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Introduction

Description logics

e A DL is a formalism for expressing concepts, their attributes
(or associated roles), and the relationships between them.

® E.g. Person could be a concept and a role could be ParentOf.

® Can be regarded as a KR system based on a structured
representation of knowledge.

® Most DLs are fragments of FOL, written in a distinct syntax.

Predecessors of DLs
® Semantic networks of the 70s

® Frame-based systems



Why Description Logics?

Ideal Al case:

Approaches have scientific (logical) and engineering aspects
Scientific: Analyse the problem formally and in detail
Engineering: Get something working quickly and efficiently

Success: .
When these two approaches coincide — efficient implemen-

tations of (formally) well-understood systems.

Description Logic research has (arguably) reached this point



Background: Concepts, Roles, Constants

In a description logic, there are sentences that will be true or
false (as in FOL).

® These are restricted to subsumption and instance assertions.
In addition, there are three sorts of expressions that act like
nouns and noun phrases in English:

® Concepts are like category nouns: Person, Female,
GraduateStudent
® Roles are like relational nouns: AgeOf, ParentOf, AreaOfStudy

® Specify attributes of concepts and their types
® (Constants are like proper nouns: John, Mary

These correspond to unary predicates, binary predicates and
constants (respectively) in FOL.

Unlike in FOL, concepts need not be atomic and can have
structure.



DL Knowledge Bases

A KB in a DL contains two parts:
® Define terminology: TBox
® Like definitions, or partial definitions
® Eg. MWD = Mother MY ParentOf .—~Female
Mother C Female
® Give assertions: ABox
* E.g. MWD(sue).



DL Knowledge Bases: TBox

Main components of the TBox:
® (Concepts: classes of individuals
® E.g. Mother



DL Knowledge Bases: TBox

Main components of the TBox:
® (Concepts: classes of individuals
® E.g. Mother
® Roles: binary relations between individuals
® E.g. ParentOf



DL Knowledge Bases

Main components of the TBox:
® (Concepts: classes of individuals
® E.g. Mother
® Roles: binary relations between individuals
® E.g. ParentOf
e Complex concepts using constructors

® E.g. VParentOf .—~Female
Mother MV ParentOf .~ Female

- TBox



DL Knowledge Bases

Main components of the TBox:
® (Concepts: classes of individuals
® E.g. Mother
® Roles: binary relations between individuals
® E.g. ParentOf
e Complex concepts using constructors
® E.g. VParentOf .—~Female
Mother 1Y ParentOf .—Female
® Assertions concerning complex concepts

® Eg. MWD = Mother MY ParentOf .—~Female
Mother T Female

- TBox



DL Knowledge Bases: ABox

ABox: Assertions that individuals satisfy certain concepts and
roles.

® Think of as a simple relational database.
® E.g. MWD(Mary), ParentOf (Mary, John).



DL: Advantages

Well-defined formal semantics.

Known (and often good) complexity characteristics or
implementations.

Relatively easy to specify DL knowledge bases, in a structured
hierarchical fashion.
DLs constitute a large family of approaches.

® (Can tailor a language to a specific application.



Applications

Useful whenever a common vocabulary is important.

Eg.:
® Enhanced database systems
® Dl-Lite
® Medical informatics: SNOMED CT, GALEN
° &L
® Semantic Web

® OWL: W3C recommendation.
® Comes in lots of flavours

1 We'll look at perhaps the most central DL, ALC.
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The Logic ALC

An ALC KB contains two parts:
® Define terminology: TBox
® Give assertions: ABox
Main components of the TBox:
® Concepts: Represent classes of individuals
® Roles: Represent binary relations between individuals
® Complex concepts using constructors
Examples:
® Concept names: Person, Female
® Role names: ParentOf, HasHusband

¢ Individual names (in the ABox): John, Mary
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The Logic ALC: Language

Logical symbols:
® Propositional constructors: 1, LI, =

® QOther restrictions: V, 3
® Note: These are different from quantifiers as seen in FOL

e T, 1L
Nonlogical symbols:
® Concept names
® Role names
Concept construction
® |Let C and D be concepts and R a role.
e —~C, CnD, CuUD are concepts.
® VR.C, 3R.C are concepts.
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Let

The Logic ALC: Language

C and D be concepts and R a role.
C stands for a concept or set of individuals.

