Description Logics:

\textit{ALC}
Outline

Topics:
1. Introduction to description logics
2. The description logic ALC
3. Extensions to ALC
4. A tableau algorithm for ALC
Introduction

Description logics

• A DL is a formalism for expressing concepts, their attributes (or associated roles), and the relationships between them.
 • E.g. Person could be a concept and a role could be ParentOf.
• Can be regarded as a KR system based on a structured representation of knowledge.
• Most DLs are fragments of FOL, written in a distinct syntax.

Predecessors of DLs

• Semantic networks of the 70s
• Frame-based systems
Why Description Logics?

Ideal AI case:

- Approaches have scientific (logical) and engineering aspects
- **Scientific**: Analyse the problem formally and in detail
- **Engineering**: Get something working quickly and efficiently
- **Success**: When these two approaches coincide – efficient implementations of (formally) well-understood systems.
- Description Logic research has (arguably) reached this point
Background: Concepts, Roles, Constants

- In a description logic, there are sentences that will be true or false (as in FOL).
 - These are restricted to subsumption and instance assertions.
- In addition, there are three sorts of expressions that act like nouns and noun phrases in English:
 - Concepts are like category nouns: Person, Female, GraduateStudent
 - Roles are like relational nouns: AgeOf, ParentOf, AreaOfStudy
 - Specify attributes of concepts and their types
 - Constants are like proper nouns: John, Mary
- These correspond to unary predicates, binary predicates and constants (respectively) in FOL.
- Unlike in FOL, concepts need not be atomic and can have structure.
A KB in a DL contains two parts:

- Define terminology: **TBox**
 - Like definitions, or partial definitions
 - E.g. \(MWD \models Mother \sqcap \forall ParentOf. \neg Female \)
 \(Mother \sqsubseteq Female \)

- Give assertions: **ABox**
 - E.g. \(MWD(sue) \).
DL Knowledge Bases: TBox

Main components of the TBox:

- **Concepts**: classes of individuals
 - E.g. *Mother*

- **Roles**: binary relations between individuals
 - E.g. *ParentOf*

- **Complex concepts using constructors**
 - E.g. $\forall \text{ParentOf} . \neg \text{Female}$

- **Assertions concerning complex concepts**
 - E.g. $\text{MWD} = \text{Mother} \sqsubseteq \text{Female}$
DL Knowledge Bases: TBox

Main components of the TBox:

- *Concepts*: classes of individuals
 - E.g. *Mother*

- *Roles*: binary relations between individuals
 - E.g. *ParentOf*
Main components of the TBox:

- **Concepts**: classes of individuals
 - E.g. *Mother*

- **Roles**: binary relations between individuals
 - E.g. *ParentOf*

- **Complex concepts** using constructors
 - E.g. $\forall ParentOf. \neg Female$

 $Mother \sqcap \forall ParentOf. \neg Female$
DL Knowledge Bases: TBox

Main components of the TBox:

- **Concepts**: classes of individuals
 - E.g. *Mother*

- **Roles**: binary relations between individuals
 - E.g. *ParentOf*

- **Complex concepts** using constructors
 - E.g. $\forall ParentOf. \neg Female$
 $Mother \sqcap \forall ParentOf. \neg Female$

- **Assertions** concerning complex concepts
 - E.g. $MWD \models Mother \sqcap \forall ParentOf. \neg Female$
 $Mother \sqsubseteq Female$
DL Knowledge Bases: ABox

ABox: Assertions that individuals satisfy certain concepts and roles.

- Think of as a simple relational database.
- E.g. $MWD(Mary)$, $ParentOf(Mary, John)$.
DL: Advantages

- Well-defined formal semantics.
- Known (and often good) complexity characteristics or implementations.
- Relatively easy to specify DL knowledge bases, in a structured hierarchical fashion.
- DLs constitute a large family of approaches.
 - Can tailor a language to a specific application.
Applications

Useful whenever a common vocabulary is important.

E.g.:

- Enhanced database systems
 - \textit{DL-Lite}
- Medical informatics: SNOMED CT, GALEN
 - \mathcal{EL}
- Semantic Web
 - \textit{OWL}: W3C recommendation.
 - Comes in lots of flavours

\HRESULT We’ll look at perhaps the most central DL, \textit{ALC}.
An \mathcal{ALC} KB contains two parts:

- Define terminology: TBox
- Give assertions: ABox
The Logic \mathcal{ALC}

An \mathcal{ALC} KB contains two parts:

- Define terminology: TBox
- Give assertions: ABox

Main components of the TBox:

- Concepts: Represent classes of individuals
- Roles: Represent binary relations between individuals
- Complex concepts using constructors

Examples:

- Concept names: Person, Female
- Role names: ParentOf, HasHusband
- Individual names (in the ABox): John, Mary
The Logic ALC: Language

Logical symbols:

- Propositional constructors: \sqcap, \sqcup, \neg
- Other restrictions: \forall, \exists

 Note: These are different from quantifiers as seen in FOL

- \top, \bot
The Logic \mathcal{ALC}: Language

Logical symbols:
- Propositional constructors: \sqcap, \sqcup, \neg
- Other restrictions: \forall, \exists
 - Note: These are different from quantifiers as seen in FOL
- \top, \bot

Nonlogical symbols:
- Concept names
- Role names
The Logic \mathcal{ALC}: Language

Logical symbols:
- Propositional constructors: \cap, \sqcup, \neg
- Other restrictions: \forall, \exists
 - Note: These are different from quantifiers as seen in FOL
- \top, \bot

Nonlogical symbols:
- Concept names
- Role names

Concept construction
- Let C and D be concepts and R a role.
- $\neg C$, $C \cap D$, $C \sqcup D$ are concepts.
- $\forall R.C$, $\exists R.C$ are concepts.
The Logic \mathcal{ALC}: Language

Let C and D be concepts and R a role.

- C stands for a concept or set of individuals.

