Description Logics: \mathcal{ALC}

Outline

Topics:

- 1 Introduction to description logics
- 2 The description logic ALC
- 3 Extensions to ALC
- $oldsymbol{4}$ A tableau algorithm for \mathcal{ALC}

Introduction

Description logics

- A DL is a formalism for expressing *concepts*, their attributes (or associated *roles*), and the *relationships* between them.
 - E.g. *Person* could be a concept and a role could be *ParentOf*.
- Can be regarded as a KR system based on a structured representation of knowledge.
- Most DLs are fragments of FOL, written in a distinct syntax.

Predecessors of DLs

- Semantic networks of the 70s
- Frame-based systems

Why Description Logics?

Ideal AI case:

- Approaches have scientific (logical) and engineering aspects
- Scientific: Analyse the problem formally and in detail
- Engineering: Get something working quickly and efficiently
- Success: When these two approaches coincide – efficient implementations of (formally) well-understood systems.
- Description Logic research has (arguably) reached this point

Background: Concepts, Roles, Constants

- In a description logic, there are sentences that will be true or false (as in FOL).
 - These are restricted to *subsumption* and *instance* assertions.
- In addition, there are three sorts of expressions that act like nouns and noun phrases in English:
 - Concepts are like category nouns: Person, Female, GraduateStudent
 - Roles are like relational nouns: AgeOf, ParentOf, AreaOfStudy
 - Specify attributes of concepts and their types
 - Constants are like proper nouns: John, Mary
- These correspond to unary predicates, binary predicates and constants (respectively) in FOL.
- Unlike in FOL, concepts need not be atomic and can have structure.

DL Knowledge Bases

A KB in a DL contains two parts:

- Define terminology: TBox
 - Like definitions, or partial definitions
- Give assertions: ABox
 - E.g. *MWD*(*sue*).

- Concepts: classes of individuals
 - E.g. Mother

- Concepts: classes of individuals
 - E.g. Mother
- Roles: binary relations between individuals
 - E.g. ParentOf

- Concepts: classes of individuals
 - E.g. Mother
- Roles: binary relations between individuals
 - E.g. ParentOf
- Complex concepts using constructors
 - E.g. ∀ParentOf.¬Female
 Mother □ ∀ParentOf.¬Female

- Concepts: classes of individuals
 - E.g. Mother
- Roles: binary relations between individuals
 - E.g. ParentOf
- Complex concepts using constructors
 - E.g. ∀ParentOf.¬Female
 Mother □ ∀ParentOf.¬Female
- Assertions concerning complex concepts

ABox: Assertions that individuals satisfy certain concepts and roles.

- Think of as a simple relational database.
- E.g. MWD(Mary), ParentOf(Mary, John).

DL: Advantages

- Well-defined formal semantics.
- Known (and often good) complexity characteristics or implementations.
- Relatively easy to specify DL knowledge bases, in a structured hierarchical fashion.
- DLs constitute a large family of approaches.
 - Can tailor a language to a specific application.

Applications

Useful whenever a common vocabulary is important.

E.g.:

- Enhanced database systems
 - DL-Lite
- Medical informatics: SNOMED CT, GALEN
 - EL
- Semantic Web
 - OWL: W3C recommendation.
 - Comes in lots of flavours
- lacksquare We'll look at perhaps the most central DL, \mathcal{ALC} .

The Logic \mathcal{ALC}

An ALC KB contains two parts:

- Define terminology: TBox
- Give assertions: ABox

The Logic \mathcal{ALC}

An \mathcal{ALC} KB contains two parts:

- Define terminology: TBox
- Give assertions: ABox

Main components of the TBox:

- Concepts: Represent classes of individuals
- Roles: Represent binary relations between individuals
- Complex concepts using constructors

Examples:

- Concept names: Person, Female
- Role names: ParentOf, HasHusband
- Individual names (in the ABox): John, Mary

The Logic \mathcal{ALC} : Language

Logical symbols:

- Propositional constructors: □, □, ¬
- Other restrictions: ∀, ∃
 - Note: These are different from quantifiers as seen in FOL
- T, ⊥

The Logic \mathcal{ALC} : Language

Logical symbols:

- Propositional constructors: □, □, ¬
- Other restrictions: ∀, ∃
 - Note: These are different from quantifiers as seen in FOL
- T, ⊥

Nonlogical symbols:

- Concept names
- Role names

The Logic \mathcal{ALC} : Language

Logical symbols:

- Propositional constructors: □, □, ¬
- Other restrictions: ∀, ∃
 - Note: These are different from quantifiers as seen in FOL
- T, ⊥

Nonlogical symbols:

- Concept names
- Role names

Concept construction

- Let C and D be concepts and R a role.
- $\neg C$, $C \sqcap D$, $C \sqcup D$ are concepts.
- $\forall R.C, \exists R.C$ are concepts.

