
Extending the Basic Reasoning System

CMPT 411/721

Topics

Topics
• Adding integrity constraints: Horn clauses

• Assumption-Based Reasoning

• The closed world assumption
• The Fitting operator
• Datalog

• Adding disjunction

Beyond Definite Knowledge

• We first consider two extensions to the definite clause
language:

1. Add integrity constraints to definite clauses, giving Horn
clauses.

2. Adopt the closed world assumption, the assumption that our
rules express all information about an atom.

• Both extensions add a limited form of negation to our basic
system.
• Will later extend this further, in considering answer set

programming.

• Following this we consider

3. generalising the approach to effectively obtain propositional
logic.

Beyond Definite Knowledge

• We first consider two extensions to the definite clause
language:

1. Add integrity constraints to definite clauses, giving Horn
clauses.

2. Adopt the closed world assumption, the assumption that our
rules express all information about an atom.

• Both extensions add a limited form of negation to our basic
system.
• Will later extend this further, in considering answer set

programming.

• Following this we consider

3. generalising the approach to effectively obtain propositional
logic.

Integrity Constraints and Horn Clauses

• We now allow rules with the special atom false at the head of
rules.
• false is false in all interpretations

• Clauses of the form

false ⇐ a1 ∧ · · · ∧ ak are called integrity constraints.

• A Horn clause is a definite clause or an integrity constraint.

• Integrity constraints allow us to express that some
combinations of atoms can’t all be true.

• That is, false ⇐ a1 ∧ · · · ∧ ak
says that a1, . . . , ak can’t all be true.
• Example: In the circuits domain, there is nothing to prevent a

port having value both on and off.
• With false we can assert

false ⇐ value(X , on) ∧ value(X , off)

Integrity Constraints and Horn Clauses

• We now allow rules with the special atom false at the head of
rules.
• false is false in all interpretations

• Clauses of the form

false ⇐ a1 ∧ · · · ∧ ak are called integrity constraints.

• A Horn clause is a definite clause or an integrity constraint.

• Integrity constraints allow us to express that some
combinations of atoms can’t all be true.

• That is, false ⇐ a1 ∧ · · · ∧ ak
says that a1, . . . , ak can’t all be true.

• Example: In the circuits domain, there is nothing to prevent a
port having value both on and off.
• With false we can assert

false ⇐ value(X , on) ∧ value(X , off)

Integrity Constraints and Horn Clauses

• We now allow rules with the special atom false at the head of
rules.
• false is false in all interpretations

• Clauses of the form

false ⇐ a1 ∧ · · · ∧ ak are called integrity constraints.

• A Horn clause is a definite clause or an integrity constraint.

• Integrity constraints allow us to express that some
combinations of atoms can’t all be true.

• That is, false ⇐ a1 ∧ · · · ∧ ak
says that a1, . . . , ak can’t all be true.
• Example: In the circuits domain, there is nothing to prevent a

port having value both on and off.
• With false we can assert

false ⇐ value(X , on) ∧ value(X , off)

Integrity Constraints and Horn Clauses

• Example:

T1 = {false ⇐ a ∧ b, a⇐ c , b ⇐ c}

• We conclude that c is false in all models of T1.

• In propositional logic we would write T1 |= ¬c .
• Could also write this as T1 |= false ⇐ c .

+ Note that ¬ isn’t part of the KB language, so writing
T1 |= false ⇐ c is better.

Example (continued)

• Consider

T2 = {false ⇐ a ∧ b, a⇐ c, b ⇐ d , b ⇐ e}

• Write α ∨ β for a formula that is true in interpretation I iff α
is true in I or β is true in I (or both).
+ Again, ∨ isn’t a symbol in our object language.

• Given this notation we have:
T2 |= ¬c ∨ ¬d and T2 |= ¬c ∨ ¬e.

I.e. we have that
T2 |= false ⇐ c ∧ d and T2 |= false ⇐ c ∧ e.