- $\neg C$ stands for the concept of things that are not C.

- $C \cap D$ is the concept of things that are both C and D.

- E.g. $\text{Female} \cap \text{Human}$

- $C \cup D$ is the concept of things that are either C or D or both.

- E.g. $\text{Male} \cup \text{Female}$

- $\forall R. C$ is the concept of things such that all things that are R related to it are C's.

- E.g. $\forall \text{ParentOf}. \text{Female}$: things all of whose children are female

- $\exists R. C$ is the concept of things such that some thing R related to it is a C.

- $\exists \text{ParentOf}. \text{Female}$: things with a female child
The Logic \mathcal{ALC}: Language

Let C and D be concepts and R a role.

- C stands for a concept or set of individuals.
- $\neg C$ stands for the concept of things that are not a C.
- $\boxed{C \sqcap D}$ is the concept of things that are both C and D.
 - E.g. $\text{Female } \sqcap \text{Human}$
- $\boxed{C \sqcup D}$ is the concept of things that are either C or D or both.
 - E.g. $\text{Male } \sqcup \text{Female}$
- $\forall R \cdot C$ is the concept of things such that all things that are R related to it are C's.
 - E.g. $\forall \text{ParentOf} \cdot \text{Female}$: things all of whose children are female
- $\exists R \cdot C$ is the concept of things such that some thing R related to it is a C.
 - $\exists \text{ParentOf} \cdot \text{Female}$: things with a female child
Let \(C \) and \(D \) be concepts and \(R \) a role.

- \(C \) stands for a concept or set of individuals.
- \(\neg C \) stands for the concept of things that are not a \(C \).
- \(C \cap D \) is the concept of things that are both \(C \) and \(D \).
 - E.g. \(\text{Female} \cap \text{Human} \)
- \(C \cup D \) is the concept of things that are either \(C \) or \(D \) or both.
- \(\forall R. C \) is the concept of things such that all things that are \(R \)-related to it are \(C \)'s.
 - E.g. \(\forall \text{ParentOf}. \text{Female} \): things all of whose children are female
- \(\exists R. C \) is the concept of things such that some thing \(R \)-related to it is a \(C \).
 - \(\exists \text{ParentOf}. \text{Female} \): things with a female child
The Logic \mathcal{ALC}: Language

Let C and D be concepts and R a role.

- C stands for a concept or set of individuals.
- $\neg C$ stands for the concept of things that are not a C.
- $C \sqcap D$ is the concept of things that are both C and D.
 - E.g. $Female \sqcap Human$
- $C \sqcup D$ is the concept of things that are either C or D or both.
 - E.g. $Male \sqcup Female$
The Logic \mathcal{ALC}: Language

Let C and D be concepts and R a role.

- C stands for a concept or set of individuals.
- $\neg C$ stands for the concept of things that are not a C.
- $C \sqcap D$ is the concept of things that are both C and D.
 - E.g. $\textit{Female} \sqcap \textit{Human}$
- $C \sqcup D$ is the concept of things that are either C or D or both.
 - E.g. $\textit{Male} \sqcup \textit{Female}$
- $\forall R. C$ is the concept of things such that all things that are R related to it are C’s.
 - E.g. $\forall \textit{ParentOf}. \textit{Female}$: things all of whose children are female
The Logic \mathcal{ALC}: Language

Let C and D be concepts and R a role.

- C stands for a concept or set of individuals.
- $\neg C$ stands for the concept of things that are not a C.
- $C \cap D$ is the concept of things that are both C and D.
 - E.g. $Female \cap Human$
- $C \cup D$ is the concept of things that are either C or D or both.
 - E.g. $Male \cup Female$
- $\forall R. C$ is the concept of things such that all things that are R related to it are C's.
 - E.g. $\forall ParentOf.Female$: things all of whose children are female
- $\exists R. C$ is the concept of things such that some thing R related to it is a C.
 - $\exists ParentOf.Female$: things with a female child
The Logic \mathcal{ALC}: Knowledge Bases

Axioms (assertions) in the TBox:

- Subsumption: $C \sqsubseteq D$ where C and D are concepts
- Equivalence axioms: $C \equiv D$ where C and D are concepts
The Logic \mathcal{ALC}: Knowledge Bases

Axioms (assertions) in the TBox:

- Subsumption: $C \sqsubseteq D$ where C and D are concepts
- Equivalence axioms: $C \equiv D$ where C and D are concepts

Assertions in the ABox:

- $C(a)$ where C is a concept and a is an individual name.
- $R(a, b)$ where R is a role name, a and b are individual names.
The Logic \mathcal{ALC}: Knowledge Bases

Axioms (assertions) in the TBox:

- Subsumption: $C \sqsubseteq D$ where C and D are concepts
- Equivalence axioms: $C \equiv D$ where C and D are concepts

Assertions in the ABox:

- $C(a)$ where C is a concept and a is an individual name.
- $R(a, b)$ where R is a role name, a and b are individual names.

DL knowledge base:

- Set of TBox statements
- Set of ABox statements
Examples

TBox:

- $\text{Person} \sqsubseteq \text{Animal} \sqcap \text{Biped}$
- $\text{Woman} \models \text{Person} \sqcap \text{Female}$
- $\text{Mother} \models \text{Woman} \sqcap \exists \text{ParentOf}.\text{Person}$
- $\text{Parent} \models \text{Mother} \sqcup \text{Father}$
- $\text{Man} \models \text{Person} \sqcap \neg \text{Woman}$
- $\text{MotherWithoutDaughter} \models \text{Mother} \sqcap \forall \text{ParentOf}.\neg \text{Female}$
- $\text{GrandMother} \models \text{Woman} \sqcap \exists \text{ParentOf}.\text{Parent}$

ABox:

- $\text{GrandMother}(\text{Sally})$
- $(\text{Person} \sqcap \text{Male})(\text{John})$
Formal Semantics for Concepts and Names