Let C and D be concepts and R a role.

• C stands for a concept or set of individuals.

- C stands for a concept or set of individuals.
- $\neg C$ stands for the concept of things that are not a C.

- C stands for a concept or set of individuals.
- $\neg C$ stands for the concept of things that are not a C.
- $C \sqcap D$ is the concept of things that are both C and D.

- C stands for a concept or set of individuals.
- $\neg C$ stands for the concept of things that are not a C.
- $C \sqcap D$ is the concept of things that are both C and D.
 - E.g. Female

 Human
- $C \sqcup D$ is the concept of things that are either C or D or both.
 - E.g. *Male* ⊔ *Female*

- C stands for a concept or set of individuals.
- $\neg C$ stands for the concept of things that are not a C.
- $C \sqcap D$ is the concept of things that are both C and D.
 - E.g. Female

 Human
- $C \sqcup D$ is the concept of things that are either C or D or both.
 - E.g. Male ⊔ Female
- ∀R.C is the concept of things such that all things that are R related to it are C's.
 - E.g. ∀ParentOf.Female: things all of whose children are female

- C stands for a concept or set of individuals.
- $\neg C$ stands for the concept of things that are not a C.
- $C \sqcap D$ is the concept of things that are both C and D.
- $C \sqcup D$ is the concept of things that are either C or D or both.
 - E.g. Male ⊔ Female
- ∀R.C is the concept of things such that all things that are R related to it are C's.
 - E.g. ∀ParentOf.Female: things all of whose children are female
- ∃R.C is the concept of things such that some thing R related to it is a C.
 - ∃ParentOf.Female: things with a female child

The Logic \mathcal{ALC} : Knowledge Bases

Axioms (assertions) in the TBox:

- Subsumption: $C \sqsubseteq D$ where C and D are concepts
- Equivalence axioms: $C \doteq D$ where C and D are concepts

The Logic \mathcal{ALC} : Knowledge Bases

Axioms (assertions) in the TBox:

- Subsumption: $C \sqsubseteq D$ where C and D are concepts
- Equivalence axioms: $C \doteq D$ where C and D are concepts

Assertions in the ABox:

- C(a) where C is a concept and a is an individual name.
- R(a, b) where R is a role name, a and b are individual names.

The Logic \mathcal{ALC} : Knowledge Bases

Axioms (assertions) in the TBox:

- Subsumption: $C \sqsubseteq D$ where C and D are concepts
- Equivalence axioms: $C \doteq D$ where C and D are concepts

Assertions in the ABox:

- C(a) where C is a concept and a is an individual name.
- R(a, b) where R is a role name, a and b are individual names.

DL knowledge base:

- Set of TBox statements
- Set of ABox statements

Examples

TBox:

- Parent \doteq Mother \sqcup Father

ABox:

- GrandMother(Sally)
- $(Person \sqcap Male)(John)$

Formal Semantics for Concepts and Names

Semantically, a DL can be seen as a fragment of FOL

Formal Semantics for Concepts and Names

Semantically, a DL can be seen as a fragment of FOL

An interpretation is a pair $\mathcal{I} = \langle \Delta, .^{\mathcal{I}} \rangle$

- Domain Δ : non-empty set of objects
- Interpretation function \mathcal{I} : Maps structures into the domain.
- Recall, Brachman and Levesque write this as $\mathcal{I} = \langle D, I \rangle$.

Formal Semantics for Concepts and Names

Semantically, a DL can be seen as a fragment of FOL

An interpretation is a pair $\mathcal{I} = \langle \Delta, .^{\mathcal{I}} \rangle$

- Domain Δ : non-empty set of objects
- Interpretation function \mathcal{I} : Maps structures into the domain.
- Recall, Brachman and Levesque write this as $\mathcal{I} = \langle D, I \rangle$.