—C stands for the concept of things that are not a C.

C 1 D is the concept of things that are both C and D.
® E.g. Femalel Human

C U D is the concept of things that are either C or D or both.
® E.g Malel Female

VR.C is the concept of things such that all things that are R
related to it are C's.

® E.g. VParentOf.Female: things all of whose children are
female

JR.C is the concept of things such that some thing R related
toitisa C.

® JParentOf .Female: things with a female child
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The Logic ALC: Knowledge Bases

Axioms (assertions) in the TBox:

® Subsumption: C C D where C and D are concepts

® Equivalence axioms: C = D where C and D are concepts

Assertions in the ABox:
® (C(a) where C is a concept and a is an individual name.

® R(a,b) where R is a role name, a and b are individual names.

DL knowledge base:

® Set of TBox statements

e Set of ABox statements



Examples

TBox:

® Person = Animal N Biped

® Woman = PersonTl Female

® Mother = Woman 1 3ParentOf . Person

® Parent = Mother U Father

® Man = Person —-Woman
MotherWithoutDaughter = Mother MY ParentOf .—Female
GrandMother = Woman M 3ParentOf . Parent
ABox:

e GrandMother(Sally)

® (Person M Male)(John)
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Formal Semantics for Concepts and Names
iz Semantically, a DL can be seen as a fragment of FOL
An interpretation is a pair Z = (A, )
® Domain A: non-empty set of objects
e Interpretation function .Z: Maps structures into the domain.
® Recall, Brachman and Levesque write this as Z = (D, /).
Then:

* T maps every concept name A to a subset AL C A

e 7 maps every role name R to a binary relation RZ C A x A

* .~ maps individual names a to elements of A : aZ € A

e TZ = A and 1T = 0.



Semantics for Complex Concepts

Assume C, D are concepts, and R is a role.
(O =an\C
e (CnD)Yf=cCctnD?
e (CubD)yt=ctup?
(
(

VR.C)t = {x |y € C% for every y s.t. (x,y) € RT}
IR.C)T ={x |y € CT for some y s.t. (x,y) € R}



Semantics for Axioms and Assertions

Assume C, D are concepts, R is a role, a and b are individual
names.
Let Z = (A, .T) be an interpretation.

e CC Distruein Ziff Ct C D*

e C=Distruein I iff Ct =D*

e C(a) is true in T iff a¥ € C*

® R(a,b) is true in T iff (a, b?) € R?



Reasoning in ALC

Sentences: Axioms or assertions
7 is a model for a sentence S iff S is true in Z

Z is a model for a DL knowledge base K iff it is a model for
every sentence in K

Models of K are denoted by [K]

S is entailed by K, written K |= S iff [K] C [S]
(l.e. every model of K is a model of S.)



Types of Reasoning in ALC

K a DL knowledge base;

C and D are concepts;

R is a role;

a and b are individual names

e Instance checking: K = C(a) or K = R(a, b)
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Types of Reasoning in ALC

K a DL knowledge base;

C and D are concepts;

R is a role;

a and b are individual names

e Instance checking: K = C(a) or K = R(a, b)

® Subsumption checking: K = CLC D

® Equivalence checking: K = C =D

Consistency (satisfiability) checking: K = T C L
Concept satisfiability: K = CC L

Disjoint concepts: K= CrnDLC L
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Reduction to Consistency Checking

Let b be a new individual

Instance checking:

KkE=C(a) iff Ku{—=C(a)}FTLCL

Subsumption checking:

KE=CCD iff KU{(Cmn-D)b)}=TC.L

Equivalence checking:

K=C=D iff
KU{(Cmn-=D)(b),(-CND)b)}ETLCL

Concept satisfiability:

KECCL iff KU{C(b)}ETLCL

Disjoint concepts:

KECnDC 1L iff KU{(CnD)(b)}ETLECL



Aside: Extensions to ALC

1= There are many other possible constructors that can be added



Aside: Extensions to ALC

1= There are many other possible constructors that can be added
For example:

Extended concepts
® Number restrictions: (<n R.C) and (>n R.C)



Aside: Extensions to ALC

1= There are many other possible constructors that can be added
For example:

Extended concepts

® Number restrictions: (<n R.C) and (>n R.C)
E.g. ParentWithManySons = (>3 ParentOf .Male)
BlendedWine T (>2 GrapeTypeOf.Grape)



Aside: Extensions to ALC

1= There are many other possible constructors that can be added
For example:

Extended concepts

® Number restrictions: (<n R.C) and (>n R.C)
E.g. ParentWithManySons = (>3 ParentOf .Male)
BlendedWine T (>2 GrapeTypeOf.Grape)

® Nominals: Allow individuals in the TBox



Aside: Extensions to ALC

1= There are many other possible constructors that can be added
For example:

Extended concepts

® Number restrictions: (<n R.C) and (>n R.C)
E.g. ParentWithManySons = (>3 ParentOf .Male)
BlendedWine T (>2 GrapeTypeOf.Grape)

® Nominals: Allow individuals in the TBox
E.g. IndianCitizen = Person 1 3CitizenOf .{India}
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Extensions to ALC

Role operators

® |nverse roles: R~ where R is a role
E.g. dManages™.Manager T Project LI Department
GradCourse T Vteaches™.Professor
Role axioms

® Role hierarchy: R C S where R and S are roles
1= So far have just used C for concepts.
E.g. ParentOf T AncestorOf

® Transitive roles: R € Rt where R is a role
E.g. AncestorOf € R*

And lots of others . ..



Extensions to ALC: Semantics

Just for interest:
o (SARCF = {x| l{y € CT | (x,y) € RT}| <n}
o« (2RO ={x| [y e CT|(x,y) € RT} > n}
® Inverse roles: (R™)Y = {(y,x) | (x,y) € RT}
e RLC Sistruein | iff RZ C ST for roles R and S.

® Re R" is truein [ iff
(x,z) € RT whenever (x,y) € RT and (y, z) € R?
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A Tableau Algorithm for ALC
Goal: Show KB = A C B by showing KBU{AM-B} unsatisfiable.

Assume an unfoldable terminology:

® Axioms are of the form AC C and A= C where A is a
concept name.

® For each concept name A, at most one axiom of the form
ALC Cor A= C.
® Axioms are acyclic:
® AL C or A= C directly uses a concept name A; iff A; occurs
in C.
® ALC C or A= C uses a concept name A; iff it directly uses A;
or it directly uses a concept name A, and A, uses Aj.
® ALC C or A= C is acyclic iff it does not use A.

1 Compare with stratification in Datalog



General Method
Show KB |= A C B by showing KB U {A =B} is unsatisfiable.

Try to prove concept (un)satisfiability by constructing a model of
KBU{AM-B}.

® A tableau is a graph representing such a model.

® A set of tableau expansion rules is used to construct the
tableau.

e Either a model is constructed or a contradiction is found.
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At the start:

® Assume an unfoldable terminology.
® Assume that all axioms are of the form P = @

® This can be done by replacing any axiom of the form A C B by
A = BT C where C is a new concept name.
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General Method

At the start:

® Assume an unfoldable terminology.
® Assume that all axioms are of the form P = @

® This can be done by replacing any axiom of the form A C B by
A = BT C where C is a new concept name.

If the query is A C B, first convert to a normal form:
® negate the query to get A —B (to show unsatisfiable);
® unfold the negated query (next slide);

® convert to negation normal form.

1= Once the negated query has been unfolded, the rest of the KB
can be ignored.