• Note that we cannot handle unrestricted disjunctions and
negations.

• However we can derive disjunctions of negations of atoms.

Reasoning with Horn Clauses

• We can use our previous top-down and bottom-up reasoners
with Horn clauses.

• If KB |= false then KB is inconsistent.
Example: KB = {false ⇐ a., a.}.

• If the KB is consistent, then to derive (positive) atoms we can
ignore integrity constraints. (Why?)

• However, we can exploit HC reasoning, as discussed next.

Assumption-Based Reasoning

The addition of integrity constraints seems minor; however it turns
out to be a powerful tool.

• In many activities it is useful to know that some combination
of truths are incompatible.

• Here we give an example in diagnosis.

• We will use the circuit example of the previous section.
• Previously, given inputs, we could predict outputs.
• For diagnosis, we may be given inputs, but the outputs may

not have the expected values.
• In this case we would like to prove what could be wrong with

the circuit.

Assumption-Based Reasoning

• Define the assumables to be the atoms which we could accept
as part of a (disjunctive) answer.
• Intuitively, assumables are things that we want to assume are

true, if consistently possible.
• In the circuit example, we will assume that a gate is not

broken, where possible.

• If T is a set of clauses, a conflict of T is a set of assumables
that, given T , imply false.
• I.e. C = {c1, . . . , cr} is a conflict if

T |= false ⇐ c1 ∧ · · · ∧ cr that is, T |= ¬c1 ∨ · · · ∨¬cr .

Assumption-Based Reasoning

• A minimal conflict is a conflict s.t. no subset is a conflict.

• Example:

T2 = {false ⇐ a ∧ b, a⇐ c , b ⇐ d , b ⇐ e}

• In T2, if {c , d , e} are the assumables, then {c , d} and {c, e}
are minimal conflicts.

Consistency-Based Diagnosis

Consider our circuit example from before.

• For the clauses involving how gates work, we add a predicate
ok expressing that the gate is working.

• For and gates we have:

value(out(D), on) ⇐ gate(D, and) ∧ ok(D)

∧ value(in(1,D), on)

∧ value(in(2,D), on).

value(out(D), off)⇐ gate(D, and)∧ok(D)∧value(in(1,D), off).

value(out(D), off)⇐ gate(D, and)∧ok(D)∧value(in(2,D), off).

Example

• ok(D) will be assumable.

• We add the clause

false ⇐ value(X , on) ∧ value(X , off).

• Given a set of observations (input and output) we want to ask
whether there is a gate that is not ok:

? ¬ok(D)

Example

• We test our circuit by giving it the following inputs.
value(in(1, adder), on),
value(in(2, adder), off),
value(in(3, adder), on),

value(out(1, adder), on),
value(out(2, adder), off).

+ With these values, the circuit cannot be operating correctly.

Example

• There are two minimal conflicts:
{ok(x1), ok(x2)}
{ok(x1), ok(a2), ok(o1)}

• Hence:
• (At least) one of the exclusive-or gates is faulty.
• One of the gates x1, a2, o1 is faulty.

• We can distribute the answers to get the logically equivalent
result:

¬ok(x1) ∨ (¬ok(x2) ∧ ¬ok(a2)) ∨ (¬ok(x2) ∧ ¬ok(o1)).

• Each conjunction in this disjunction is called a diagnosis.

Implementation: Bottom-up algorithm

The bottom-up implementation is an augmentation of the
bottom-up algorithm presented earlier.

• The conclusion is a set of pairs 〈a,A〉 where a is an atom and
A is a set of assumables that together with the rules imply a.

• Initially the conclusion set C is {〈a, {a}〉 | a is assumable}.
• Rules can be used to form new conclusions:

If there is a rule

h⇐ b1 ∧ · · · ∧ bm

such that for each i there is Ai such that 〈bi ,Ai 〉 ∈ C ,
then add 〈h,A1 ∪ · · · ∪ Am〉 to C .