Then:

- $.^{\mathcal{I}}$ maps every concept name A to a subset $A^{\mathcal{I}} \subseteq \Delta$
- . $^{\mathcal{I}}$ maps every role name R to a binary relation $R^{\mathcal{I}} \subseteq \Delta imes \Delta$
- $.^{\mathcal{I}}$ maps individual names a to elements of $\Delta: a^{\mathcal{I}} \in \Delta$
- $\top^{\mathcal{I}} = \Delta$ and $\bot^{\mathcal{I}} = \emptyset$.

Semantics for Complex Concepts

Assume C, D are concepts, and R is a role.

- $(\neg C)^{\mathcal{I}} = \Delta \setminus C^{\mathcal{I}}$
- $(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$
- $(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$
- $(\forall R.C)^{\mathcal{I}} = \{x \mid y \in C^{\mathcal{I}} \text{ for every y s.t. } (x,y) \in R^{\mathcal{I}}\}$
- $(\exists R.C)^{\mathcal{I}} = \{x \mid y \in C^{\mathcal{I}} \text{ for some y s.t. } (x,y) \in R^{\mathcal{I}}\}$

Semantics for Axioms and Assertions

Assume C, D are concepts, R is a role, a and b are individual names.

Let $\mathcal{I} = (\Delta, .^{\mathcal{I}})$ be an interpretation.

- $C \sqsubseteq D$ is true in \mathcal{I} iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $C \doteq D$ is true in \mathcal{I} iff $C^{\mathcal{I}} = D^{\mathcal{I}}$
- C(a) is true in \mathcal{I} iff $a^{\mathcal{I}} \in C^{\mathcal{I}}$
- R(a,b) is true in \mathcal{I} iff $(a^{\mathcal{I}},b^{\mathcal{I}})\in R^{\mathcal{I}}$

Reasoning in \mathcal{ALC}

- Sentences: Axioms or assertions
- \mathcal{I} is a *model* for a sentence S iff S is true in \mathcal{I}
- $\mathcal I$ is a model for a DL knowledge base $\mathcal K$ iff it is a model for every sentence in $\mathcal K$
- Models of K are denoted by [K]
- S is entailed by K, written $K \models S$ iff $[K] \subseteq [S]$ (I.e. every model of K is a model of S.)

Types of Reasoning in \mathcal{ALC}

K a DL knowledge base;C and D are concepts;R is a role;a and b are individual names

• Instance checking: $K \models C(a)$ or $K \models R(a,b)$

Types of Reasoning in \mathcal{ALC}

K a DL knowledge base;C and D are concepts;R is a role;

a and b are individual names

• Instance checking: $K \models C(a)$ or $K \models R(a,b)$

• Subsumption checking: $K \models C \sqsubseteq D$

K a DL knowledge base; C and D are concepts; R is a role;

a and b are individual names

• Instance checking: $K \models C(a)$ or $K \models R(a,b)$

• Subsumption checking: $K \models C \sqsubseteq D$

• Equivalence checking: $K \models C \doteq D$

K a DL knowledge base; C and D are concepts; R is a role;

a and b are individual names

- Instance checking: $K \models C(a)$ or $K \models R(a, b)$
- Subsumption checking: $K \models C \sqsubseteq D$
- Equivalence checking: $K \models C \doteq D$
- Consistency (satisfiability) checking: $K \not\models \top \sqsubseteq \bot$

K a DL knowledge base;C and D are concepts;R is a role;

a and b are individual names

- Instance checking: $K \models C(a)$ or $K \models R(a, b)$
- Subsumption checking: $K \models C \sqsubseteq D$
- Equivalence checking: $K \models C \doteq D$
- Consistency (satisfiability) checking: $K \not\models \top \sqsubseteq \bot$
- Concept satisfiability: $K \not\models C \sqsubseteq \bot$

K a DL knowledge base; C and D are concepts; R is a role:

a and b are individual names

- Instance checking: $K \models C(a)$ or $K \models R(a, b)$
- Subsumption checking: $K \models C \sqsubseteq D$
- Equivalence checking: $K \models C \doteq D$
- Consistency (satisfiability) checking: $K \not\models \top \sqsubseteq \bot$
- Concept satisfiability: $K \not\models C \sqsubseteq \bot$
- Disjoint concepts: $K \models C \sqcap D \sqsubseteq \bot$