Unfolding

To Unfold:

Expand every concept name occurring in the (negated) query.
® |.e. if concept C appears in the query and C = D is in the
KB, replace C by D in the query.
® Recall that for C = D in the KB, C is a concept name and D
is an arbitrary ALC concept expression.
e As well, C is guaranteed to not appear in D or in any later
substitutions.



Negation normal form

Negation normal form:
Move negation in so that it occurs only in front of concept names
e -(CnD) gives =CU-D, and
—(C U D) gives -C M =D

e —JR.C gives YR.=C, and
—VR.C gives 3R.-C

e ——(C gives C



Algorithm

® Use a tree to represent the model being constructed

® Each node x represents an individual, labelled with a set L(x)
of concepts it has to satisfy
® C e L(x) implies x € CT
® Each edge (x, y) represents a pair occurring in the
interpretation of a role, labelled with the role name
* R=L((x,y)) implies (x,y) € RT



To Determine the Satisfiability of a
Concept C

Initialise the tree T with a single node x with L(x) = {C}.

Expand by repeatedly applying a set of expansion rules.

T is fully expanded when none of the rules can be applied.

T contains a clash when, for a node y and a concept D,
L € L(y) or {D,~D} € L(y).

If T can't be expanded without producing a clash, the

concept is unsatisfiable.



Expansion Rules

(M-rule) If (G N G) € L(x) and {Cy, Co} Z L(x) then:
Add C; and G to L(X).
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(M-rule) If (G N G) € L(x) and {Cy, Co} Z L(x) then:
Add C; and G to L(X).

(L-rule) If (G U G) € L(x) and {C1, G} N L(x) = O then:
Add C; to L(x).
If this leads to a clash, go back and add ; to L(x).



Expansion Rules

(M-rule) If (G N G) € L(x) and {Cy, Co} Z L(x) then:
Add C; and G to L(X).
(U-rule) If (G U &) € L(x) and {Cy, G} N L(x) = 0 then:
Add C; to L(x).
If this leads to a clash, go back and add ; to L(x).
(J-rule) If 3R.C € L(x) and there is no y s.t. L((x,y)) =R
and C € L(y) then:

Create a new node y and edge (x,y) with L(y) = C
and L((x,y)) = R.



Expansion Rules

(M-rule) If (G N G) € L(x) and {Cy, Co} Z L(x) then:
Add C; and G to L(X).
(U-rule) If (G U &) € L(x) and {Cy, G} N L(x) = 0 then:
Add C; to L(x).
If this leads to a clash, go back and add ; to L(x).
(J-rule) If 3R.C € L(x) and there is no y s.t. L((x,y)) =R
and C € L(y) then:

Create a new node y and edge (x,y) with L(y) = C
and L((x,y)) = R.
(V-rule) If VR.C € L(x) and there is some y s.t.
L((x,y)) = R and C ¢ L(y) then:
Add C to L(y).



Interpreting a tree T

e |f T contains a clash the concept C is unsatisfiable.

e |f T is fully expanded and clash-free, then C is satisfiable.
® In the second case, construct a model / as follows:

® A={x|xisanodein T}.

e AT ={xe A|Ac L(x)} for all concept names A in C.

* RT ={(x,y) | (x,y) is an edge in T and L((x,y)) = R}.



Termination of the Algorithm

® The M-, L-and 3-rules can only be applied once to a concept
in L(x).

® The V-rule can be applied many times to a given VR.C
expression in L(x), but only once to a given edge (x, y).

e Applying any rule to a concept C extends the labelling with a
concept strictly smaller than C.

1= Therefore the algorithm must terminate.