Semantically, a DL can be seen as a fragment of FOL

- An interpretation is a pair \(\langle \Delta, I \rangle \)
 - Domain \(\Delta \): non-empty set of objects
 - Interpretation function \(I \): Maps structures into the domain.
 - Recall, Brachman and Levesque write this as \(\langle D, I \rangle \).
 - Then:
 - \(I \) maps every concept name \(A \) to a subset \(A_I \subseteq \Delta \)
 - \(I \) maps every role name \(R \) to a binary relation \(R_I \subseteq \Delta \times \Delta \)
 - \(I \) maps individual names \(a \) to elements of \(\Delta \) : \(a_I \in \Delta \)
 - \(\top_I = \Delta \) and \(\bot_I = \emptyset \)
Formal Semantics for Concepts and Names

Semantically, a DL can be seen as a fragment of FOL

An interpretation is a pair $\mathcal{I} = \langle \Delta, \mathcal{I} \rangle$

- Domain Δ: non-empty set of objects
- Interpretation function \mathcal{I}: Maps structures into the domain.
- Recall, Brachman and Levesque write this as $\mathcal{I} = \langle D, I \rangle$.
Formal Semantics for Concepts and Names

Semantically, a DL can be seen as a fragment of FOL.

An interpretation is a pair $\mathcal{I} = \langle \Delta, \mathcal{I} \rangle$

- Domain Δ: non-empty set of objects
- Interpretation function \mathcal{I}: Maps structures into the domain.
- Recall, Brachman and Levesque write this as $\mathcal{I} = \langle D, I \rangle$).

Then:

- \mathcal{I} maps every concept name A to a subset $A^\mathcal{I} \subseteq \Delta$
- \mathcal{I} maps every role name R to a binary relation $R^\mathcal{I} \subseteq \Delta \times \Delta$
- \mathcal{I} maps individual names a to elements of $\Delta : a^\mathcal{I} \in \Delta$
- $\top^\mathcal{I} = \Delta$ and $\bot^\mathcal{I} = \emptyset$.
Semantics for Complex Concepts

Assume C, D are concepts, and R is a role.

- $(\neg C)^I = \Delta \setminus C^I$
- $(C \cap D)^I = C^I \cap D^I$
- $(C \cup D)^I = C^I \cup D^I$
- $(\forall R.C)^I = \{x \mid y \in C^I \text{ for every } y \text{ s.t. } (x, y) \in R^I\}$
- $(\exists R.C)^I = \{x \mid y \in C^I \text{ for some } y \text{ s.t. } (x, y) \in R^I\}$
Semantics for Axioms and Assertions

Assume C, D are concepts, R is a role, a and b are individual names.
Let $\mathcal{I} = (\Delta, .^\mathcal{I})$ be an interpretation.

- $C \sqsubseteq D$ is true in \mathcal{I} iff $C^\mathcal{I} \subseteq D^\mathcal{I}$
- $C \equiv D$ is true in \mathcal{I} iff $C^\mathcal{I} = D^\mathcal{I}$
- $C(a)$ is true in \mathcal{I} iff $a^\mathcal{I} \in C^\mathcal{I}$
- $R(a, b)$ is true in \mathcal{I} iff $(a^\mathcal{I}, b^\mathcal{I}) \in R^\mathcal{I}$
Reasoning in \mathcal{ALC}

- Sentences: Axioms or assertions
- \mathcal{I} is a *model* for a sentence S iff S is true in \mathcal{I}
- \mathcal{I} is a model for a DL knowledge base K iff it is a model for every sentence in K
- Models of K are denoted by $[K]$
- S is *entailed* by K, written $K \models S$ iff $[K] \subseteq [S]$ (i.e. every model of K is a model of S.)
Types of Reasoning in \mathcal{ALC}

K a DL knowledge base;
C and D are concepts;
R is a role;
a and b are individual names

- Instance checking: $K \models C(a)$ or $K \models R(a, b)$
Types of Reasoning in ALC

K a DL knowledge base;
C and D are concepts;
R is a role;
a and b are individual names

- Instance checking: $K \models C(a)$ or $K \models R(a,b)$
- Subsumption checking: $K \models C \sqsubseteq D$
Types of Reasoning in \mathcal{ALC}

K a DL knowledge base;
C and D are concepts;
R is a role;
a and b are individual names

- Instance checking: $K \models C(a)$ or $K \models R(a, b)$
- Subsumption checking: $K \models C \sqsubseteq D$
- Equivalence checking: $K \models C \equiv D$
Types of Reasoning in \mathcal{ALC}

K a DL knowledge base;
C and D are concepts;
R is a role;
a and b are individual names

- Instance checking: $K \models C(a)$ or $K \models R(a, b)$
- Subsumption checking: $K \models C \sqsubseteq D$
- Equivalence checking: $K \models C \equiv D$
- Consistency (satisfiability) checking: $K \not\models \top \sqsubseteq \bot$
- Concept satisfiability: $K \not\models C \sqsubseteq \bot$
- Disjoint concepts: $K \models C \sqcap D \sqsubseteq \bot$
Types of Reasoning in \(\mathcal{ALC} \)

\(K \) a DL knowledge base;
\(C \) and \(D \) are concepts;
\(R \) is a role;
\(a \) and \(b \) are individual names

- Instance checking: \(K \models C(a) \) or \(K \models R(a, b) \)
- Subsumption checking: \(K \models C \sqsubseteq D \)
- Equivalence checking: \(K \models C \equiv D \)
- Consistency (satisfiability) checking: \(K \not\models \top \sqsubseteq \bot \)
- Concept satisfiability: \(K \not\models C \sqsubseteq \bot \)
Types of Reasoning in \mathcal{ALC}

K a DL knowledge base;
C and D are concepts;
R is a role;
a and b are individual names