Let b be a new individual

• Instance checking:

$$K \models C(a)$$
 iff $K \cup {\neg C(a)} \models \top \sqsubseteq \bot$

Let b be a new individual

Instance checking:

$$K \models C(a)$$
 iff $K \cup {\neg C(a)} \models \top \sqsubseteq \bot$

• Subsumption checking:

$$K \models C \sqsubseteq D$$
 iff $K \cup \{(C \sqcap \neg D)(b)\} \models \top \sqsubseteq \bot$

Let b be a new individual

Instance checking:

$$K \models C(a)$$
 iff $K \cup {\neg C(a)} \models \top \sqsubseteq \bot$

• Subsumption checking:

$$K \models C \sqsubseteq D$$
 iff $K \cup \{(C \sqcap \neg D)(b)\} \models \top \sqsubseteq \bot$

• Equivalence checking:

$$K \models C \doteq D$$
 iff $K \cup \{(C \sqcap \neg D)(b), (\neg C \sqcap D)(b)\} \models \top \sqsubseteq \bot$

Let b be a new individual

Instance checking:

$$K \models C(a)$$
 iff $K \cup \{\neg C(a)\} \models \top \sqsubseteq \bot$

• Subsumption checking:

$$K \models C \sqsubseteq D$$
 iff $K \cup \{(C \sqcap \neg D)(b)\} \models \top \sqsubseteq \bot$

• Equivalence checking:

$$K \models C \doteq D \quad \text{iff} \\ K \cup \{(C \sqcap \neg D)(b), (\neg C \sqcap D)(b)\} \models \top \sqsubseteq \bot$$

Concept satisfiability:

$$K \not\models C \sqsubseteq \bot$$
 iff $K \cup \{C(b)\} \not\models \top \sqsubseteq \bot$

Let b be a new individual

Instance checking:

$$K \models C(a)$$
 iff $K \cup \{\neg C(a)\} \models \top \sqsubseteq \bot$

Subsumption checking:

$$K \models C \sqsubseteq D$$
 iff $K \cup \{(C \sqcap \neg D)(b)\} \models \top \sqsubseteq \bot$

Equivalence checking:

$$K \models C \doteq D \quad \text{iff} \\ K \cup \{(C \sqcap \neg D)(b), (\neg C \sqcap D)(b)\} \models \top \sqsubseteq \bot$$

Concept satisfiability:

$$K \not\models C \sqsubseteq \bot$$
 iff $K \cup \{C(b)\} \not\models \top \sqsubseteq \bot$

• Disjoint concepts:

$$K \models C \sqcap D \sqsubseteq \bot$$
 iff $K \cup \{(C \sqcap D)(b)\} \models \top \sqsubseteq \bot$

Aside: Extensions to \mathcal{ALC}

There are many other possible constructors that can be added

Aside: Extensions to \mathcal{ALC}

There are many other possible constructors that can be added For example:

Extended concepts

• Number restrictions: $(\leq n \ R.C)$ and $(\geq n \ R.C)$

Aside: Extensions to ALC

There are many other possible constructors that can be added For example:

Extended concepts

• Number restrictions: $(\le n \ R.C)$ and $(\ge n \ R.C)$ E.g. $ParentWithManySons \doteq (\ge 3 \ ParentOf.Male)$ $BlendedWine \sqsubseteq (\ge 2 \ GrapeTypeOf.Grape)$

Aside: Extensions to ALC

There are many other possible constructors that can be added For example:

Extended concepts

- Number restrictions: $(\le n \ R.C)$ and $(\ge n \ R.C)$ E.g. $ParentWithManySons \doteq (\ge 3 \ ParentOf.Male)$ $BlendedWine \sqsubseteq (\ge 2 \ GrapeTypeOf.Grape)$
- Nominals: Allow individuals in the TBox

Aside: Extensions to ALC

There are many other possible constructors that can be added For example:

Extended concepts

- Number restrictions: $(\le n \ R.C)$ and $(\ge n \ R.C)$ E.g. $ParentWithManySons \doteq (\ge 3 \ ParentOf.Male)$ $BlendedWine \sqsubseteq (\ge 2 \ GrapeTypeOf.Grape)$
- Nominals: Allow individuals in the TBox
 E.g. IndianCitizen

 Person

 ∃CitizenOf.{India}

Role operators

• Inverse roles: R^- where R is a role

Role operators

• Inverse roles: R^- where R is a role

E.g. $\exists Manages^-.Manager \sqsubseteq Project \sqcup Department$ $GradCourse \sqsubseteq \forall teaches^-.Professor$

Role operators

Inverse roles: R⁻ where R is a role
 E.g. ∃Manages⁻.Manager ⊆ Project ⊔ Department
 GradCourse □ ∀teaches⁻.Professor

Role axioms

Role hierarchy: R
 ⊆ S where R and S are roles
 So far have just used
 ⊑ for concepts.

