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A deductive argument is a pair where the first item is a set of premises, the second item is a
claim, and the premises entail the claim. This can be formalized by assuming a logical language
for the premises and the claim, and logical entailment (or consequence relation) for showing
that the claim follows from the premises. Examples of logics that can be used include classical
logic, modal logic, description logic, temporal logic, and conditional logic. A counterargument
for an argument A is an argument B where the claim of B contradicts the premises of A.
Different choices of logic, and different choices for the precise definitions of argument and
counterargument, give us a range of possibilities for formalizing deductive argumentation.
Further options are available to us for choosing the arguments and counterarguments we put
into an argument graph. If we are to construct an argument graph based on the arguments
that can be constructed from a knowledgebase, then we can be exhaustive in including all
arguments and counterarguments that can be constructed from the knowledgebase. But there
are other options available to us. We consider some of the possibilities in this review.
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1. Introduction

Abstract argumentation, as proposed by Dung (1995), provides a good starting
point for formalizing argumentation. Dung proposed that a set of arguments and
counterarguments could be represented by a directed graph. Each node in the graph
denotes an argument and each arc denotes one argument attacking another. So if
there is an arc from node A to node B, then A attacks B, or equivalently A is a
counterargument to B. See Figure 1 for an example of an abstract argument graph.

Even though abstract argumentation provides a clear and precise approach to
formalizing aspects of argumentation, the arguments are treated as atomic. There
is no formalized content to an argument, and so all arguments are treated as
equal. Therefore if we want to understand individual arguments, we need to provide
content for them. This leads to the idea of “instantiating” abstract argumentation
with deductive arguments. Each deductive argument has some premises from which
a claim is derived by deductive reasoning.

In deductive reasoning, we start with some premises, and we derive a conclusion
using one or more inference steps. Each inference step is infallible in the sense that it
does not introduce uncertainty. In other words, if we accept the premises are valid,
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then we should accept that the intermediate conclusion of each inference step is
valid, and therefore we should accept that the conclusion is valid. For example,
if we accept that Philippe and Tony are having tea together in London is valid,
then we should accept that Philippe is not in Toulouse (assuming the background
knowledge that London and Toulouse are different places, and that nobody can
be in different places at the same time). As another example, if we accept that
Philippe and Tony are having an ice cream together in Toulouse is valid, then
we should accept that Tony is not in London. Note, however, we do not need to
believe or know that the premises are valid to apply deductive reasoning. Rather,
deductive reasoning allows us to obtain conclusions that we can accept contingent
on the validity of their premises. So for the first example above, the reader might
not know whether or not Philippe and Tony are having tea together in London.
However, the reader can accept that Philippe is not in Toulouse, contingent on
the validity of these premises. Important alternatives to deductive reasoning in
argumentation, include inductive reasoning, abductive reasoning, and analogical
reasoning.

In this tutorial, we assume that deductive reasoning is formalized by a monotonic
logic. Each deductive argument is a pair where the first item is a set of premises
that logically entails the second item according to the choice of monotonic logic.
So we have a logical language to express the set of premises, and the claim, and
we have a logical consequence relation to relate the premises to the claim.

Key benefits of deductive arguments include: (1) Explicit representation of the
information used to support the claim of the argument; (2) Explicit representation
of the claim of the argument; and (3) A simple and precise connection between the
support and claim of the argument via the consequence relation. What a deductive
argument does not provide is a specific proof of the claim from the premises.
There may be more than one way of proving the claim from the premises, but the
argument does not specify which is used. It is therefore indifferent to the proof
used.

Deductive argumentation is formalized in terms of deductive arguments and
counterarguments, and there are various choices for defining this (Besnard and
Hunter (2008)). Deductive argumentation offers a simple route to instantiating ab-
stract argumentation which we will consider in this tutorial paper. Perhaps the
first paper to consider this is by Cayrol who instantiated Dung’s proposal with
deductive arguments based on classical logic (Cayrol (1995)).

In the rest of this tutorial, we will investigate some of the choices we have for
defining arguments and counterarguments, and for how they can be used in mod-
elling argumentation. We will focus on two choices for base logic. These are simple
logic (which has a language of literals and rules of the form α1 ∧ . . . ∧ αn → β
where α1, . . . , αn, β are literals, and modus ponens is the only proof rule) and
classical logic (propositional and first-order classical logic). Then for instantiating

A1 = Patient has
hypertension so

prescribe diuretics

A2 = Patient
has hypertension

so prescribe
betablockers

A3 = Patient has
emphysema which is
a contraindication
for betablockers

Figure 1. Example of an abstract argument graph which captures a decision making scenario where there
are two alternatives for treating a patient, diuretics or betablockers. Since only one treatment should be
given for the disorder, each argument attacks the other. There is also a reason to not give betablockers, as
the patient has emphysema which is a contraindication for this treatment.
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Figure 2. Framework for constructing argument graphs with deductive arguments: For defining a specific
argumentation system, there are four levels for the specification: (1) A base logic is required for defining
the logical language and the consequence or entailment relation (i.e. what inferences follow from a set
of formlulae); (2) A definition of an argument 〈Φ, α〉 specified using the base logic (e.g. Φ is consistent,
and Φ entails α); (3) A definition of counterargument specified using the base logic (i.e. a definition for
when one argument attacks another); and (4) A definition of how the arguments and counterarguments are
composed into an argument graph (which is either a descriptive graph or some form of generative graph).

argument graphs (i.e. for specifying what the arguments and attacks are in an ar-
gument graph), we will consider descriptive graphs and generative graphs defined
informally as follows.

• Descriptive graphs Here we assume that the structure of the argument graph
is given, and the task is to identify the premises and claim of each argument.
Therefore the input is an abstract argument graph, and the output is an instan-
tiated argument graph. This kind of task arises in many situations: For example,
if we are listening to a debate, we hear the arguments exchanged, and we can
construct the instantiated argument graph to reflect the debate.