- Instance checking: $K \models C(a)$ or $K \models R(a, b)$
- Subsumption checking: $K \models C \sqsubseteq D$
- Equivalence checking: $K \models C \equiv D$
- Consistency (satisfiability) checking: $K \not\models \top \sqsubseteq \bot$
- Concept satisfiability: $K \not\models C \sqsubseteq \bot$
- Disjoint concepts: $K \models C \cap D \sqsubseteq \bot$
Reduction to Consistency Checking

Let b be a new individual

- Instance checking:
 \[K \models C(a) \iff K \cup \{\neg C(a)\} \models \top \sqsubseteq \bot \]

- Subsumption checking:
 \[K \models C \sqsubseteq D \iff K \cup \{(C \cap \neg D)(b)\} \models \top \sqsubseteq \bot \]

- Equivalence checking:
 \[K \models C = D \iff K \cup \{(C \cap \neg D)(b), (\neg C \cap D)(b)\} \models \top \sqsubseteq \bot \]

- Concept satisfiability:
 \[K \not\models C \sqsubseteq \bot \iff K \cup \{C(b)\} \not\models \top \sqsubseteq \bot \]

- Disjoint concepts:
 \[K \models C \cap D \sqsubseteq \bot \iff K \cup \{(C \cap D)(b)\} \models \top \sqsubseteq \bot \]
Reduction to Consistency Checking

Let b be a new individual

- **Instance checking:**
 $K \models C(a)$ iff $K \cup \{\neg C(a)\} \models \top \sqsubseteq \bot$

- **Subsumption checking:**
 $K \models C \sqsubseteq D$ iff $K \cup \{(C \cap \neg D)(b)\} \models \top \sqsubseteq \bot$
Reduction to Consistency Checking

Let b be a new individual

- **Instance checking:**
 \[K \models C(a) \text{ iff } K \cup \{\neg C(a)\} \models \top \sqsubseteq \bot \]

- **Subsumption checking:**
 \[K \models C \sqsubseteq D \text{ iff } K \cup \{(C \cap \neg D)(b)\} \models \top \sqsubseteq \bot \]

- **Equivalence checking:**
 \[K \models C \equiv D \text{ iff } K \cup \{(C \cap \neg D)(b), (\neg C \cap D)(b)\} \models \top \sqsubseteq \bot \]
Reduction to Consistency Checking

Let b be a new individual

- **Instance checking:**
 \[K \models C(a) \iff K \cup \{\neg C(a)\} \models \top \sqsubseteq \bot \]

- **Subsumption checking:**
 \[K \models C \sqsubseteq D \iff K \cup \{(C \sqcap \neg D)(b)\} \models \top \sqsubseteq \bot \]

- **Equivalence checking:**
 \[K \models C \equiv D \iff K \cup \{(C \sqcap \neg D)(b), (\neg C \sqcap D)(b)\} \models \top \sqsubseteq \bot \]

- **Concept satisfiability:**
 \[K \not\models C \sqsubseteq \bot \iff K \cup \{C(b)\} \not\models \top \sqsubseteq \bot \]
Reduction to Consistency Checking

Let b be a new individual

- **Instance checking:**
 \[K \models C(a) \text{ iff } K \cup \{\neg C(a)\} \models \top \sqsubseteq \bot \]

- **Subsumption checking:**
 \[K \models C \sqsubseteq D \text{ iff } K \cup \{(C \sqcap \neg D)(b)\} \models \top \sqsubseteq \bot \]

- **Equivalence checking:**
 \[K \models C \equiv D \text{ iff } K \cup \{(C \sqcap \neg D)(b), (\neg C \sqcap D)(b)\} \models \top \sqsubseteq \bot \]

- **Concept satisfiability:**
 \[K \not\models C \sqsubseteq \bot \text{ iff } K \cup \{C(b)\} \not\models \top \sqsubseteq \bot \]

- **Disjoint concepts:**
 \[K \models C \sqcap D \sqsubseteq \bot \text{ iff } K \cup \{(C \sqcap D)(b)\} \models \top \sqsubseteq \bot \]
Aside: Extensions to \mathcal{ALC}

- There are many other possible constructors that can be added.
Aside: Extensions to \mathcal{ALC}

There are many other possible constructors that can be added. For example:

Extended concepts

- Number restrictions: $(\leq n \ R.C)$ and $(\geq n \ R.C)$
Aside: Extensions to \(\mathcal{ALC} \)

There are many other possible constructors that can be added. For example:

Extended concepts

- Number restrictions: \((\leq n \ R.C)\) and \((\geq n \ R.C)\)

 \[\text{E.g. } ParentWithManySons \sqsubseteq (\geq 3 \ ParentOf_Male) \]

 \[\text{BlendedWine} \sqsubseteq (\geq 2 \ GrapeTypeOf_Grape) \]
Aside: Extensions to \mathcal{ALC}

There are many other possible constructors that can be added

For example:

Extended concepts

- Number restrictions: $(\leq n \ R.C)$ and $(\geq n \ R.C)$

 E.g. $\text{ParentWithManySons} \sqsubseteq (\geq 3 \text{ParentOf}\cdot\text{Male})$

 $\text{BlendedWine} \sqsubseteq (\geq 2 \text{GrapeTypeOf}\cdot\text{Grape})$

- Nominals: Allow individuals in the TBox
Aside: Extensions to \mathcal{ALC}

There are many other possible constructors that can be added. For example:

Extended concepts

- Number restrictions: $(\leq n \ R.C)$ and $(\geq n \ R.C)$

 E.g. $\text{ParentWithManySons} \equiv (\geq 3 \ ParentOf.Male)$

 $\text{BlendedWine} \sqsubseteq (\geq 2 \ GrapeTypeOf.Grape)$

- Nominals: Allow individuals in the TBox

 E.g. $\text{IndianCitizen} \equiv Person \sqcap \exists \text{CitizenOf.}\{\text{India}\}$
Extensions to \mathcal{ALC}

