Consider:

a<:b1

a< b,
® If we try to prove each b; and fail each time, we can conclude
that each b; is false, and so is a.

® See a text on logic programming for more.

Logic in Databases: Datalog

Datalog is a database query language based on definite
clauses with negation as failure.

A Datalog program consists of a finite set of facts and rules.

Facts are assertions about the world, such as “John is the
father of Harry”.

Rules allow us to deduce facts from other facts.

E.g. “If X is a parent of Y and if Y is a parent of Y, then X
is a grandparent of Y.

“Pure” Datalog: Syntax

® Facts and rules are represented as definite clauses of the form

L0<:L1,...,Ln
where
® each L; is a literal of the form P(ty,..., tk)

® such that P is a predicate symbol and the t; are terms.
® and a term is either a constant or a variable.
15 So no functions

* Eg gp(Z,X) < par(Y,X), par(Z,Y)
® The left-hand side of a Datalog clause is called its head and
the right-hand side is called its body.

® Clauses with an empty body represent facts.

Datalog and Relational Databases

Consider two sets of clauses:
® Extensional database (EDB): Set of relations (ground facts)
stored in the database.
® Corresponds to a standard relational database instance
® Intentional database (IDB): A set of rules where the head
does not appear in the EDB.
® The IDB represents derived relations.
® Can be thought of as views.

Pure and Extended Datalog

e “Datalog” has slightly different meanings depending on the

reference.
® Pure Datalog is the language where rules are composed of
positive (EDB and IDB) predicates only.
® The standard or extended version of Datalog adds:
® Built-in special predicate symbols such as
>, <, 2>, 5, = A
® These symbols can occur only in the body of a rule.
* Eg X<100,X+Y+5>7Z7

® Negation as failure.
® ~ can precede any predicate symbol in the body of a rule.

® E.g. Ugrad(X) < St(X), ~Grad(X)
e \We'll henceforth deal with the extended version.

Examples

ExpProduct(X) < Product(X,C,P), P> 1000
BritProduct(X) < Product(X, C, P), Company(C, “UK")
StrictAbove(X,Y) < Above(X,Y), ~On(X,Y)

Safety

® A safe Datalog program should always have a finite output
® |.e., the relations defined by a Datalog program must be finite.

Safety

® A safe Datalog program should always have a finite output
® |.e., the relations defined by a Datalog program must be finite.
® A program P is safe if, for every rule in P:
Every variable that appears anywhere in the query must
appear also in a relational, nonnegated atom in the body
of the query.

Safety

® A safe Datalog program should always have a finite output
® |.e., the relations defined by a Datalog program must be finite.

® A program P is safe if, for every rule in P:
Every variable that appears anywhere in the query must
appear also in a relational, nonnegated atom in the body
of the query.

® Unsafe rules:
° QX,Y,Z) < R(X,Y)
° QX,Y,Z)<=R(X,Y), X< Z
° Q(X,Y,Z) < R(X,Y), ~5(X,Y,2)

1= |n each case an infinity of Z's can satisfy the rule, even
though R and S are finite relations.

Datalog as a Database Query Language

Example:
Find employees participating in projects that don't involve their

department heads:

X: Employee P: Project
H: Department head N: Department

Datalog as a Database Query Language

Example:
Find employees participating in projects that don't involve their

department heads:

X: Employee P: Project
H: Department head N: Department

Emplnv(X, P, H) < Proj(P, X), Empl(X,N), Dept(N,H)
DHinv(X, P, H) < Proj(P,H), Empl(X, N), Dept(N, H)
Answer(X) < Emplnv(X, P, H), ~DHInv(X, P, H).

From Relational Algebra to Datalog

Selection: oxs10(R)

Result(X,Y) < R(X,Y), X > 10

From Relational Algebra to Datalog
Selection: oxs10(R)
Result(X,Y) < R(X,Y), X > 10
Projection: Mx y(R)
Result(X,Y) < R(X,Y,Z)

From Relational Algebra to Datalog
Selection: oxs10(R)
Result(X,Y) < R(X,Y), X > 10
Projection: Mx y(R)
Result(X,Y) < R(X,Y,2)
Cartesian Product: R x T
Result(X,Y,Z, W) < R(X,Y), T(Z, W)

From Relational Algebra to Datalog

Selection: oxs10(R)