• Generative graphs Here we assume that we start with a knowledgebase (i.e.
a set of logical formula), and the task is to generate the arguments and counter-
arguments (and hence the attacks between arguments). Therefore, the input is
a knowledgebase, and the output is an instantiated argument graph. This kind
of task also arises in many situations: For example, if we are making a decision
based on conflicting information. We have various items of information that we
represent by formulae in the knowledgebase, and we construct an instantiated
argument graph to reflect the arguments and counterarguments that follow from
that information.

For constructing both descriptive graphs and generative graphs, there may be a
dynamic aspect to the process. For instance, when constructing descriptive graphs,
we may be unsure of the exact structure of the argument graph, and it is only by
instantiating individual arguments that we are able to say whether it is attacked
or attacks another argument. As another example, when constructing generative
graphs, we may be involved in a dialogue, and so through the dialogue, we may
obtain further information which allows us to generate further arguments that can
be added to the argument graph.

So in order to construct argument graphs with deductive arguments, we need
to specify the choice of logic (which we call the base logic) that we use to define
arguments and counterarguments, the definition for arguments, the definition for
counterarguments, and the definition for instantiating argument graphs. For the
latter, we can either produce a descriptive graph or a generative graph. We will
explore various options for generative graphs. We summarize the framework for
constructing argument graphs with deductive arguments in Figure 2.

We proceed as follows: (Section 2) We briefly review the definitions for abstract
argumentation; (Section 3) We consider options for arguments in deductive ar-
gumentation; (Section 4) We consider options for counterarguments in deductive
argumentation; (Section 5) We consider options for constructing argument graphs
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instantiated with deductive arguments; (Section 6) We briefly compare the ap-
proach expounded in this tutorial to other approaches to structured argumenta-
tion; and (Section 7) We discuss the approach of deductive argumentation and
provide suggestions for further reading.

2. Abstract argumentation

An abstract argument graph is a pair (A,R) where A is a set and R ⊆ A×A.
Each element A ∈ A is called an argument and (A,B) ∈ R means that A attacks
B (accordingly, A is said to be an attacker of B) and so A is a counterargument
for B. A set of arguments S ⊆ A attacks Aj ∈ A iff there is an argument Ai ∈ S
such that Ai attacks Aj . Also, S defends Ai ∈ A iff for each argument Aj ∈ A,
if Aj attacks Ai then S attacks Aj . A set S ⊆ A of arguments is conflict-free
iff there are no arguments Ai and Aj in S such that Ai attacks Aj . Let Γ be a
conflict-free set of arguments, and let Defended : ℘(A)→ ℘(A) be a function such
that Defended(Γ) = {A | Γ defends A}. We consider the following extensions: (1)
Γ is a complete extension iff Γ = Defended(Γ); (2) Γ is a grounded extension
iff it is the minimal (w.r.t. set inclusion) complete extension; (3) Γ is a preferred
extension iff it is a maximal (w.r.t. set inclusion) complete extension; and (4) Γ
is a stable extension iff it is a preferred extension that attacks every argument
that is not in the extension.

Some argument graphs can be large, and yet we might only be interested in
whether some subset of the arguments is in an extension according to some seman-
tics. For this, we introduce the following definitions that lead to the notion of a
focal graph.

Definition 2.1: Let G = (A,R) be an argument graph. An argument graph
(A′,R′) is faithful with respect to (A,R) iff (A′,R′) is a subgraph of (A,R) and
for all arguments Ai, Aj ∈ A, if Aj ∈ A′ and (Ai, Aj) ∈ R, then Ai ∈ A′, and R′
= {(Ai, Aj) | R | Ai, Aj ∈ A′}.

Example 2.2 Consider the following graph G

A1 A2 A3 A4

There are three subgraphs that are faithful with respect to G: (1) The graph G ; (2)
The subgraph containing just the argument A1; and (3) The following subgraph.
All other subgraphs of G are not faithful.

A1 A2 A3

A faithful subgraph has the same extensions as the graph modulo the arguments
in the subgraph. So for every argument A in the subgraph, if A is in the grounded
extension in the subgraph, then A is in the grounded extension of the graph, and
vice versa. Similarly, for every argument A in the subgraph, if A is in a preferred
extension of the subgraph, then A is in a preferred extension of the graph, and vice
versa. This follows directly from the directionality criterion of Baroni and Giacomin
(2007) that says that for a subgraph, arguments in the graph that do not attack
any arguments in the subgraph have no affect on the extensions of the subgraph.
Therefore, we can ignore the arguments that are not in a faithful subgraph.

Definition 2.3: Let Π ⊆ A be a set of arguments of interest called the focus.
A graph (A′,R′) is the focal graph of graph (A,R) with respect to focus Π iff
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(A′,R′) is the smallest subgraph of (A,R) such that Π ⊆ A′ and (A′,R′) is faithful
with respect to (A,R).

Example 2.4 Continuing Example 2.2, if we let Π = {A1, A2} be the focus, then
the third subgraph (i.e. the faithful graph containing A1, A2, and A3) is the focal
graph.

The motivation for finding the focal graph is that given a set of arguments Π
as the focus, we want to just have those arguments and any arguments that may
affect whether or not any of the arguments in Π are in an extension. By taking the
directionality of the arcs into account (i.e. the directionality criteria (Baroni and
Giacomin (2007), Liao et al. (2011))), we can ignore the other arguments.

3. Arguments

Each argument in deductive argumentation is defined using a logic which we call
the base logic. In this paper, we focus on two options for the base logic, namely
simple logic and classical logic, but other options include conditional logic, temporal
logic, and paraconsistent logic.

Let L be a language for a logic, and let `i be the consequence relation for that
logic. Therefore, `i⊆ ℘(L)× L. If α is an atom in L, then α is a positive literal
in L and ¬α is a negative literal in L. For a literal β, the complement of β
is defined as follows: If β is a positive literal, i.e. it is of the form α, then the
complement of β is the negative literal ¬α, and if β is a negative literal, i.e. it is
of the form ¬α, then the complement of β is the positive literal α.