Role operators

- Inverse roles: R^- where R is a role
Extensions to \mathcal{ALC}

Role operators

- Inverse roles: R^- where R is a role

 E.g. $\exists \text{Manages}^-.\text{Manager} \sqsubseteq \text{Project} \sqcup \text{Department}$
 $\text{GradCourse} \sqsubseteq \forall \text{teaches}^-..\text{Professor}$
Extensions to \mathcal{ALC}

Role operators

- Inverse roles: R^- where R is a role

 E.g. \existsManages$^-$.Manager \sqsubseteq Project \sqcap Department

 GradCourse \sqsubseteq \forallteaches$^-$.Professor

Role axioms

- Role hierarchy: $R \sqsubseteq S$ where R and S are roles

 So far have just used \sqsubseteq for concepts.
Extensions to \mathcal{ALC}

Role operators

- Inverse roles: R^- where R is a role

 E.g. $\exists \text{Manages}^- \cdot \text{Manager} \sqsubseteq \text{Project} \sqcup \text{Department}$

 $\text{GradCourse} \sqsubseteq \forall \text{teaches}^- \cdot \text{Professor}$

Role axioms

- Role hierarchy: $R \sqsubseteq S$ where R and S are roles

 So far have just used \sqsubseteq for concepts.

 E.g. $\text{ParentOf} \sqsubseteq \text{AncestorOf}$
Extensions to \(\mathcal{ALC} \)

Role operators

- Inverse roles: \(R^- \) where \(R \) is a role

 E.g. \(\exists \text{Manages}^- . \text{Manager} \sqsubseteq \text{Project} \sqcup \text{Department} \)

 \(\text{GradCourse} \sqsubseteq \forall \text{teaches}^- . \text{Professor} \)

Role axioms

- Role hierarchy: \(R \sqsubseteq S \) where \(R \) and \(S \) are roles

 \(\overset{\Rightarrow}{\Rightarrow} \) So far have just used \(\sqsubseteq \) for concepts.

 E.g. \(\text{ParentOf} \sqsubseteq \text{AncestorOf} \)

- Transitive roles: \(R \in R^+ \) where \(R \) is a role
Extensions to \mathcal{ALC}

Role operators

- Inverse roles: R^- where R is a role

 E.g. $\exists Manages^- . Manager \sqsubseteq Project \sqcup Department$

 $GradCourse \sqsubseteq \forall teaches^- . Professor$

Role axioms

- Role hierarchy: $R \sqsubseteq S$ where R and S are roles

 \Rightarrow So far have just used \sqsubseteq for concepts.

 E.g. $ParentOf \sqsubseteq AncestorOf$

- Transitive roles: $R \in R^+$ where R is a role

 E.g. $AncestorOf \in R^+$

And lots of others . . .
Extensions to \mathcal{ALC}: Semantics

Just for interest:

- $\textstyle(\leq nR.C)^I = \{x \mid \{y \in C^I \mid (x, y) \in R^I\} \leq n\}$
- $\textstyle(\geq nR.C)^I = \{x \mid \{y \in C^I \mid (x, y) \in R^I\} \geq n\}$
- Inverse roles: $(R^-)^I = \{(y, x) \mid (x, y) \in R^I\}$
- $R \sqsubseteq S$ is true in I iff $R^I \subseteq S^I$ for roles R and S.
- $R \in R^+$ is true in I iff $(x, z) \in R^I$ whenever $(x, y) \in R^I$ and $(y, z) \in R^I$
A Tableau Algorithm for \mathcal{ALC}

Goal: Show $KB \models A \sqsubseteq B$ by showing $KB \cup \{A \sqcap \neg B\}$ unsatisfiable.
A Tableau Algorithm for \mathcal{ALC}

Goal: Show $KB \models A \sqsubseteq B$ by showing $KB \cup \{A \cap \neg B\}$ unsatisfiable.

Assume an *unfoldable terminology*:

• Axioms are of the form $A \sqsubseteq C$ and $A = C$ where A is a concept name.
• For each concept name A, at most one axiom of the form $A \sqsubseteq C$ or $A = C$.
• Axioms are acyclic:
 • $A \sqsubseteq C$ or $A = C$ directly uses a concept name A_1 iff A_1 occurs in C.
 • $A \sqsubseteq C$ or $A = C$ uses a concept name A_1 iff it directly uses A_1 or it directly uses a concept name A_2 and A_2 uses A_1.
 • $A \sqsubseteq C$ or $A = C$ is acyclic iff it does not use A.

Compare with stratification in Datalog.
A Tableau Algorithm for \mathcal{ALC}

Goal: Show $KB \models A \sqsubseteq B$ by showing $KB \cup \{A \sqcap \neg B\}$ unsatisfiable.

Assume an *unfoldable terminology*:

- Axioms are of the form $A \sqsubseteq C$ and $A \equiv C$ where A is a concept name.
A Tableau Algorithm for \textit{ALC}

Goal: Show $KB \models A \sqsubseteq B$ by showing $KB \cup \{A \sqcap \neg B\}$ unsatisfiable.

Assume an \textit{unfoldable terminology}:

- Axioms are of the form $A \sqsubseteq C$ and $A \dot{=} C$ where A is a concept name.
- For each concept name A, at most one axiom of the form $A \sqsubseteq C$ or $A \dot{=} C$. Compare with stratification in Datalog.
A Tableau Algorithm for \(\mathcal{ALC} \)

Goal: Show \(KB \models A \sqsubseteq B \) by showing \(KB \cup \{A \sqcap \neg B\} \) unsatisfiable.