Role operators

• Inverse roles: R^- where R is a role

E.g. $\exists Manages^-.Manager \sqsubseteq Project \sqcup Department$ $GradCourse \sqsubseteq \forall teaches^-.Professor$

Role axioms

• Role hierarchy: $R \sqsubseteq S$ where R and S are roles

So far have just used \sqsubseteq for concepts.

E.g. $ParentOf \sqsubseteq AncestorOf$

Role operators

Inverse roles: R⁻ where R is a role
 E.g. ∃Manages⁻.Manager ⊆ Project ⊔ Department
 GradCourse □ ∀teaches⁻.Professor

Role axioms

- Role hierarchy: $R \sqsubseteq S$ where R and S are roles So far have just used \sqsubseteq for concepts. E.g. $ParentOf \sqsubseteq AncestorOf$
- Transitive roles: $R \in \mathbb{R}^+$ where R is a role

Role operators

Inverse roles: R⁻ where R is a role
 E.g. ∃Manages⁻.Manager ⊆ Project ⊔ Department
 GradCourse □ ∀teaches⁻.Professor

Role axioms

- Role hierarchy: $R \sqsubseteq S$ where R and S are roles So far have just used \sqsubseteq for concepts. E.g. $ParentOf \sqsubseteq AncestorOf$
- Transitive roles: $R \in R^+$ where R is a role E.g. $AncestorOf \in R^+$

And lots of others ...

Extensions to ALC: Semantics

Just for interest:

- $(\leq nR.C)^{\mathcal{I}} = \{x \mid |\{y \in C^{\mathcal{I}} \mid (x,y) \in R^{\mathcal{I}}\}| \leq n\}$
- $(\geq nR.C)^{\mathcal{I}} = \{x \mid |\{y \in C^{\mathcal{I}} \mid (x,y) \in R^{\mathcal{I}}\}| \geq n\}$
- Inverse roles: $(R^-)^{\mathcal{I}} = \{(y, x) \mid (x, y) \in R^{\mathcal{I}}\}$
- $R \sqsubseteq S$ is true in I iff $R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$ for roles R and S.
- $R \in R^+$ is true in I iff $(x,z) \in R^{\mathcal{I}}$ whenever $(x,y) \in R^{\mathcal{I}}$ and $(y,z) \in R^{\mathcal{I}}$

Goal: Show $KB \models A \sqsubseteq B$ by showing $KB \cup \{A \sqcap \neg B\}$ unsatisfiable.

Goal: Show $KB \models A \sqsubseteq B$ by showing $KB \cup \{A \sqcap \neg B\}$ unsatisfiable.

Assume an unfoldable terminology:

Goal: Show $KB \models A \sqsubseteq B$ by showing $KB \cup \{A \sqcap \neg B\}$ unsatisfiable.

Assume an unfoldable terminology:

• Axioms are of the form $A \sqsubseteq C$ and $A \doteq C$ where A is a concept name.

Goal: Show $KB \models A \sqsubseteq B$ by showing $KB \cup \{A \sqcap \neg B\}$ unsatisfiable.

Assume an unfoldable terminology:

- Axioms are of the form A

 C and A

 C where A is a concept name.
- For each concept name A, at most one axiom of the form $A \sqsubseteq C$ or $A \doteq C$.

Goal: Show $KB \models A \sqsubseteq B$ by showing $KB \cup \{A \sqcap \neg B\}$ unsatisfiable.

Assume an unfoldable terminology:

- Axioms are of the form $A \sqsubseteq C$ and $A \doteq C$ where A is a concept name.
- For each concept name A, at most one axiom of the form $A \sqsubseteq C$ or $A \doteq C$.
- Axioms are acyclic:
 - A
 ⊆ C or A
 = C directly uses a concept name A₁ iff A₁ occurs in C.
 - A ⊆ C or A ≐ C uses a concept name A₁ iff it directly uses A₁ or it directly uses a concept name A₂ and A₂ uses A₁.
 - $A \sqsubseteq C$ or $A \doteq C$ is *acyclic* iff it does not use A.
 - Compare with *stratification* in Datalog

Show $KB \models A \sqsubseteq B$ by showing $KB \cup \{A \sqcap \neg B\}$ is unsatisfiable.