A deductive argument is an ordered pair 〈Φ, α〉 where Φ `i α. Φ is the support,
or premises, or assumptions of the argument, and α is the claim, or conclusion,
of the argument. The definition for a deductive argument only assumes that the
premises entail the claim (i.e. Φ `i α). For an argument A = 〈Φ, α〉, the function
Support(A) returns Φ and the function Claim(A) returns α.

Many proposals have further constraints for an ordered pair 〈Φ, α〉 to be an ar-
gument. The most commonly assumed constraint is the consistency constraint:
An argument 〈Φ, α〉 satisfies this constraint when Φ is consistent. For richer logics,
such as classical logic, consistency is often regarded as a desirable property of a
deductive argument because claims that are obtained with logics such as classi-
cal logic from inconsistent premises are normally useless as illustrated in the next
example.

Example 3.1 If we assume the consistency constraint, then the following are not
arguments.

〈{study(Sid, logic),¬study(Sid, logic)}, study(Sid, logic)↔ ¬study(Sid, logic)〉

〈{study(Sid, logic),¬study(Sid, logic)},KingOfFrance(Sid)〉

In contrast, for weaker logics (such as paraconsistent logics), it may be desirable
to not impose the consistency constraint. With such logics, a credulous approach
could be taken so that pros and cons could be obtained from inconsistent premises
(as illustrated by the following example).

Example 3.2 If we assume the base logic is a paraconsistent logic (such as Bel-
nap’s four valued logic), and we do not impose the consistent constraint, then the
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following are arguments.

〈{study(Sid, logic) ∧ ¬study(Sid, logic)}, study(Sid, logic)〉

〈{study(Sid, logic) ∧ ¬study(Sid, logic)},¬study(Sid, logic)〉

Another commonly assumed constraint is the minimality constraint: An ar-
gument 〈Φ, α〉 satisfies this constraint when there is no Ψ ⊂ Φ such that Ψ ` α.
Minimality is often regarded as a desirable property of a deductive argument be-
cause it eliminates irrelevant premises (as in the following example).

Example 3.3 If we assume the minimality constraint, then the following is not
an argument.

〈{report(rain), report(rain)→ carry(umbrella), happy(Sid)}, carry(umbrella)〉

When we construct a knowledgebase, with simple logic, classical logic, or other
base logics, it is possible that some or all of the formulae could be incorrect. For
instance, individual formulae may come from different and conflicting sources, they
may reflect options that disagree, they may represent uncertain information. A
knowledgebase may be inconsistent, and individual formulae may be contradictory.
After all, if the knowledge is not inconsistent (i.e. it is consistent), then we will
not have counterarguments. We may also include formulae that we know are not
always correct. For instance, we may include a formula such as the following that
says that a water sample taken from the Mediterranean sea in the summer will
be above 15 degrees Celcius. While this may be a useful general rule, it is not
always true. For instance, the sample could be taken when there is a period of bad
weather, or the sample is taken from a depth of over 500 metres.

∀X,Y.watersample(X) ∧ location(X,Mediterranean)
∧season(X, summer) ∧ termperature(X,Y)→ Y > 15

In the following subsections, we define arguments based on simple logic and on
classical logic as the base logic. Alternative base logics include description logic,
paraconsistent logic, temporal logic, and conditional logic.

3.1. Arguments based on simple logic

Simple logic is based on a language of literals and simple rules where each simple
rule is of the form α1 ∧ . . . ∧ αk → β where α1 to αk and β are literals. A simple
logic knowledgebase is a set of literals and a set of simple rules. The consequence
relation is modus ponens (i.e. implication elimination) as defined next.

Definition 3.4: The simple consequence relation, denoted `s, which is the
smallest relation satisfying the following condition, and where ∆ is a simple logic
knowledgebase: ∆ `s β iff there is an α1 ∧ · · · ∧ αn → β ∈ ∆, and for each
αi ∈ {α1, . . . , αn}, either αi ∈ ∆ or ∆ `s αi.

Example 3.5 Let ∆ = {a, b, a ∧ b → c, c → d}. Hence, ∆ `s c and ∆ `s d.
However, ∆ 6`s a and ∆ 6`s b.

Definition 3.6: Let ∆ be a simple logic knowledgebase. For Φ ⊆ ∆, and a literal
α, 〈Φ, α〉 is a simple argument iff Φ `s α and there is no proper subset Φ′ of Φ
such that Φ′ `s α.
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So each simple argument is minimal but not necessarily consistent (where con-
sistency for a simple logic knowledgebase ∆ means that for no atom α does ∆ `s α
and ∆ `s ¬α hold). We do not impose the consistency constraint in the definition
for simple arguments as simple logic is paraconsistent, and therefore can support
a credulous view on the arguments that can be generated.

Example 3.7 Let p1, p2, and p3 be the following formulae. Then
〈{p1, p2, p3}, goodInvestment(BP)〉 is a simple argument. Note, we use p1, p2, and
p3 as labels in order to make the presentation of the premises more concise.

p1 = oilCompany(BP)
p2 = goodPerformer(BP)
p3 = oilCompany(BP) ∧ goodPerformer(BP))→ goodInvestment(BP)

Simple logic is a practical choice as a base logic for argumentation. Having a
logic with simple rules and modus ponens is useful for applications because the
behaviour is quite predictable in the sense that given a knowledgebase it is relatively
easy to anticipate the inferences that come from the knowlegebase. Furthermore,
it is relatively easy to implement an algorithm for generating the arguments and
counterarguments from a knowledgebase. The downside of simple logic as a base
logic is that the proof theory is weak. It only incorporates modus ponens (i.e.
implication elimination) and so many useful kinds of reasoning (e.g. contrapositive
reasoning) are not supported.

3.2. Arguments based on classical logic

Classical logic is appealing as the choice of base logic as it better reflects the richer
deductive reasoning often seen in arguments arising in discussions and debates.

We assume the usual propositional and predicate (first-order) languages for clas-
sical logic, and the usual the classical consequence relation, denoted `. A
classical knowledgebase is a set of classical propositional or predicate formulae.