• If we generate 〈false,A〉, the assumptions in A form a conflict.
• So if A = {a1, . . . , ak} then T |= ¬a1 ∨ · · · ∨ ¬ak .

A Bottom-up Procedure

First, we get rid of variables by grounding all rules.

• Each rule is replaced by the set of its ground instances.

• We can do this here since we have a finite domain.

A Bottom-up Procedure

Algorithm:

C := {〈a, {a}〉 | a is assumable};
repeat

choose r ∈ T such that
r is ‘h⇐ b1 ∧ · · · ∧ bm’
〈bi ,Ai 〉 ∈ C for all i , and
A = A1 ∪ · · · ∪ Am and
〈h,A〉 6∈ C ;

C := C ∪ {〈h,A〉}

until no more choices

Example:

• Assume we have three and-gates, where the outputs from a1
and a2 are connected to the inputs of a3.

• We observe that inputs on/off /on/on give output on.

• Initially C has the value:
{ 〈ok(a1), {ok(a1)}〉,
〈ok(a2), {ok(a2)}〉,
〈ok(a3), {ok(a3)}〉 }

Example

• The following shows a possible sequence of values added to C :
〈value(in(2, a1), off), {}〉
〈gate(a1, and), {}〉
〈ok(a1), {ok(a1)}〉
〈value(out(a1), off), {ok(a1)}〉
〈connected(out(a1), in(1, a3)), {}〉
〈value(in(1, a3), off), {ok(a1)}〉
〈gate(a3, and), {}〉
〈ok(a3), {ok(a3)}〉
〈value(out(a3), off), {ok(a1), ok(a3)}〉
〈value(out(a3), on), {}〉
〈false, {ok(a1), ok(a3)}〉

• Thus we can prove ¬ok(a1) ∨ ¬ok(a3).

Extending the Basic Approach II:
Negation as Failure

• We can distinguish two types of “negative” situations with
respect to trying to prove a query G :
• We are able to show that ¬G holds.
• We are unable to show that G holds.

• Sometimes for the second case we want to assume that G is
in fact false.

• This is known as negation as (finite) failure (naf).

Negation as Failure

• With our rule-based approach, we can justify naf if we assume
that our rules express all knowledge about an atom.

• In this case, we can just store what is true, and so if we
cannot derive something, it must be false.
+ This is exactly the assumption made by relational

databases.

• Thus an atom is false if none of the bodies implying the atom
is true.

The Complete Knowledge Assumption

• For the ground case, consider where we have rules for atom a:

a⇐ b1

· · ·
a⇐ bn

• The Complete Knowledge Assumption says that if a is true
then it must have been derived by one of the bi ’s.

• Hence one of the bi must be true.

• I.e. a⇒ b1 ∨ · · · ∨ bn,
and thus

a⇔ b1 ∨ · · · ∨ bn.

• This is called the completion of a.

The Complete Knowledge Assumption

• For example, if
student ⇐ grad
student ⇐ ugrad

then the completion is:
student ⇔ grad ∨ ugrad .

• We won’t go into it here, but this leads to a semantic account
of the complete knowledge assumption (and negation as
failure) known as the Clark completion.

Implementation: Fitting Operator

• The bottom-up implementation incorporating naf is an
extension of the procedure for definite clauses.
• We now allow literals of the form ∼p in the bodies of rules.
• ∼p expresses that p finitely fails.

• I.e. ∼p holds if we are unable to show that p holds.

• Can also add atoms of the form ∼p to the set C of
consequences.

• From the complete knowledge assumption we have that:
• The head atom of a rule must be true if the rule’s body is true.
• An atom p must be false if the body of each rule having p as a

head is false.

• This leads to a three-valued model, in which atoms may be
true, false, or undetermined.

• The Fitting operator can be implemented to run in linear time.

Implementation: Fitting Operator

• The bottom-up implementation incorporating naf is an
extension of the procedure for definite clauses.
• We now allow literals of the form ∼p in the bodies of rules.
• ∼p expresses that p finitely fails.