Result(X,Y) < R(X,Y), X > 10
Projection: Mx y(R)

Result(X,Y) < R(X,Y,2)
Cartesian Product: R x T

Result(X,Y,Z,W) < R(X,Y), T(Z,W)
Natural Join: Rpa T

Result(X,Y,Z) < R(X,Y), T(Y,Z2)

From Relational Algebra to Datalog

Selection: oxs10(R)

Result(X,Y) < R(X,Y), X > 10
Projection: Mx y(R)

Result(X,Y) < R(X,Y,2)
Cartesian Product: R x T

Result(X,Y,Z,W) < R(X,Y), T(Z,W)
Natural Join: Rpa T

Result(X,Y,Z) < R(X,Y), T(Y,Z2)
Theta Join: R<ig x>7.2z T

Result(X,Y,Z, W) < R(X,Y), T(Z,W), X > Z

From Relational Algebra to Datalog Il
Intersection: R(X,Y)N T(X,Y)
Result(X,Y) < R(X,Y), T(X,Y)

From Relational Algebra to Datalog Il
Intersection: R(X,Y)N T(X,Y)
Result(X,Y) < R(X,Y), T(X,Y)
Union: R(X,Y)U T(X,Y)

Result(X,Y) < R(X,Y)
Result(X,Y) < T(X,Y)

From Relational Algebra to Datalog Il
Intersection: R(X,Y)N T(X,Y)
Result(X,Y) < R(X,Y), T(X,Y)
Union: R(X,Y)U T(X,Y)

Result(X,Y) < R(X,Y)
Result(X,Y) < T(X,Y)

Difference: R(X,Y)— T(X,Y)
Result(X,Y) < R(X,Y), ~T(X,Y)

Expressivity

® Datalog, as we've used it so far, is as expressive as the
relational algebra.

® So Datalog can be used as a query language in a relational DB.

e If we include recursive definitions (next slide), it is more
expressive than the relational algebra.

® However, still not Turing complete.

Recursive Datalog

® E.g. Can define the notion of a path in a graph by:
Path(X,Y) < Edge(X,Y)
Path(X,Y) < Path(X, Z), Edge(Z,Y)
® This corresponds with transitive closure, which cannot be
expressed in first-order logic.

Recursive Datalog

E.g. Can define the notion of a path in a graph by:
Path(X,Y) < Edge(X,Y)
Path(X,Y) < Path(X, Z), Edge(Z,Y)
This corresponds with transitive closure, which cannot be
expressed in first-order logic.

There may be problems with recursion when combined with
negation as failure.
Example:

P(X) < R(X), ~Q(X)

Q(X) <= R(X), ~P(X)

Solution: Stratified Datalog Programs

e A Datalog program P is stratified if

® there is an assignment str of integers 0, 1, ...to the predicates
p of P such that for each clause r in P the following holds:

If p is the predicate in the head of r and
g a predicate in the body of r, then
® str(p) > str(q) if q is positive, and
® str(p) > str(q) if g is negative.

Solution: Stratified Datalog Programs

e A Datalog program P is stratified if

® there is an assignment str of integers 0, 1, ...to the predicates
p of P such that for each clause r in P the following holds:

If p is the predicate in the head of r and
g a predicate in the body of r, then
® str(p) > str(q) if q is positive, and
® str(p) > str(q) if g is negative.

® Example:
® SignalError < ValveClosed, ~Signah
SignalError <= PressurelLoss, ~Signal,

SignalError <= Overheat, ~Signals
CheckSensors < SignalError

® Assign 1 to CheckSensors, SignalError and 0 to other atoms.
1 Stratification condition is satisfied.

Stratified Datalog Evaluation Algorithm

® Evaluate the lowest-stratum IDB predicates first
® Once evaluated, treat them as EDB

e Continue with next stratum, etc.

More on Stratification

Relation R depends on relation S if a rule with R in the head
® contains S in the body, or

® contains a predicate that depends on S in the body.

More on Stratification

Relation R depends on relation S if a rule with R in the head
® contains S in the body, or
® contains a predicate that depends on S in the body.

A relation R depends negatively on S if a rule with R in the head
® contains ~S in the body, or

® contains a predicate that depends negatively on S in the body.