Definition 3.8: For a classical knowledgebase Φ, and a classical formula α, 〈Φ, α〉
is a classical argument iff Φ ` α and Φ 6` ⊥ and there is no proper subset Φ′ of
Φ such that Φ′ ` α.

So a classical argument satisfies both minimality and consistency. We impose the
consistency constraint because we want to avoid the useless inferences that come
with inconsistency in classical logic (such as via ex falso quodlibet).

Example 3.9 The following classical argument uses a universally quantified for-
mula in contrapositive reasoning to obtain the following claim about number 77.

〈{∀X.multipleOfTen(X)→ even(X),¬even(77)},¬multipleOfTen(77)〉

Given the central role classical logic has played in philosophy, linguistics, and
computer science (software engineering, formal methods, data and knowledge engi-
neering, artificial intelligence, computational linguistics, etc.), we should consider
how it can be used in argumentation. Classical propositional logic and classical
predicate logic are expressive formalisms which capture deeper insights about the
world than is possible with restricted formalisms such as simple logic.
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4. Counterarguments

A counterargument is an argument that attacks another argument. In deductive
argumentation, we define the notion of counterargument in terms of logical con-
tradiction between the claim of the counterargument and the premises of claim of
the attacked argument. We explore some of the kinds of counterargument that can
be specified for simple logic and classical logic.

4.1. Counterguments based on simple logic

For simple logic, we consider two forms of counterargument. For this, recall that
literal α is the complement of literal β if and only if α is an atom and β is ¬α or
if β is an atom and α is ¬β.

Definition 4.1: For simple arguments A and B, we consider the following type
of simple attack:

• A is a simple undercut of B if there is a simple rule α1 ∧ · · · ∧ αn → β in
Support(B) and there is an αi ∈ {α1, . . . , αn} such that Claim(A) is the comple-
ment of αi

• A is a simple rebut of B if Claim(A) is the complement of Claim(B)

Example 4.2 The first argument A1 captures the reasoning that the metro is an
efficient form of transport, so one can use it. The second argument A2 captures the
reasoning that there is a strike on the metro, and so the metro is not an efficient
form of transport (at least on the day of the strike). A2 undercuts A1.

A1 = 〈{efficientMetro, efficientMetro→ useMetro}, useMetro〉
A2 = 〈{strikeMetro, strikeMetro→ ¬efficientMetro},¬efficientMetro〉

Example 4.3 The first argument A1 captures the reasoning that the government
has a budget deficit, and so the government should cut spending. The second argu-
ment A2 captures the reasoning that the economy is weak, and so the government
should not cut spending. The arguments rebut each other.

A1 = 〈{govDeficit, govDeficit→ cutGovSpending}, cutGovSpending〉
A2 = 〈{weakEconomy,weakEconomy→ ¬cutGovSpending},¬cutGovSpending〉

So in simple logic, a rebut attacks the claim of an argument, and an undercut
attacks the premises of the argument (either by attacking one of the literals, or by
attacking the consequent of one of the rules in the premises).

Simple arguments and counterarguments can be used to model defeasible rea-
soning. For this, we use simple rules that are normally correct but sometimes are
incorrect. For instance, if Sid has the goal of going to work, Sid takes the metro.
This is generally true, but sometimes Sid works at home, and so it is no longer
true that Sid takes the metro, as we see in the next example.

Example 4.4 The first argument A1 captures the general rule that if workDay
holds, then useMetro(Sid) holds. The use of the simple rule in A1 requires that the
assumption normal holds. This is given as an assumption. The second argument A2

undercuts the first argument by contradicting the assumption that normal holds

A1 = 〈{workDay,normal,workDay ∧ normal→ useMetro(Sid)},useMetro(Sid)〉
A2 = 〈{workAtHome(Sid),workAtHome(Sid)→ ¬normal},¬normal〉
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If we start with just argument A1, then A1 is undefeated, and so useMetro(Sid) is
an acceptable claim. However, if we then add A2, then A1 is a defeated argument
and A2 is an undefeated argument. Hence, if we have A2, we have to withdraw
useMetro(Sid) as an acceptable claim.

So by having appropriate conditions in the antecedent of a simple rule we can
disable the rule by generating a counterargument that attacks it. This in effect stops
the usage of the simple rule. This means that we have a convention to attack an
argument based on the inferences obtained by the simple logic (e.g. as in Example
4.2 and Example 4.3), or on the rules used (e.g. Example 4.4).

This way to disable rules by adding appropriate conditions (as in Example 4.4)
is analogous to the use abnormality predicates used in formalisms such as circum-
scription (see for example McCarthy (1980)). We can use the same approach to
capture defeasible reasoning in other logics such as classical logic. Note, this does
not mean that we turn the base logic into a nonmonotonic logic. Both simple logic
and classical logic are monotonic logics. Hence, for a simple logic knowledgebase ∆
(and similarly for a classical logic knowledgebase ∆), the set of simple arguments
(respectively classical arguments) obtained from ∆ is a subset of the set of simple
arguments (respectively classical arguments) obtained from ∆ ∪ {α} where α is a
formula not in ∆. But at the level of evaluating arguments and counterarguments,
we have non-monotonic defeasible behaviour. For instance in Example 4.2, with
just A1 we have the acceptable claim that useMetro, but then when we have also
A2, we have to withdraw this claim. In other words, if the set of simple arguments
is {A1}, then we can construct an argument graph with just A1, and by applying
Dung’s dialectical semantics, there is one extension containing A1. However, if the
set of simple arguments is {A1, A2}, then we can construct an argument graph
with A1 attacked by A2, and by applying Dung’s dialectical semantics, there is one
extension containing A2. This illustrates the fact that the argumentation process
is nonmonotonic.

4.2. Counterarguments based on classical logic

Given the expressivity of classical logic (in terms of language and inferences), there
are a number of natural ways that we can define counterarguments.

Definition 4.5: Let A and B be two classical arguments. We define the following
types of classical attack.