• I.e. ∼p holds if we are unable to show that p holds.

• Can also add atoms of the form ∼p to the set C of
consequences.

• From the complete knowledge assumption we have that:
• The head atom of a rule must be true if the rule’s body is true.
• An atom p must be false if the body of each rule having p as a

head is false.

• This leads to a three-valued model, in which atoms may be
true, false, or undetermined.

• The Fitting operator can be implemented to run in linear time.

Example Rules

p ⇐ q ∧ ∼r
p ⇐ s
q ⇐ ∼s
r ⇐ ∼t
t
s ⇐ w

A Bottom-up Procedure:
C := {};
repeat

either
choose r ∈ A such that

r is ‘h⇐ b1 ∧ · · · ∧ bm’
bi ∈ C for all i , and
h 6∈ C ;

C := C ∪ {h}
or

choose h such that for every rule
h⇐ b1 ∧ · · · ∧ bm

either for some bi we have ∼bi ∈ C
or some bi = ∼g and g ∈ C

C := C ∪ {∼h}
until no more choices

Example

• Consider:
p ⇐ q ∧ ∼r
p ⇐ s
q ⇐ ∼s
r ⇐ ∼t
t
s ⇐ w

• The following is a sequence of atoms added to C :

t,∼r ,∼w ,∼s, q, p.

Top-down Procedure

The top-down procedure proceeds by negation as finite failure.

• Consider:

a⇐ b1
...
a⇐ bn

• If we try to prove each bi and fail each time, we can conclude
that each bi is false, and so is a.

• See a text on logic programming for more.

Logic in Databases: Datalog

• Datalog is a database query language based on definite
clauses with negation as failure.

• A Datalog program consists of a finite set of facts and rules.

• Facts are assertions about the world, such as “John is the
father of Harry”.

• Rules allow us to deduce facts from other facts.

E.g. “If X is a parent of Y and if Y is a parent of Y , then X
is a grandparent of Y ”.

“Pure” Datalog: Syntax

• Facts and rules are represented as definite clauses of the form

L0 ⇐ L1, . . . , Ln

where
• each Li is a literal of the form P(t1, . . . , tk)
• such that P is a predicate symbol and the ti are terms.
• and a term is either a constant or a variable.

+ So no functions

• E.g. gp(Z ,X)⇐ par(Y ,X), par(Z ,Y)

• The left-hand side of a Datalog clause is called its head and
the right-hand side is called its body.

• Clauses with an empty body represent facts.

Datalog and Relational Databases

Consider two sets of clauses:
• Extensional database (EDB): Set of relations (ground facts)

stored in the database.
• Corresponds to a standard relational database instance

• Intentional database (IDB): A set of rules where the head
does not appear in the EDB.
• The IDB represents derived relations.
• Can be thought of as views.

Pure and Extended Datalog

• “Datalog” has slightly different meanings depending on the
reference.

• Pure Datalog is the language where rules are composed of
positive (EDB and IDB) predicates only.
• The standard or extended version of Datalog adds:

• Built-in special predicate symbols such as
>, <, ≥, ≤, =, 6=.

• These symbols can occur only in the body of a rule.
• E.g. X < 100, X + Y + 5 > Z

• Negation as failure.
• ∼ can precede any predicate symbol in the body of a rule.
• E.g. Ugrad(X)⇐ St(X), ∼Grad(X)

• We’ll henceforth deal with the extended version.

Examples

ExpProduct(X) ⇐ Product(X ,C ,P), P > 1000

BritProduct(X) ⇐ Product(X ,C ,P), Company(C , “UK ′′)

StrictAbove(X ,Y) ⇐ Above(X ,Y), ∼On(X ,Y)

Safety

• A safe Datalog program should always have a finite output
• I.e., the relations defined by a Datalog program must be finite.

• A program P is safe if, for every rule in P:
Every variable that appears anywhere in the query must
appear also in a relational, nonnegated atom in the body
of the query.