Try to prove concept (un)satisfiability by constructing a model of $KB \cup \{A \sqcap \neg B\}$.

- A tableau is a graph representing such a model.
- A set of tableau expansion rules is used to construct the tableau.
- Either a model is constructed or a contradiction is found.

At the start:

- Assume an unfoldable terminology.
- Assume that all axioms are of the form $P \doteq Q$
 - This can be done by replacing any axiom of the form $A \sqsubseteq B$ by $A \doteq B \sqcap C$ where C is a new concept name.

At the start:

- Assume an unfoldable terminology.
- Assume that all axioms are of the form $P \doteq Q$
 - This can be done by replacing any axiom of the form $A \sqsubseteq B$ by $A \doteq B \sqcap C$ where C is a new concept name.

If the query is $A \sqsubseteq B$, first convert to a normal form:

- *negate* the query to get $A \sqcap \neg B$ (to show unsatisfiable);
- unfold the negated query (next slide);
- convert to negation normal form.

At the start:

- Assume an unfoldable terminology.
- Assume that all axioms are of the form $P \doteq Q$
 - This can be done by replacing any axiom of the form $A \sqsubseteq B$ by $A \doteq B \sqcap C$ where C is a new concept name.

If the query is $A \sqsubseteq B$, first convert to a normal form:

- *negate* the query to get $A \sqcap \neg B$ (to show unsatisfiable);
- unfold the negated query (next slide);
- convert to negation normal form.
- Once the negated query has been unfolded, the rest of the KB can be ignored.

Unfolding

To Unfold:

Expand every concept name occurring in the (negated) query.

- I.e. if concept C appears in the query and $C \doteq D$ is in the KB, replace C by D in the query.
- Recall that for $C \doteq D$ in the KB, C is a concept name and D is an arbitrary \mathcal{ALC} concept expression.
- As well, C is guaranteed to not appear in D or in any later substitutions.

Negation normal form

Negation normal form:

Move negation in so that it occurs only in front of concept names

- $\neg(C \sqcap D)$ gives $\neg C \sqcup \neg D$, and $\neg(C \sqcup D)$ gives $\neg C \sqcap \neg D$
- $\neg \exists R.C$ gives $\forall R. \neg C$, and $\neg \forall R.C$ gives $\exists R. \neg C$
- $\neg \neg C$ gives C

Algorithm

- Use a tree to represent the model being constructed
- Each node x represents an individual, labelled with a set L(x) of concepts it has to satisfy
 - $C \in L(x)$ implies $x \in C^{\mathcal{I}}$
- Each edge (x, y) represents a pair occurring in the interpretation of a role, labelled with the role name
 - R = L((x, y)) implies $(x, y) \in R^{\mathcal{I}}$

To Determine the Satisfiability of a Concept C

- Initialise the tree T with a single node x with $L(x) = \{C\}$.
- Expand by repeatedly applying a set of expansion rules.
- *T* is *fully expanded* when none of the rules can be applied.
- T contains a *clash* when, for a node y and a concept D, $\bot \in L(y)$ or $\{D, \neg D\} \subseteq L(y)$.
- If *T* can't be expanded without producing a clash, the concept is unsatisfiable.

Expansion Rules

(\sqcap -rule) If $(C_1 \sqcap C_2) \in L(x)$ and $\{C_1, C_2\} \not\subseteq L(x)$ then: Add C_1 and C_2 to L(x).

Expansion Rules

- (\sqcap -rule) If $(C_1 \sqcap C_2) \in L(x)$ and $\{C_1, C_2\} \not\subseteq L(x)$ then: Add C_1 and C_2 to L(x).
- (\sqcup -rule) If $(C_1 \sqcup C_2) \in L(x)$ and $\{C_1, C_2\} \cap L(x) = \emptyset$ then: Add C_1 to L(x). If this leads to a clash, go back and add C_2 to L(x).