• A is a classical defeater of B if Claim(A) ` ¬
∧

Support(B).

• A is a classical direct defeater of B if ∃φ ∈ Support(B) s.t. Claim(A) ` ¬φ.

• A is a classical undercut of B if ∃Ψ ⊆ Support(B) s.t. Claim(A) ≡ ¬
∧

Ψ.

• A is a classical direct undercut of B if ∃φ ∈ Support(B) s.t. Claim(A) ≡ ¬φ.

• A is a classical canonical undercut of B if Claim(A) ≡ ¬
∧

Support(B).

• A is a classical rebuttal of B if Claim(A) ≡ ¬Claim(B).

• A is a classical defeating rebuttal of B if Claim(A) ` ¬Claim(B).

To illustrate these different notions of classical counterargument, we consider the
following examples, and we relate these definitions in Figure 3 where we show that
classical defeaters are the most general of these definitions.
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classical defeater

classical di-
rect defeater

classical undercut classical defeat-
ing rebuttal

classical direct
undercut

classical canon-
ical undercut classical rebuttal

Figure 3. We can represent the containment between the classical attack relations as above where an
arrow from R1 to R2 indicates that R1 ⊆ R2. For proofs, see Besnard and Hunter (2001) and Gorogiannis
and Hunter (2011).

Example 4.6 Let ∆ = {a ∨ b, a↔ b, c→ a,¬a ∧ ¬b, a, b, c, a→ b,¬a,¬b,¬c}

〈{a ∨ b, c}, (a ∨ b) ∧ c〉 is a classical defeater of 〈{¬a,¬b},¬a ∧ ¬b〉
〈{a ∨ b, c}, (a ∨ b) ∧ c〉 is a classical direct defeater of 〈{¬a ∧ ¬b},¬a ∧ ¬b〉
〈{¬a ∧ ¬b},¬(a ∧ b)〉 is a classical undercut of 〈{a, b, c}, a ∧ b ∧ c〉
〈{¬a ∧ ¬b},¬a〉 is a classical direct undercut of 〈{a, b, c}, a ∧ b ∧ c〉
〈{¬a ∧ ¬b},¬(a ∧ b ∧ c)〉 is a classical canonical undercut of 〈{a, b, c}, a ∧ b ∧ c〉
〈{a, a→ b}, b ∨ c〉 is a classical rebuttal of 〈{¬a ∧ ¬b,¬c},¬(b ∨ c)〉
〈{a, a→ b}, b〉 is a classical defeating rebuttal of 〈{¬a ∧ ¬b,¬c},¬(b ∨ c)〉

Using simple logic, the definitions for counterarguments against the support of
another argument are limited to attacking just one of the items in the support.
In contrast, using classical logic, a counterargument can be against more than one
item in the support. For example, in Example 4.7, the undercut is not attacking
an individual premise but rather saying that two of the premises are incompatible
(in this case that the premises lowCostFly and luxuryFly are incompatible).

Example 4.7 Consider the following arguments. A1 is attacked by A2 as A2 is
an undercut of A1 though it is neither a direct undercut nor a canonical undercut.
Essentially, the attack says that the flight cannot be both a low cost flight and a
luxury flight.

A1 = 〈{lowCostFly, luxuryFly, lowCostFly ∧ luxuryFly→ goodFly}, goodFly〉
A2 = 〈{¬lowCostFly ∨ ¬luxuryFly},¬lowCostFly ∨ ¬luxuryFly〉

Trivially, undercuts are defeaters but it is also quite simple to establish that
rebuttals are defeaters. Furthermore, if an argument has defeaters then it has
undercuts. It may happen that an argument has defeaters but no rebuttals as
illustrated next.

Example 4.8 Let ∆ = {¬containsGarlic ∧ goodDish,¬goodDish}. Then the fol-
lowing argument has at least one defeater but no rebuttal.

〈{¬containsGarlic ∧ goodDish},¬containsGarlic〉

There are some important differences between rebuttals and undercuts that can
be seen in the following examples.

Example 4.9 Consider the following arguments. The first argument A1 is a direct
undercut to the second argument A2, but neither rebuts each other. Furthermore,
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A1 “agrees” with the claim of A2 since the premises of A1 could be used for an
alternative argument with the same claim as A2.

A1 = 〈{¬containsGarlic ∧ ¬goodDish},¬containsGarlic〉
A2 = 〈{containsGarlic, containtsGarlic→ ¬goodDish},¬goodDish〉

Example 4.10 Consider the following arguments. The first argument is a rebuttal
of the second argument, but it is not an undercut because the claim of the first
argument is not equivalent to the negation of some subset of the premises of the
second argument.

A1 = 〈{goodDish}, goodDish〉
A2 = 〈{containsGarlic, containtsGarlic→ ¬goodDish},¬goodDish〉

So an undercut for an argument need not be a rebuttal for that argument, and
a rebuttal for an argument need not be an undercut for that argument.

Arguments are not necessarily independent. In a sense, some encompass others
(possibly up to some form of equivalence), which is the topic we now turn to.

Definition 4.11: An argument 〈Φ, α〉 is more conservative than an argument
〈Ψ, β〉 iff Φ ⊆ Ψ and β ` α.

Example 4.12 〈{a}, a ∨ b〉 is more conservative than 〈{a, a→ b}, b〉.

Roughly speaking, a more conservative argument is more general: It is, so to
speak, less demanding on the support and less specific about the claim.

Example 4.13 Consider the following formulae.

p1 = divisibleByTen(50)
p2 = ∀X.divisibleByTen(X)→ divisibleByTwo(X)
p3 = ∀X.divisibleByTwo(X)→ even(X)

Hence, A1 is an argument with the claim “The number 50 is divisible by 2”, and
A2 is an argument with the claim “The number 50 is divisible by 2 and the number
50 is an even number”. However, A1 is more conservative than A2.