• Unsafe rules:
• Q(X ,Y ,Z)⇐ R(X ,Y)
• Q(X ,Y ,Z)⇐ R(X ,Y), X < Z
• Q(X ,Y ,Z)⇐ R(X ,Y), ∼S(X ,Y ,Z)

+ In each case an infinity of Z ’s can satisfy the rule, even
though R and S are finite relations.

Safety

• A safe Datalog program should always have a finite output
• I.e., the relations defined by a Datalog program must be finite.

• A program P is safe if, for every rule in P:
Every variable that appears anywhere in the query must
appear also in a relational, nonnegated atom in the body
of the query.

• Unsafe rules:
• Q(X ,Y ,Z)⇐ R(X ,Y)
• Q(X ,Y ,Z)⇐ R(X ,Y), X < Z
• Q(X ,Y ,Z)⇐ R(X ,Y), ∼S(X ,Y ,Z)

+ In each case an infinity of Z ’s can satisfy the rule, even
though R and S are finite relations.

Safety

• A safe Datalog program should always have a finite output
• I.e., the relations defined by a Datalog program must be finite.

• A program P is safe if, for every rule in P:
Every variable that appears anywhere in the query must
appear also in a relational, nonnegated atom in the body
of the query.

• Unsafe rules:
• Q(X ,Y ,Z)⇐ R(X ,Y)
• Q(X ,Y ,Z)⇐ R(X ,Y), X < Z
• Q(X ,Y ,Z)⇐ R(X ,Y), ∼S(X ,Y ,Z)

+ In each case an infinity of Z ’s can satisfy the rule, even
though R and S are finite relations.

Datalog as a Database Query Language

Example:
Find employees participating in projects that don’t involve their
department heads:

X : Employee P: Project
H: Department head N: Department

EmpInv(X ,P,H)⇐ Proj(P,X), Empl(X ,N), Dept(N,H)

DHInv(X ,P,H)⇐ Proj(P,H), Empl(X ,N), Dept(N,H)

Answer(X)⇐ EmpInv(X ,P,H), ∼DHInv(X ,P,H).

Datalog as a Database Query Language

Example:
Find employees participating in projects that don’t involve their
department heads:

X : Employee P: Project
H: Department head N: Department

EmpInv(X ,P,H)⇐ Proj(P,X), Empl(X ,N), Dept(N,H)

DHInv(X ,P,H)⇐ Proj(P,H), Empl(X ,N), Dept(N,H)

Answer(X)⇐ EmpInv(X ,P,H), ∼DHInv(X ,P,H).

From Relational Algebra to Datalog

Selection: σX>10(R)

Result(X ,Y)⇐ R(X ,Y), X > 10

Projection: ΠX ,Y (R)

Result(X ,Y)⇐ R(X ,Y ,Z)

Cartesian Product: R × T

Result(X ,Y ,Z ,W)⇐ R(X ,Y), T (Z ,W)

Natural Join: R ./ T

Result(X ,Y ,Z)⇐ R(X ,Y), T (Y ,Z)

Theta Join: R ./R.X>T .Z T

Result(X ,Y ,Z ,W)⇐ R(X ,Y), T (Z ,W), X > Z

From Relational Algebra to Datalog

Selection: σX>10(R)

Result(X ,Y)⇐ R(X ,Y), X > 10

Projection: ΠX ,Y (R)

Result(X ,Y)⇐ R(X ,Y ,Z)

Cartesian Product: R × T

Result(X ,Y ,Z ,W)⇐ R(X ,Y), T (Z ,W)

Natural Join: R ./ T

Result(X ,Y ,Z)⇐ R(X ,Y), T (Y ,Z)

Theta Join: R ./R.X>T .Z T

Result(X ,Y ,Z ,W)⇐ R(X ,Y), T (Z ,W), X > Z

From Relational Algebra to Datalog

Selection: σX>10(R)