Assume an *unfoldable terminology*:

- Axioms are of the form \(A \sqsubseteq C \) and \(A \doteq C \) where \(A \) is a concept name.
- For each concept name \(A \), at most one axiom of the form \(A \sqsubseteq C \) or \(A \doteq C \).
- Axioms are acyclic:
 - \(A \sqsubseteq C \) or \(A \doteq C \) *directly uses* a concept name \(A_1 \) iff \(A_1 \) occurs in \(C \).
 - \(A \sqsubseteq C \) or \(A \doteq C \) *uses* a concept name \(A_1 \) iff it directly uses \(A_1 \) or it directly uses a concept name \(A_2 \) and \(A_2 \) uses \(A_1 \).
 - \(A \sqsubseteq C \) or \(A \doteq C \) is *acyclic* iff it does not use \(A \).

\(\Rightarrow \) Compare with *stratification* in Datalog
General Method

Show $KB \models A \subseteq B$ by showing $KB \cup \{ A \cap \neg B \}$ is unsatisfiable.

Try to prove concept (un)satisfiability by constructing a model of $KB \cup \{ A \cap \neg B \}$.

- A **tableau** is a graph representing such a model.
- A set of tableau **expansion rules** is used to construct the tableau.
- Either a model is constructed or a contradiction is found.
General Method

At the start:

- Assume an unfoldable terminology.
- Assume that all axioms are of the form $P \models Q$
 - This can be done by replacing any axiom of the form $A \sqsubseteq B$ by $A \models B \sqcap C$ where C is a new concept name.
At the start:

- Assume an unfoldable terminology.
- Assume that all axioms are of the form $P \triangleleft Q$
 - This can be done by replacing any axiom of the form $A \sqsubseteq B$ by $A \triangleleft B \sqcap C$ where C is a new concept name.

If the query is $A \sqsubseteq B$, first convert to a normal form:

- **negate** the query to get $A \sqcap \neg B$ (to show unsatisfiable);
- **unfold** the negated query (next slide);
- **convert** to *negation normal form*.
General Method

At the start:

- Assume an unfoldable terminology.
- Assume that all axioms are of the form $P \vdash Q$
 - This can be done by replacing any axiom of the form $A \sqsubseteq B$ by $A \sqsubseteq B \sqcap C$ where C is a new concept name.

If the query is $A \sqsubseteq B$, first convert to a normal form:

- **negate** the query to get $A \sqcap \neg B$ (to show unsatisfiable);
- **unfold** the negated query (next slide);
- **convert** to negation normal form.

Once the negated query has been unfolded, the rest of the KB can be ignored.
Unfolding

To Unfold:

Expand every concept name occurring in the (negated) query.

- I.e. if concept C appears in the query and $C \equiv D$ is in the KB, replace C by D in the query.
- Recall that for $C \equiv D$ in the KB, C is a concept name and D is an arbitrary \mathcal{ALC} concept expression.
- As well, C is guaranteed to not appear in D or in any later substitutions.
Negation normal form

Negation normal form:
Move negation in so that it occurs only in front of concept names

- \(\neg (C \sqcap D) \) gives \(\neg C \sqcup \neg D \), and
 \(\neg (C \sqcup D) \) gives \(\neg C \sqcap \neg D \)
- \(\neg \exists R. C \) gives \(\forall R. \neg C \), and
 \(\neg \forall R. C \) gives \(\exists R. \neg C \)
- \(\neg \neg C \) gives \(C \)
Algorithm

- Use a tree to represent the model being constructed
- Each node x represents an individual, labelled with a set $L(x)$ of concepts it has to satisfy
 - $C \in L(x)$ implies $x \in C^I$
- Each edge (x, y) represents a pair occurring in the interpretation of a role, labelled with the role name
 - $R = L((x, y))$ implies $(x, y) \in R^I$
To Determine the Satisfiability of a Concept C

- Initialise the tree T with a single node x with $L(x) = \{ C \}$.
- Expand by repeatedly applying a set of expansion rules.
- T is fully expanded when none of the rules can be applied.
- T contains a clash when, for a node y and a concept D, $ot \in L(y)$ or $\{ D, \neg D \} \subseteq L(y)$.
- If T can’t be expanded without producing a clash, the concept is unsatisfiable.
Expansion Rules

(\sqcap\text{-rule}) If \((C_1 \sqcap C_2) \in L(x)\) and \(\{C_1, C_2\} \not\subseteq L(x)\) then:
Add \(C_1\) and \(C_2\) to \(L(x)\).
Expansion Rules

(\cap\text{-rule}) If \((C_1 \cap C_2) \in L(x)\) and \(\{C_1, C_2\} \not\subseteq L(x)\) then:
Add \(C_1\) and \(C_2\) to \(L(x)\).

(\cup\text{-rule}) If \((C_1 \cup C_2) \in L(x)\) and \(\{C_1, C_2\} \cap L(x) = \emptyset\) then:
Add \(C_1\) to \(L(x)\).
If this leads to a clash, go back and add \(C_2\) to \(L(x)\).
Expansion Rules

(\cap\text{-rule}) If \((C_1 \cap C_2) \in L(x)\) and \(\{C_1, C_2\} \not\subseteq L(x)\) then:
Add \(C_1\) and \(C_2\) to \(L(x)\).

(\sqcup\text{-rule}) If \((C_1 \sqcup C_2) \in L(x)\) and \(\{C_1, C_2\} \cap L(x) = \emptyset\) then:
Add \(C_1\) to \(L(x)\).
If this leads to a clash, go back and add \(C_2\) to \(L(x)\).

(\exists\text{-rule}) If \(\exists R. C \in L(x)\) and there is no \(y\) s.t. \(L((x, y)) = R\)
and \(C \in L(y)\) then:
Create a new node \(y\) and edge \((x, y)\) with \(L(y) = C\)
and \(L((x, y)) = R\).
Expansion Rules

(\cap\text{-rule}) If \((C_1 \cap C_2) \in L(x)\) and \(\{C_1, C_2\} \not\subseteq L(x)\) then:
Add \(C_1\) and \(C_2\) to \(L(x)\).