A1 = 〈{p1, p2}, divisibleByTwo(50)〉
A2 = 〈{p1, p2,p3, }, even(50) ∧ divisibleByTwo(50)〉

We can use the notion of “more conservative” to help us identify the most useful
counterarguments amongst the potentially large number of counterarguments.

Example 4.14 Let {a, b, c,¬a∨¬b∨¬c} be our knowledgebase. Suppose we start
with the argument 〈{a, b, c}, a ∧ b ∧ c〉. Now we have numerous undercuts to this
argument including the following.

〈{b, c,¬a ∨ ¬b ∨ ¬c},¬a〉
〈{a, c,¬a ∨ ¬b ∨ ¬c},¬b〉
〈{a, b,¬a ∨ ¬b ∨ ¬c},¬c〉
〈{c,¬a ∨ ¬b ∨ ¬c},¬a ∨ ¬b〉
〈{b,¬a ∨ ¬b ∨ ¬c},¬a ∨ ¬c〉
〈{a,¬a ∨ ¬b ∨ ¬c},¬b ∨ ¬c〉
〈{¬a ∨ ¬b ∨ ¬c},¬a ∨ ¬b ∨ ¬c〉
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All these undercuts say the same thing which is that the set {a, b, c} is inconsistent
together with the formula ¬a∨¬b∨¬c. As a result, this can be captured by the last
undercut listed above. Note this is the maximally conservative undercut amongst
the undercuts listed, and moreover it is a canonical undercut. This example there-
fore illustrates how the canonical undercuts are the undercuts that (in a sense)
represent all the other undercuts.

So choosing classical logic as the base logic gives us a wider range of choices for
defining attacks. This has advantages if we want to better capture argumentation
as arising in natural language, or to more precisely capture counterarguments gen-
erated from certain kinds of knowledge. However, it does also mean that we need
to be aware of the consequences of our choice of definition for attacks when using
a generative approach to instantiating argument graphs (as we will discuss in the
next section).

5. Argument graphs

We now investigate the options for instantiating argument graphs. We start with
descriptive argument graphs, and then turn to generative argument graphs, using
simple logic and classical logic.

5.1. Descriptive graphs

For the descriptive approach to argument graphs, we assume that we have some
abstract argument graph as the input, together with some informal description of
each argument. For instance, when we listen to a debate on the radio, we may
identify a number of arguments and counterarguments, and for each of these we
may be able to write a brief text summary. So if we then want to understand this
argumentation in more detail, we may choose to instantiate each argument with
a deductive argument. So for this task we choose the appropriate logical formulae
for the premises and claim for each argument (compatible with the choice of base
logic). Examples of descriptive graphs are given in Figure 4 using simple logic, and
in Example 5.1 and Figure 5 using classical logic.

Example 5.1 Consider the following argument graph where A1 is “The flight is
low cost and luxury, therefore it is a good flight”, and A2 is “A flight cannot be
both low cost and luxury”.

A1 A2

For this, we instantiate the arguments in the above abstract argument graph to
give the following descriptive graph. So in the descriptive graph below, A2 is a
classical undercut to A1.

A1 = 〈{lowCostFly, luxuryFly, lowCostFly ∧ luxuryFly→ goodFly}, goodFly〉

A2 = 〈{¬(lowCostFly ∧ luxuryFly)},¬lowCostFly ∨ ¬luxuryFly〉

So for the approach of descriptive graphs, we do not assume that there is an
automated process that constructs the graphs. Rather the emphasis is on having a
formalization that is a good representation of the argumentation. This is so that we
can formally analyze the descriptive graph, perhaps as part of some sense-making
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bp(high)

ok(diuretic)

¬give(betablocker)
bp(high) ∧ ok(diuretic) ∧ ¬give(betablocker)→ give(diuretic)

give(diuretic)

bp(high)

ok(betablocker)

¬give(diuretic)
bp(high) ∧ ok(betablocker) ∧ ¬give(diuretic)→ give(betablocker)

give(betablocker)

symptom(emphysema),
symptom(emphysema)→ ¬ok(betablocker)
¬ok(betablocker)

Figure 4. A descriptive graph representation of the abstract argument graph in Figure 1 using simple logic.
The atom bp(high) denotes that the patient has high blood pressure. Each attack is a simple undercut
by one argument on another. For the first argument, the premises include the assumptions ok(diuretic)
and ¬give(betablocker) in order to apply its simple rule. Similarly, for the second argument, the premises
include the assumptions ok(betablocker) and ¬give(diuretic) in order to apply its simple rule.

or decision-making process. Nonetheless, we can envisage that in the medium term
natural language processing technology will be able to parse the text or speech (for
instance in a discussion paper or in a debate) in order to automatically identify
the premises and claim of each argument and counterargument.

Since we are primarily interested in representational and analytical issues when
we use descriptive graphs, a richer logic such as classical logic is a more appealing
formalism than a weaker base logic such as simple logic. Given a set of real-world
arguments, it is often easier to model them using deductive arguments with clas-
sical logic as the base logic than than a “rule-based logic” like simple logic as the
base logic. For instance, in Example 5.1, the undercut does not claim that the flight
is not low cost, and it does not claim that it is not luxury. It only claims that the
flight cannot be both low cost and luxury. It is natural to represent this exclusion
using disjunction. As another example of the utility of classical logic as base logic,
consider the importance of quantifiers in knowledge which require a richer language
such as classical logic for reasoning with them. Moreover, if we consider that many
arguments are presented in natural language (spoken or written), and that formal-
izing natural language often calls for a richer formalism such as classical logic (or
even richer), it is valuable to harness classical logic in formalizations of deductive
argumentation.