Result(X ,Y)⇐ R(X ,Y), X > 10

Projection: ΠX ,Y (R)

Result(X ,Y)⇐ R(X ,Y ,Z)

Cartesian Product: R × T

Result(X ,Y ,Z ,W)⇐ R(X ,Y), T (Z ,W)

Natural Join: R ./ T

Result(X ,Y ,Z)⇐ R(X ,Y), T (Y ,Z)

Theta Join: R ./R.X>T .Z T

Result(X ,Y ,Z ,W)⇐ R(X ,Y), T (Z ,W), X > Z

From Relational Algebra to Datalog

Selection: σX>10(R)

Result(X ,Y)⇐ R(X ,Y), X > 10

Projection: ΠX ,Y (R)

Result(X ,Y)⇐ R(X ,Y ,Z)

Cartesian Product: R × T

Result(X ,Y ,Z ,W)⇐ R(X ,Y), T (Z ,W)

Natural Join: R ./ T

Result(X ,Y ,Z)⇐ R(X ,Y), T (Y ,Z)

Theta Join: R ./R.X>T .Z T

Result(X ,Y ,Z ,W)⇐ R(X ,Y), T (Z ,W), X > Z

From Relational Algebra to Datalog

Selection: σX>10(R)

Result(X ,Y)⇐ R(X ,Y), X > 10

Projection: ΠX ,Y (R)

Result(X ,Y)⇐ R(X ,Y ,Z)

Cartesian Product: R × T

Result(X ,Y ,Z ,W)⇐ R(X ,Y), T (Z ,W)

Natural Join: R ./ T

Result(X ,Y ,Z)⇐ R(X ,Y), T (Y ,Z)

Theta Join: R ./R.X>T .Z T

Result(X ,Y ,Z ,W)⇐ R(X ,Y), T (Z ,W), X > Z

From Relational Algebra to Datalog II

Intersection: R(X ,Y) ∩ T (X ,Y)

Result(X ,Y)⇐ R(X ,Y), T (X ,Y)

Union: R(X ,Y) ∪ T (X ,Y)

Result(X ,Y)⇐ R(X ,Y)
Result(X ,Y)⇐ T (X ,Y)

Difference: R(X ,Y)− T (X ,Y)

Result(X ,Y)⇐ R(X ,Y), ∼T (X ,Y)

From Relational Algebra to Datalog II

Intersection: R(X ,Y) ∩ T (X ,Y)

Result(X ,Y)⇐ R(X ,Y), T (X ,Y)

Union: R(X ,Y) ∪ T (X ,Y)

Result(X ,Y)⇐ R(X ,Y)
Result(X ,Y)⇐ T (X ,Y)

Difference: R(X ,Y)− T (X ,Y)

Result(X ,Y)⇐ R(X ,Y), ∼T (X ,Y)

From Relational Algebra to Datalog II

Intersection: R(X ,Y) ∩ T (X ,Y)

Result(X ,Y)⇐ R(X ,Y), T (X ,Y)

Union: R(X ,Y) ∪ T (X ,Y)

Result(X ,Y)⇐ R(X ,Y)
Result(X ,Y)⇐ T (X ,Y)

Difference: R(X ,Y)− T (X ,Y)

Result(X ,Y)⇐ R(X ,Y), ∼T (X ,Y)

Expressivity

• Datalog, as we’ve used it so far, is as expressive as the
relational algebra.
• So Datalog can be used as a query language in a relational DB.

• If we include recursive definitions (next slide), it is more
expressive than the relational algebra.
• However, still not Turing complete.

Recursive Datalog

• E.g. Can define the notion of a path in a graph by:
Path(X ,Y)⇐ Edge(X ,Y)
Path(X ,Y)⇐ Path(X ,Z), Edge(Z ,Y)

• This corresponds with transitive closure, which cannot be
expressed in first-order logic.

• There may be problems with recursion when combined with
negation as failure.