Tableau Algorithm: Example 1
DL knowledge base:

® vegan = person [ Veats.plant

® vegetarian = person N VYeats.(plants L dairy)

Query: vegan C vegetarian

Convert to:

® vegan 1 —vegetarian is unsatisfiable ?
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® Unfold and normalise vegan M —vegetarian:
person M Veats.plant M (—person LI Jeats.(—plant M —dairy))
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Example 1

® Unfold and normalise vegan M —vegetarian:
person M Veats.plant M (—person LI Jeats.(—plant M —dairy))

e Initialise T to L(x) to contain:
person M Veats.plant M (—person LI Jeats.(—plant M —dairy))

e Apply MM-rule and add to L(x):
{person, Veats.plant, —person Ll Jeats.(—plant M —dairy)}



Example 1

® Apply U-rule to —person LI Jeats.(—plant M —dairy):
Add —person to L(x): Clash
Go back and add Jeats.(—plant M —dairy) to L(x)
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® Apply U-rule to —person LI Jeats.(—plant M —dairy):
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Example 1

® Apply U-rule to —person LI Jeats.(—plant M —dairy):
Add —person to L(x): Clash
Go back and add Jeats.(—plant M —dairy) to L(x)
e Apply 3-rule to Jeats.(—plant M —~dairy):
Create new node y and new edge (x, y):
L(y) = {—plant M —dairy}; L((x,y)) = eats
e Apply V-rule to Veats.plant in L(x) and L((x,y)) = eats:
Add plant to L(y)



Example 1

e Apply M-rule to =plant M —dairy in L(y):
Add {—plant,—dairy} to L(y): Clash



Example 1

e Apply M-rule to =plant M —dairy in L(y):
Add {—plant,—dairy} to L(y): Clash
® Conclusion

® Both applications of the Li-rule lead to clashes
® So vegan 'l —vegetarian is unsatisfiable
® So vegan C vegetarian



Example 2

Query: vegetarian C vegan
Convert to: vegetarian 1 —vegan is satisfiable ?

Unfold and normalise vegetarian [ —vegan:

person M Veats.(plant L dairy) M (—person LI Jeats.—plant)
Initialise T to L(x) to contain:

{person M Yeats.(plant Ul dairy) M (—person LI Jeats.—plant)}



Example 2

e Apply M-rule and add to L(x):
{person, Veats.(plant U dairy), —person LI Jeats.—plant}



Example 2

e Apply M-rule and add to L(x):

{person, Veats.(plant U dairy), —person LI Jeats.—plant}
® Apply L-rule to—person LI deats.—plant:

Add —person to L(x): Clash

Go back and add Jeats.—plant to L(x)



Example 2

e Apply M-rule and add to L(x):

{person, Veats.(plant U dairy), —person LI Jeats.—plant}
® Apply L-rule to—person LI deats.—plant:

Add —person to L(x): Clash

Go back and add Jeats.—plant to L(x)
® Apply 3-rule to deats.—plant:

Create new node y and new edge (x,y)

Ly) = {-plant}; L((x,y)) = eats



Example 2

® Apply V-rule to Veats.(plant U dairy) in L(x) and

L((x,y)) = eats:
Add plant U dairy to L(y)



Example 2

® Apply V-rule to Veats.(plant U dairy) in L(x) and
L((x,y)) = eats:
Add plant LI dairy to L(y)
e Apply L-rule to plant U dairy in L(y):
Add plant to L(y): Clash
Go back and add dairy to L(y)



Example 2

® Apply V-rule to Veats.(plant U dairy) in L(x) and

L((x,y)) = eats:
Add plant U dairy to L(y)

e Apply L-rule to plant U dairy in L(y):
Add plant to L(y): Clash
Go back and add dairy to L(y)

® Conclusion

® No rules are applicable, so T is fully expanded
® So vegetarian 1 —vegan is satisfiable
® So vegetarian I vegan



The Brachman&Levesque DL and ALC

Constructor \ B&L | ALC |
Conj. (AND AB) | AnB

Univ. quant. (ALL R C) VR.C

Exist. quant. JR.C

Unqual. exist. quant. | (EXISTS 1 R) | 3R.T

Number restriction | (EXISTS n R)

Role filler (FILLS R a)

Assertion \ a— C | C(a) |

e F L™ consists of Conj., Univ. quant., and Unqual. exist. quant.
The B&L DL is slightly more general than FL™.

ALC is FL™ plus T, L, and general negation.

The extension to ALC for a role filler would use VR.{a}.
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