(\sqcup\text{-rule}) If \((C_1 \sqcup C_2) \in L(x)\) and \(\{C_1, C_2\} \cap L(x) = \emptyset\) then:
Add \(C_1\) to \(L(x)\).
If this leads to a clash, go back and add \(C_2\) to \(L(x)\).

(\exists\text{-rule}) If \(\exists R.C \in L(x)\) and there is no \(y\) s.t. \(L((x, y)) = R\) and \(C \in L(y)\) then:
Create a new node \(y\) and edge \((x, y)\) with \(L(y) = C\) and \(L((x, y)) = R\).

(\forall\text{-rule}) If \(\forall R.C \in L(x)\) and there is some \(y\) s.t.
\(L((x, y)) = R\) and \(C \not\in L(y)\) then:
Add \(C\) to \(L(y)\).
Interpreting a tree T

- If T contains a clash the concept C is unsatisfiable.
- If T is fully expanded and clash-free, then C is satisfiable.
- In the second case, construct a model I as follows:
 - $\Delta = \{x \mid x$ is a node in $T\}$.
 - $A^I = \{x \in \Delta \mid A \in L(x)\}$ for all concept names A in C.
 - $R^I = \{(x, y) \mid (x, y)$ is an edge in T and $L((x, y)) = R\}$.
Termination of the Algorithm

- The \sqcap-, \sqcup- and \exists-rules can only be applied once to a concept in $L(x)$.
- The \forall-rule can be applied many times to a given $\forall R. C$ expression in $L(x)$, but only once to a given edge (x, y).
- Applying any rule to a concept C extends the labelling with a concept strictly smaller than C.

Therefore the algorithm must terminate.
Tableau Algorithm: Example 1

DL knowledge base:

- \(\text{vegan} \) \(\overset{\sim}{=} \) \text{person} \(\sqcap \forall \text{eats} . \text{plant} \)
- \(\text{vegetarian} \) \(\overset{\sim}{=} \) \text{person} \(\sqcap \forall \text{eats} . (\text{plants} \sqcup \text{dairy}) \)

Query: \(\text{vegan} \sqsubseteq \text{vegetarian} \)

Convert to:

- \(\text{vegan} \sqcap \neg \text{vegetarian} \) is unsatisfiable ?
Example 1

• Unfold and normalise $\text{vegan} \sqcap \neg \text{vegetarian}$:
 $$\text{person} \sqcap \forall \text{eats}. \text{plant} \sqcap (\neg \text{person} \sqcup \exists \text{eats}. (\neg \text{plant} \sqcap \neg \text{dairy}))$$
Example 1

- Unfold and normalise $\text{vegan} \sqcap \neg \text{vegetarian}$:
 $\text{person} \sqcap \forall \text{eats}. \text{plant} \sqcap (\neg \text{person} \sqcup \exists \text{eats}. (\neg \text{plant} \sqcap \neg \text{dairy}))$

- Initialise T to $L(x)$ to contain:
 $\text{person} \sqcap \forall \text{eats}. \text{plant} \sqcap (\neg \text{person} \sqcup \exists \text{eats}. (\neg \text{plant} \sqcap \neg \text{dairy}))$
Example 1

- Unfold and normalise $\text{vegan} \sqcap \neg \text{vegetarian}$:
 \[
 \text{person} \sqcap \forall \text{eats.} \text{plant} \sqcap (\neg \text{person} \sqcup \exists \text{eats.}(\neg \text{plant} \sqcap \neg \text{dairy}))
 \]
- Initialise T to $L(x)$ to contain:
 \[
 \text{person} \sqcap \forall \text{eats.} \text{plant} \sqcap (\neg \text{person} \sqcup \exists \text{eats.}(\neg \text{plant} \sqcap \neg \text{dairy}))
 \]
- Apply \sqcap-rule and add to $L(x)$:
 \[
 \{ \text{person}, \forall \text{eats.} \text{plant}, \neg \text{person} \sqcup \exists \text{eats.}(\neg \text{plant} \sqcap \neg \text{dairy}) \} \]
Example 1

- Apply \(\sqcup \)-rule to \(\neg person \sqcup \exists eats. (\neg plant \sqcap \neg dairy) \):
 - Add \(\neg person \) to \(L(x) \): Clash
 - Go back and add \(\exists eats. (\neg plant \sqcap \neg dairy) \) to \(L(x) \)
Example 1

- Apply \sqcup-rule to $\neg person \sqcup \exists eats. (\neg plant \sqcap \neg dairy)$:
 Add $\neg person$ to $L(x)$: Clash
 Go back and add $\exists eats. (\neg plant \sqcap \neg dairy)$ to $L(x)$

- Apply \exists-rule to $\exists eats. (\neg plant \sqcap \neg dairy)$:
 Create new node y and new edge (x, y):
 $L(y) = \{\neg plant \sqcap \neg dairy\}$; $L((x, y)) = eats$
Example 1

- Apply \sqcup-rule to $\neg person \sqcup \exists eats. (\neg plant \sqcap \neg dairy)$:
 Add $\neg person$ to $L(x)$: Clash
 Go back and add $\exists eats. (\neg plant \sqcap \neg dairy)$ to $L(x)$

- Apply \exists-rule to $\exists eats. (\neg plant \sqcap \neg dairy)$:
 Create new node y and new edge (x, y):
 $$L(y) = \{\neg plant \sqcap \neg dairy\}; L((x, y)) = eats$$

- Apply \forall-rule to $\forall eats. plant$ in $L(x)$ and $L((x, y)) = eats$:
 Add $plant$ to $L(y)$
Example 1

• Apply \(\square \)-rule to \(\neg plant \ \square \neg dairy \) in \(L(y) \):
 Add \(\{\neg plant, \neg dairy\} \) to \(L(y) \): Clash
Example 1