• Example:
P(X)⇐ R(X), ∼Q(X)
Q(X)⇐ R(X), ∼P(X)

Recursive Datalog

• E.g. Can define the notion of a path in a graph by:
Path(X ,Y)⇐ Edge(X ,Y)
Path(X ,Y)⇐ Path(X ,Z), Edge(Z ,Y)

• This corresponds with transitive closure, which cannot be
expressed in first-order logic.

• There may be problems with recursion when combined with
negation as failure.

• Example:
P(X)⇐ R(X), ∼Q(X)
Q(X)⇐ R(X), ∼P(X)

Solution: Stratified Datalog Programs

• A Datalog program P is stratified if
• there is an assignment str of integers 0, 1, . . . to the predicates

p of P such that for each clause r in P the following holds:

If p is the predicate in the head of r and
q a predicate in the body of r , then
• str(p) ≥ str(q) if q is positive, and
• str(p) > str(q) if q is negative.

• Example:
• SignalError ⇐ ValveClosed , ∼Signal1

SignalError ⇐ PressureLoss, ∼Signal2
SignalError ⇐ Overheat, ∼Signal3
CheckSensors ⇐ SignalError

• Assign 1 to CheckSensors, SignalError and 0 to other atoms.
+ Stratification condition is satisfied.

Solution: Stratified Datalog Programs

• A Datalog program P is stratified if
• there is an assignment str of integers 0, 1, . . . to the predicates

p of P such that for each clause r in P the following holds:

If p is the predicate in the head of r and
q a predicate in the body of r , then
• str(p) ≥ str(q) if q is positive, and
• str(p) > str(q) if q is negative.

• Example:
• SignalError ⇐ ValveClosed , ∼Signal1

SignalError ⇐ PressureLoss, ∼Signal2
SignalError ⇐ Overheat, ∼Signal3
CheckSensors ⇐ SignalError

• Assign 1 to CheckSensors, SignalError and 0 to other atoms.
+ Stratification condition is satisfied.

Stratified Datalog Evaluation Algorithm

• Evaluate the lowest-stratum IDB predicates first

• Once evaluated, treat them as EDB

• Continue with next stratum, etc.

More on Stratification

Relation R depends on relation S if a rule with R in the head

• contains S in the body, or

• contains a predicate that depends on S in the body.

A relation R depends negatively on S if a rule with R in the head

• contains ∼S in the body, or

• contains a predicate that depends negatively on S in the body.

More on Stratification

Relation R depends on relation S if a rule with R in the head

• contains S in the body, or

• contains a predicate that depends on S in the body.

A relation R depends negatively on S if a rule with R in the head

• contains ∼S in the body, or

• contains a predicate that depends negatively on S in the body.

More on Stratification: Definition

A stratified program is one that can be divided into strata
according to the algorithm:

• Stratum 0 contains relations that don’t depend on any other
relation.
• Stratum 1 contains relations that

• depend only on relations in stratum 0 or 1 or
• depend negatively only on relations in stratum 0.

• In general, stratum i contains relations that
• depend only on relations in stratum i or less.
• depend negatively only on relations in stratum (i − 1) or less.

This is exploited by the evaluation algorithm, which works stratum
by stratum.
+ A relation ∼R in the body is not a problem, since R has been

completely evaluated when it is encountered.

More on Stratification: Definition

A stratified program is one that can be divided into strata
according to the algorithm:

• Stratum 0 contains relations that don’t depend on any other
relation.
• Stratum 1 contains relations that

• depend only on relations in stratum 0 or 1 or
• depend negatively only on relations in stratum 0.

• In general, stratum i contains relations that
• depend only on relations in stratum i or less.
• depend negatively only on relations in stratum (i − 1) or less.

This is exploited by the evaluation algorithm, which works stratum
by stratum.
+ A relation ∼R in the body is not a problem, since R has been

completely evaluated when it is encountered.

Extending the Basic Approach III:
Disjunctive Knowledge

• We extend the Horn clause language to allow full disjunctive
and negative knowledge.