Expansion Rules

- (\sqcap -rule) If $(C_1 \sqcap C_2) \in L(x)$ and $\{C_1, C_2\} \not\subseteq L(x)$ then: Add C_1 and C_2 to L(x).
- (\sqcup -rule) If $(C_1 \sqcup C_2) \in L(x)$ and $\{C_1, C_2\} \cap L(x) = \emptyset$ then: Add C_1 to L(x). If this leads to a clash, go back and add C_2 to L(x).
- (\exists -rule) If $\exists R.C \in L(x)$ and there is no y s.t. L((x,y)) = R and $C \in L(y)$ then: Create a new node y and edge (x,y) with L(y) = C and L((x,y)) = R.

Expansion Rules

- (\sqcap -rule) If $(C_1 \sqcap C_2) \in L(x)$ and $\{C_1, C_2\} \not\subseteq L(x)$ then: Add C_1 and C_2 to L(x).
- (\sqcup -rule) If $(C_1 \sqcup C_2) \in L(x)$ and $\{C_1, C_2\} \cap L(x) = \emptyset$ then: Add C_1 to L(x). If this leads to a clash, go back and add C_2 to L(x).
- (\exists -rule) If $\exists R. C \in L(x)$ and there is no y s.t. L((x,y)) = R and $C \in L(y)$ then: Create a new node y and edge (x,y) with L(y) = C and L((x,y)) = R.
- (\forall -rule) If $\forall R.C \in L(x)$ and there is some y s.t. L((x,y)) = R and $C \notin L(y)$ then: Add C to L(y).

Interpreting a tree T

- If T contains a clash the concept C is unsatisfiable.
- If T is fully expanded and clash-free, then C is satisfiable.
- In the second case, construct a model I as follows:
 - $\Delta = \{x \mid x \text{ is a node in } T\}.$
 - $A^{\mathcal{I}} = \{x \in \Delta \mid A \in L(x)\}$ for all concept names A in C.
 - $R^{\mathcal{I}} = \{(x, y) \mid (x, y) \text{ is an edge in } T \text{ and } L((x, y)) = R\}.$

Termination of the Algorithm

- The □-, □-and ∃-rules can only be applied once to a concept in L(x).
- The \forall -rule can be applied many times to a given $\forall R.C$ expression in L(x), but only once to a given edge (x, y).
- Applying any rule to a concept C extends the labelling with a concept strictly smaller than C.
- Therefore the algorithm must terminate.

Tableau Algorithm: Example 1

DL knowledge base:

- vegan = person □ ∀eats.plant

Query: vegan

□ vegetarian

Convert to:

vegan □ ¬vegetarian is unsatisfiable ?

Unfold and normalise vegan ¬ ¬vegetarian:
 person ¬ ∀eats.plant ¬ ¬dairy))

- Unfold and normalise vegan ¬¬vegetarian:
 person ¬ ∀eats.plant ¬ (¬person ¬ ∃eats.(¬plant ¬¬dairy))
- Initialise T to L(x) to contain: $person \sqcap \forall eats.plant \sqcap (\neg person \sqcup \exists eats.(\neg plant \sqcap \neg dairy))$

- Unfold and normalise vegan ¬ ¬vegetarian:
 person ¬ ∀eats.plant ¬ (¬person ¬ ∃eats.(¬plant ¬ ¬dairy))
- Initialise T to L(x) to contain:
 person □ ∀eats.plant □ (¬person □ ∃eats.(¬plant □ ¬dairy))
- Apply □-rule and add to L(x): {person, ∀eats.plant, ¬person ⊔ ∃eats.(¬plant □ ¬dairy)}

Apply □-rule to ¬person □ ∃eats.(¬plant □ ¬dairy):
 Add ¬person to L(x): Clash
 Go back and add ∃eats.(¬plant □ ¬dairy) to L(x)

- Apply
 □-rule to ¬person □ ∃eats.(¬plant □ ¬dairy):
 Add ¬person to L(x): Clash
 Go back and add ∃eats.(¬plant □ ¬dairy) to L(x)
- Apply \exists -rule to $\exists eats.(\neg plant \sqcap \neg dairy)$: Create new node y and new edge (x, y): $L(y) = \{\neg plant \sqcap \neg dairy\}; L((x, y)) = eats$