More on Stratification: Definition

A stratified program is one that can be divided into strata
according to the algorithm:

e Stratum 0 contains relations that don't depend on any other
relation.
® Stratum 1 contains relations that
® depend only on relations in stratum 0 or 1 or
® depend negatively only on relations in stratum 0.
® |n general, stratum / contains relations that

® depend only on relations in stratum / or less.
® depend negatively only on relations in stratum (i — 1) or less.

More on Stratification: Definition

A stratified program is one that can be divided into strata
according to the algorithm:

e Stratum 0 contains relations that don't depend on any other
relation.
® Stratum 1 contains relations that
® depend only on relations in stratum 0 or 1 or
® depend negatively only on relations in stratum 0.
® |n general, stratum / contains relations that

® depend only on relations in stratum / or less.
® depend negatively only on relations in stratum (i — 1) or less.

This is exploited by the evaluation algorithm, which works stratum

by stratum.

1= A relation ~R in the body is not a problem, since R has been
completely evaluated when it is encountered.

Extending the Basic Approach lll:
Disjunctive Knowledge
® We extend the Horn clause language to allow full disjunctive
and negative knowledge.

e E.g. if | know that either a friend or her spouse is picking me
up at the airport, then | know that | have a ride, without
knowing who will pick me up.

® We also allow the direct statement of negative information,
rather than via negation as failure.

Disjunctive Knowledge and Negation as
Failure

® Disjunctive knowledge is incompatible with negation as failure.

Disjunctive Knowledge and Negation as
Failure

® Disjunctive knowledge is incompatible with negation as failure.

® E.g. Given aV b we can't prove a, and so can assume —a, and
similarly for b.

Disjunctive Knowledge and Negation as
Failure

® Disjunctive knowledge is incompatible with negation as failure.

® E.g. Given aV b we can't prove a, and so can assume —a, and
similarly for b.

® However —a, —b is inconsistent with the original sentence.

Syntax

® We add the following to our language:

® A Jiteral is an atom or the negation of an atom.
® A clause has the form

LiVe Vi< Lgi A ALy

where the L; are literals.
® So for a clause,
® if k =1 and all the literals are atoms we have a definite clause.
® if k = n we have a disjunction of literals.
® This has the same expressive power as propositional logic, but
is syntactically restricted.

Semantics

® The meaning of clauses is as expected, with the standard
account for — and V.
® Note that we can "move” literals over the < sign.
® |.e. we can “swap” a literal over the < if we negate it.
® Thus pV g < r A —s is equivalent to
p < —q A r A —s which is equivalent to
pV -r<-—-gA-s
® Hence any set of formulas in propositional logic can be
written as a set of formulas of the form

PiV-- - VPr= P Ao APy

where each P; is an atom.

Semantics

® The normal form of a general clause is an equivalent clause
with no literals on the right hand side of the <« sign.
® That is, the normal form of
Liv---V6ig<=Lliga N AL,
is
LyV--- VLVl V- VAL, <=
® Then the < can be omitted.
® Qur notion of a query and an answer remain the same.
® So, an answer answer means that for some)_(answer()_(') is a
logical consequence of the clause set C.

Example: Extended Circuit Diagnosis

With the circuit diagnosis problem, there are some things that
require disjunction.

One is the single fault assumption, that says that there is only
a single fault in the system.

® This assumption allows some control over the combinatorial
explosion of possible diagnoses.
® |t generalises to the n-fault assumption, for fixed n.

For our circuit example we can express the single fault
assumption as

Ok(Gl) = ﬁOk(GQ) A Gy 75 Go.

For the adder example, if inputs were on/off /on, and outputs
on/off, we could prove that there is only one fault, ~ok(x1).

Example: Extended Circuit Diagnosis

® Another way to reduce the combinatorial explosion of
possibilities is to assume that gates break down in a limited
number of ways.

® This is the limited failure assumption.

® For example we might assume that a gate can only be ok or
stuck on or stuck off:

ok(G) < —stuckOn(G) A —stuckOff (G)
val(out(G), on) < stuckOn(G)
val(out(G), off) < stuckOff(G)

	Beyond Definite Knowledge
	Integrity Constraints and Horn Clauses
	Assumption-Based Reasoning
	Implementation
	Negation as Failure
	Fitting Operator
	Logic in Databases: Datalog
	Disjunction and Negation