• E.g. if I know that either a friend or her spouse is picking me
up at the airport, then I know that I have a ride, without
knowing who will pick me up.

• We also allow the direct statement of negative information,
rather than via negation as failure.

Disjunctive Knowledge and Negation as
Failure

• Disjunctive knowledge is incompatible with negation as failure.

• E.g. Given a ∨ b we can’t prove a, and so can assume ¬a, and
similarly for b.

• However ¬a, ¬b is inconsistent with the original sentence.

Disjunctive Knowledge and Negation as
Failure

• Disjunctive knowledge is incompatible with negation as failure.

• E.g. Given a ∨ b we can’t prove a, and so can assume ¬a, and
similarly for b.

• However ¬a, ¬b is inconsistent with the original sentence.

Disjunctive Knowledge and Negation as
Failure

• Disjunctive knowledge is incompatible with negation as failure.

• E.g. Given a ∨ b we can’t prove a, and so can assume ¬a, and
similarly for b.

• However ¬a, ¬b is inconsistent with the original sentence.

Syntax

• We add the following to our language:
• A literal is an atom or the negation of an atom.
• A clause has the form

L1 ∨ · · · ∨ Lk ⇐ Lk+1 ∧ · · · ∧ Ln

where the Li are literals.

• So for a clause,
• if k = 1 and all the literals are atoms we have a definite clause.
• if k = n we have a disjunction of literals.

• This has the same expressive power as propositional logic, but
is syntactically restricted.

Semantics

• The meaning of clauses is as expected, with the standard
account for ¬ and ∨.
• Note that we can “move” literals over the ⇐ sign.

• I.e. we can “swap” a literal over the ⇐ if we negate it.
• Thus p ∨ q ⇐ r ∧ ¬s is equivalent to

p ⇐ ¬q ∧ r ∧ ¬s which is equivalent to
p ∨ ¬r ⇐ ¬q ∧ ¬s

• Hence any set of formulas in propositional logic can be
written as a set of formulas of the form

P1 ∨ · · · ∨ Pk ⇐ Pk+1 ∧ · · · ∧ Pn

where each Pi is an atom.

Semantics

• The normal form of a general clause is an equivalent clause
with no literals on the right hand side of the ⇐ sign.
• That is, the normal form of

L1 ∨ · · · ∨ Lk ⇐ Lk+1 ∧ · · · ∧ Ln

is
L1 ∨ · · · ∨ Lk ∨ ¬Lk+1 ∨ · · · ∨ ¬Ln ⇐

• Then the ⇐ can be omitted.

• Our notion of a query and an answer remain the same.
• So, an answer answer means that for some ~X , answer(~X) is a

logical consequence of the clause set C .

Example: Extended Circuit Diagnosis

• With the circuit diagnosis problem, there are some things that
require disjunction.

• One is the single fault assumption, that says that there is only
a single fault in the system.
• This assumption allows some control over the combinatorial

explosion of possible diagnoses.
• It generalises to the n-fault assumption, for fixed n.

• For our circuit example we can express the single fault
assumption as

ok(G1)⇐ ¬ok(G2) ∧ G1 6= G2.

• For the adder example, if inputs were on/off /on, and outputs
on/off , we could prove that there is only one fault, ¬ok(x1).

Example: Extended Circuit Diagnosis

• Another way to reduce the combinatorial explosion of
possibilities is to assume that gates break down in a limited
number of ways.

• This is the limited failure assumption.

• For example we might assume that a gate can only be ok or
stuck on or stuck off :

ok(G)⇐ ¬stuckOn(G) ∧ ¬stuckOff (G)
val(out(G), on)⇐ stuckOn(G)
val(out(G), off)⇐ stuckOff (G)

	Beyond Definite Knowledge
	Integrity Constraints and Horn Clauses
	Assumption-Based Reasoning
	Implementation
	Negation as Failure
	Fitting Operator
	Logic in Databases: Datalog
	Disjunction and Negation