- Apply
 □-rule to ¬person □ ∃eats.(¬plant □ ¬dairy):
 Add ¬person to L(x): Clash
 Go back and add ∃eats.(¬plant □ ¬dairy) to L(x)
- Apply \exists -rule to \exists eats. $(\neg plant \sqcap \neg dairy)$: Create new node y and new edge (x, y): $L(y) = \{\neg plant \sqcap \neg dairy\}; L((x, y)) = eats$
- Apply \forall -rule to \forall eats.plant in L(x) and L((x,y)) = eats: Add plant to L(y)

• Apply \sqcap -rule to $\neg plant \sqcap \neg dairy$ in L(y): Add $\{\neg plant, \neg dairy\}$ to L(y): Clash

- Apply ¬rule to ¬plant ¬ ¬dairy in L(y):
 Add {¬plant, ¬dairy} to L(y): Clash
- Conclusion

 - So *vegan* □ ¬*vegetarian* is unsatisfiable

- Query: *vegetarian ⊆ vegan*
- Convert to: *vegetarian* □ ¬*vegan* is satisfiable ?
- Unfold and normalise vegetarian ¬ ¬vegan: person ¬ ∀eats.(plant ⊔ dairy) ¬ (¬person ⊔ ∃eats.¬plant)
- Initialise T to L(x) to contain: $\{person \, \Box \, \forall eats. (plant \, \Box \, dairy) \, \Box \, (\neg person \, \Box \, \exists eats. \neg plant)\}$

• Apply \sqcap -rule and add to L(x): { $person, \forall eats.(plant \sqcup dairy), \neg person \sqcup \exists eats. \neg plant$ }

- Apply ¬-rule and add to L(x): {person, ∀eats.(plant ⊔ dairy), ¬person ⊔ ∃eats.¬plant}
- Apply \sqcup -rule to $\neg person \sqcup \exists eats. \neg plant$: Add $\neg person$ to L(x): Clash Go back and add $\exists eats. \neg plant$ to L(x)

- Apply ¬-rule and add to L(x): {person, ∀eats.(plant ⊔ dairy), ¬person ⊔ ∃eats.¬plant}
- Apply
 □-rule to¬person □ ∃eats.¬plant:
 Add ¬person to L(x): Clash
 Go back and add ∃eats.¬plant to L(x)
- Apply \exists -rule to \exists eats. \neg plant: Create new node y and new edge (x, y) $L(y) = {\neg plant}; L((x, y)) = eats$

• Apply \forall -rule to \forall eats. $(plant \sqcup dairy)$ in L(x) and L((x,y)) = eats: Add $plant \sqcup dairy$ to L(y)

- Apply \forall -rule to \forall eats. $(plant \sqcup dairy)$ in L(x) and L((x,y)) = eats: Add $plant \sqcup dairy$ to L(y)
- Apply
 □-rule to plant
 □ dairy in L(y):
 Add plant to L(y): Clash
 Go back and add dairy to L(y)

- Apply \forall -rule to \forall eats. $(plant \sqcup dairy)$ in L(x) and L((x,y)) = eats: Add $plant \sqcup dairy$ to L(y)
- Apply

 -rule to plant

 dairy in L(y):

 Add plant to L(y): Clash

 Go back and add dairy to L(y)
- Conclusion
 - No rules are applicable, so T is fully expanded
 - So *vegetarian* □ ¬*vegan* is satisfiable

The Brachman&Levesque DL and \mathcal{ALC}

Constructor	B&L	ALC
Conj.	(AND <i>A B</i>)	$A \sqcap B$
Univ. quant.	(ALL <i>R C</i>)	∀R.C
Exist. quant.		∃R.C
Unqual. exist. quant.	(EXISTS 1 R)	∃ <i>R</i> .⊤
Number restriction	(EXISTS n R)	
Role filler	(FILLS R a)	
Assertion	a o C	C(a)

- \mathcal{FL}^- consists of Conj., Univ. quant., and Unqual. exist. quant.
- The B&L DL is slightly more general than \mathcal{FL}^- .
- \mathcal{ALC} is \mathcal{FL}^- plus \top , \bot , and general negation.
- The extension to \mathcal{ALC} for a role filler would use $\forall R.\{a\}$.

References

- Franz Baader, Ian Horrocks, Carsten Lutz, Uli Sattler: An Introduction to Description Logic
- Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, Peter Patel-Schneider (ed.): The Description Logic Handbook
- http://www.inf.unibz.it/~franconi/dl/course/
- http://www.dl.kr.org