- Apply \Box-rule to $\neg plant \sqcap \neg dairy$ in $L(y)$:
 Add $\{\neg plant, \neg dairy\}$ to $L(y)$: Clash
- Conclusion
 - Both applications of the \bigtriangleup-rule lead to clashes
 - So $\text{vegan} \sqcap \neg \text{vegetarian}$ is unsatisfiable
 - So $\text{vegan} \sqsubseteq \text{vegetarian}$
Example 2

- Query: $\text{vegetarian} \sqsubseteq \text{vegan}$
- Convert to: $\text{vegetarian} \sqcap \neg \text{vegan}$ is satisfiable?
- Unfold and normalise $\text{vegetarian} \sqcap \neg \text{vegan}$:
 $\text{person} \sqcap \forall \text{eats}.(\text{plant} \sqcup \text{dairy}) \sqcap (\neg \text{person} \sqcup \exists \text{eats}.\neg \text{plant})$
- Initialise T to $L(x)$ to contain:
 $\{ \text{person} \sqcap \forall \text{eats}.(\text{plant} \sqcup \text{dairy}) \sqcap (\neg \text{person} \sqcup \exists \text{eats}.\neg \text{plant}) \}$
Example 2

- Apply \sqcap-rule and add to $L(x)$:
 $$\{ \text{person}, \forall \text{eats.}(\text{plant} \sqcup \text{dairy}), \neg \text{person} \sqcup \exists \text{eats.}\neg \text{plant} \}$$
Example 2

- Apply \cap-rule and add to $L(x)$:
 \[\{ \text{person}, \forall \text{eats.}(\text{plant} \cup \text{dairy}), \neg \text{person} \cup \exists \text{eats.}\neg\text{plant} \} \]

- Apply \cup-rule to $\neg \text{person} \cup \exists \text{eats.}\neg\text{plant}$:
 Add $\neg \text{person}$ to $L(x)$: Clash
 Go back and add $\exists \text{eats.}\neg\text{plant}$ to $L(x)$
Example 2

- Apply \cap-rule and add to $L(x)$:
 \[\{ \text{person, } \forall \text{eats.(plant } \sqcup \text{ dairy)}, \neg \text{person } \sqcup \exists \text{eats.} \neg \text{plant} \} \]

- Apply \sqcup-rule to $\neg \text{person } \sqcup \exists \text{eats.} \neg \text{plant}$:
 Add $\neg \text{person}$ to $L(x)$: Clash
 Go back and add $\exists \text{eats.} \neg \text{plant}$ to $L(x)$

- Apply \exists-rule to $\exists \text{eats.} \neg \text{plant}$:
 Create new node y and new edge (x, y)
 \[L(y) = \{ \neg \text{plant} \}; \ L((x, y)) = \text{eats} \]
Example 2

- Apply \forall-rule to $\forall eats. (plant \sqcup dairy)$ in $L(x)$ and $L((x, y)) = eats$:
 - Add $plant \sqcup dairy$ to $L(y)$

- Clash
 - Go back and add $dairy$ to $L(y)$

- Conclusion
 - No rules are applicable, so T is fully expanded
 - So $vegetarian \sqcap \neg vegan$ is satisfiable
 - So $vegetarian \not\sqsubseteq vegan$
Example 2

- Apply \forall-rule to $\forall eats.(plant \sqcup dairy)$ in $L(x)$ and $L((x, y)) = eats$:
 Add $plant \sqcup dairy$ to $L(y)$

- Apply \sqcup-rule to $plant \sqcup dairy$ in $L(y)$:
 Add $plant$ to $L(y)$: Clash
 Go back and add $dairy$ to $L(y)$

Conclusion

- No rules are applicable, so T is fully expanded
- So $vegetarian \sqcap \neg vegan$ is satisfiable
- So $vegetarian \not\sqsubseteq vegan$
Example 2

- Apply \forall-rule to $\forall e(a)(plant \sqcup dairy)$ in $L(x)$ and $L((x, y)) = eats$:
 Add $plant \sqcup dairy$ to $L(y)$

- Apply \sqcup-rule to $plant \sqcup dairy$ in $L(y)$:
 Add $plant$ to $L(y)$: Clash
 Go back and add $dairy$ to $L(y)$

- Conclusion
 - No rules are applicable, so T is fully expanded
 - So $vegetarian \sqcap \neg vegan$ is satisfiable
 - So $vegetarian \notin vegan$
The Brachman&Levesque DL and \mathcal{ALC}

<table>
<thead>
<tr>
<th>Constructor</th>
<th>B&L</th>
<th>\mathcal{ALC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conj.</td>
<td>(AND A , B)</td>
<td>$A \sqcap B$</td>
</tr>
<tr>
<td>Univ. quant.</td>
<td>(ALL R , C)</td>
<td>$\forall R.C$</td>
</tr>
<tr>
<td>Exist. quant.</td>
<td></td>
<td>$\exists R.C$</td>
</tr>
<tr>
<td>Unqual. exist. quant.</td>
<td>(EXISTS 1 R)</td>
<td>$\exists R.\top$</td>
</tr>
<tr>
<td>Number restriction</td>
<td>(EXISTS n , R)</td>
<td></td>
</tr>
<tr>
<td>Role filler</td>
<td>(FILLS R , a)</td>
<td></td>
</tr>
<tr>
<td>Assertion</td>
<td>$a \rightarrow C$</td>
<td>$C(a)$</td>
</tr>
</tbody>
</table>

- \mathcal{FL}^- consists of Conj., Univ. quant., and Unqual. exist. quant.
- The B&L DL is slightly more general than \mathcal{FL}^-.
- \mathcal{ALC} is \mathcal{FL}^- plus \top, \bot, and general negation.
- The extension to \mathcal{ALC} for a role filler would use $\forall R.\{a\}$.
References

• Franz Baader, Ian Horrocks, Carsten Lutz, Uli Sattler: An Introduction to Description Logic
• Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, Peter Patel-Schneider (ed.): The Description Logic Handbook
• http://www.inf.unibz.it/~franconi/dl/course/
• http://www.dl.kr.org