5.2. Generative graphs based on simple logic

Given a knowledgebase ∆, we can generate an argument graph G = (A,R) where
A is the set of simple arguments obtained from ∆ as follows and R ⊆ A × A is
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bp(high)

ok(diuretic)

bp(high) ∧ ok(diuretic)→ give(diuretic)

¬ok(diuretic) ∨ ¬ok(betablocker)
give(diuretic) ∧ ¬ok(betablocker)

bp(high)

ok(betablocker)

bp(high) ∧ ok(betablocker)→ give(betablocker)

¬ok(diuretic) ∨ ¬ok(betablocker)
give(betablocker) ∧ ¬ok(diuretic)

symptom(emphysema),
symptom(emphysema)→ ¬ok(betablocker)
¬ok(betablocker)

Figure 5. A descriptive graph representation of the abstract argument graph in Figure 1 using classical
logic. The atom bp(high) denotes that the patient has high blood pressure. The top two arguments rebut
each other (i.e. the attack is classical defeating rebut). For this, each argument has an integrity constraint
in the premises that says that it is not ok to give both betablocker and diuretic. So the top argument is
attacked on the premise ok(diuretic) and the middle argument is attacked on the premise ok(betablocker).
So we are using the ok predicate as an normality condition for the rule to be applied (as suggested in
Section 4.1).

〈{a, c, a ∧ c→ ¬a},¬a〉 〈{a, c, a ∧ c→ ¬b},¬b〉 〈{b, b→ ¬c},¬c〉

Figure 6. An exhaustive simple logic argument graph where ∆ = {a, b, c, a∧ c→ ¬a, b→ ¬c, a∧ c→ ¬b}.
Note, that this exhaustive graph contains a self cycle, and an odd length cycle.

simple undercut.

Definition 5.2: Let ∆ be a simple logic knowledgebase. A simple exhaustive
graph for ∆ is an argument graph G = (A,R) where A is Argumentss(∆) and R
is Attackss(∆) defined as follows

Argumentss(∆) = {〈Φ, α〉 | Φ ⊆ ∆ and 〈Φ, α〉 is a simple argument }
Attackss(∆) = {(A,B) | A,B ∈ Argumentss(∆) and A is a simple undercut of B}

This is an exhaustive approach to constructing an argument graph from a knowl-
edgebase since all the simple arguments and all the simple undercuts are in the
argument graph. We give an example of such an argument graph in Figure 6.

Simple logic has the property that for any argument graph, there is a knowledge-
base that can be used to generate it: Let (N,E) be a directed graph (i.e. N is a
set of nodes, and E is a set of edges between nodes), then there is a simple logic
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knowledgebase ∆ such that (Argumentss(∆),Attackss(∆)) is isomorphic to (N,E).
So simple exhaustive graphs are said to be constructively complete for graphs.

To show that simple exhaustive graphs are constructively complete for graphs,
we can use a coding scheme for the premises so that each argument is based on
a single simple rule where the antecedent is a conjunction of one or more positive
literals, and each consequent is a negative literal unique to that simple rule (i.e.
it is an identifier for that rule and therefore for that argument). If we want one
argument to attack another, and the attacking argument has the consequent ¬α,
then the attacked argument needs to have the positive literal α in the antecedent
of its simple rule. The restriction of each rule to only have positive literals as
conditions in the antecedent, and a negative literal as its consequent, means that
the rules cannot be chained. This ensures that the premises of each argument has
only one simple rule. We illustrate this in Figure 6.

Simple exhaustive graphs provide a direct and useful way to instantiate argument
graphs. There are various ways the definitions can be adapted, such as defining the
attacks to be the union of the simple undercuts and the simple rebuts.

5.3. Generative graphs based on classical logic

In this section, we consider generative graphs for classical logic. We start with the
classical exhaustive graphs which are the same as the simple exhaustive graphs
except we use classical arguments and attacks. We show that whilst this provides
a comprehensive presentation of the information, its utility is limited for various
reasons. We then show that by introducing further information, we can address
these shortcomings. To illustrate this, we consider a version of classical exhaus-
tive graphs augmented with preference information. This is just one possibility for
introducing extra information into the construction process.

5.3.1. Classical exhaustive graphs

Given a knowledgebase ∆, we can generate an argument graph G = (A,R) where
A is the set of arguments obtained from ∆ as follows and R ⊆ A×A is one of the
definitions for classical attack.

Definition 5.3: Let ∆ be a classical logic knowledgebase. A classical exhaus-
tive graph is an argument graph G = (A,R) where A is Argumentsc(∆) and R is
AttacksXc (∆)) defined as follows where X is one of the attacks given in Definition
4.5 such as defeater, direct undercut, or rebuttal.

Argumentsc(∆) = {〈Φ, α〉 | Φ ⊆ ∆ and 〈Φ, α〉 is a classical argument }
AttacksXc (∆) = {(A,B) ∈ Argumentsc(∆)× Argumentsc(∆) | A is X of B}

This is a straightforward approach to constructing an argument graph from a
knowledgebase since all the classical arguments and all the attacks (according to
the chosen definition of attack) are in the argument graph as illustrated in Figure
7. However, if we use this exhaustive definition, we obtain infinite graphs, even if
we use a knowledgebase with few formulae. For instance, if we have an argument
〈{a}, a〉, we also have arguments such as 〈{a}, a ∨ a〉, 〈{a}, a ∨ a ∨ a〉, etc, as well
as 〈{a},¬¬a〉, etc.

Even though the graph is infinite, we can present a finite representation of it, by
just presenting a representative of each class of structurally equivalent arguments
(as considered in Amgoud et al. (2011)), where we say that two arguments Ai and
Aj are structurally equivalent in G = (A,R) when the following conditions are
satisfied: (1) if Ak attacks Ai, then Ak attacks Aj ; (2) if Ak attacks Aj , then Ak
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A1 = 〈{a,¬a ∨ ¬b},¬b〉 A2 = 〈{b,¬a ∨ ¬b},¬a〉

A3 = 〈{a, b},¬(¬a ∨ ¬b)〉

A4 = 〈{b}, . . .〉 A5 = 〈{a}, . . .〉

A6 = 〈{¬a ∨ ¬b}, . . .〉 A7 = 〈{a,¬a ∨ ¬b}, . . .〉A8 = 〈{b,¬a ∨ ¬b}, . . .〉

A9 = 〈{a, b}, . . .〉

Figure 7. An exhaustive classical logic argument graph where ∆ = {a, b,¬a∨¬b} and the attack is direct
undercut. Note, argument A4 represents all arguments with a claim that is implied by b, argument A5

represents all arguments with a claim that is implied by a, argument A6 represents all arguments with
a claim that is implied by ¬a ∨ ¬b, argument A7 represents all arguments with a claim that is implied
by a ∧ ¬b except ¬b or any claim implied by a or any claim implied by ¬a ∨ ¬b, argument A8 represents
all arguments with a claim that is implied by ¬a ∧ b except ¬a or any claim implied by b or any claim
implied by ¬a∨¬b, and argument A9 represents all arguments with a claim that is implied by a∧ b except
¬(¬a ∨ ¬b) or any claim implied by a or any claim implied by b.

attacks Ai; (3) if Ai attacks Ak, then Aj attacks Ak; and (4) if Ai attacks Ak, then
Aj attacks Ak. For example, in Figure 7, the argument A4 is a representative for
〈{b}, b〉, 〈{b}, a ∨ b〉, 〈{b},¬a ∨ b〉, etc.

We can also ameliorate the complexity of classical exhaustive graphs by present-
ing a focal graph (as discussed in Section 2). We illustrate this in the following
example.

Example 5.4 Consider the knowledgebase ∆ = {a, b,¬a ∨ ¬b} as used in Figure
7. Suppose we have the focus Π = {A1, A2} (i.e. the arguments of interest), then
the focal graph is as follows.

A1 = 〈{a,¬a ∨ ¬b},¬b〉 A2 = 〈{b,¬a ∨ ¬b},¬a〉

A3 = 〈{a, b},¬(¬a ∨ ¬b)〉

Various postulates have been proposed for classical exhaustive graphs (e.g. Goro-
giannis and Hunter (2011)). Some of these are concerned with consistency of the
set of premises (or set of claims) obtained from the arguments in an extension
according to one of Dung’s dialectical semantics. We give a useful example of one
of these consistency postulates (taken from Gorogiannis and Hunter (2011)): For a
classical exhaustive graph G, the consistent extensions property is defined as
follows where ExtensionS(G) is the set of extensions obtained from the argument
graph G according to the semantics S (e.g. grounded, preferred, etc).⋃

A∈Γ Support(A) 6|= ⊥, for all Γ ∈ ExtensionS(G)

What has been found is that for some choices of attack relation (e.g. rebuttal),
the consistent extension property is not guaranteed (as in Example 5.5) whereas
for other choices of attack relation (e.g. direct undercut), the consistent extension
property is guaranteed. We illustrate a consistent set of premises obtained from
arguments in a preferred extension in Example 5.6.

Example 5.5 Let ∆ = {a ∧ b,¬a ∧ c}. For the reviewed semantics for rebut, the
following are arguments in any extension: A1 = 〈{a∧ b}, b〉 and A2 = 〈{¬a∧ c}, c〉.
Clearly {a∧b,¬a∧c} ` ⊥. Hence, the consistent extensions property fails for rebut.

Example 5.6 Consider the argument graph given in Figure 7. There are three pre-
ferred extensions {A1, A5, A6, A7}, {A2, A4, A6, A8}, and {A3, A4, A5, A9}. In each
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case, the union of the premises is consistent. For instance, for the first extension,

Support(A1) ∪ Support(A5) ∪ Support(A6) ∪ Support(A7) 6` ⊥

The failure of the consistent extensions property with some attack relations is an
issue that may be interpreted as a weakness of the attack relation or of the specific
semantics, and perhaps raises the need for alternatives to be identified. Another
response is that it is not the attack relation and dialectical semantics that should
be responsible for ensuring that all the premises used in the winning arguments are
consistent together. Rather, it could be argued that checking that the premises used
are consistent together should be the responsibility of something external to the
defeat relation and dialectical semantics, and so knowing whether the consistent
extensions property holds or not influences what external mechanisms are required
for checking. Furthermore, checking consistency of premises of sets of arguments
may be part of the graph construction process. For instance, in Garcia and Simari’s
proposal for dialectical trees (Garćıa and Simari (2004)), there are constraints on
what arguments can be added to the tree based on consistency with the premises
of other arguments in the tree.

In the previous section, we saw that the definition for simple exhaustive graphs
(i.e. simple logic as the base logic, with simple undercuts) is constructively com-
plete for graphs. In contrast, the definition for classical exhaustive graphs (i.e.
classical logic, with any of the definitions for counterarguments), is not construc-
tively complete for graphs. Since the premises of a classical argument are consistent,
by definition, it is not possible for a classical argument to attack itself using the
definitions for attack given earlier. But, there are many other graphs for which
there is no classical logic knowledgebase that can be used to generate a classical
exhaustive graph that is isomorphic to it. To illustrate this failure, we consider in
Example 5.7 the problem of constructing a component with two arguments attack-
ing each other. Note, this is not a pathological example as there are many graphs
that contain a small number of nodes and that cannot be generated as a classical
exhaustive graph.

Example 5.7 Let ∆ = {a,¬a} be a classical logic knowledgebase. Hence, there
are two classical arguments A1 and A2 that are direct undercuts of each other.
Plus, there is the representative A3 for arguments with a claim that is strictly
weaker than a (i.e. the claim b is such that {a} ` b and {b} 6` {a}), and there is
the representative A4 for arguments with a claim that is strictly weaker than ¬a
(i.e. the claim b is such that {¬a} ` b and {b} 6` {¬a}).

A1 = 〈{a}, a〉 A2 = 〈{¬a},¬a〉A3 = 〈{¬a}, . . .〉 A4 = 〈{a}, . . .〉

To conclude our discussion of classical exhaustive graphs, the definitions ensure
that all the ways that the knowledge can be used to generate classical arguments
and classical counterarguments (modulo the choice of attack relation) are laid out.
However, for some choices of attack relation, there is a question of consistency
(which may be an issue if no further consistency checking is undertaken). Also, the
definition for classical exhaustive graphs is not structurally complete for graphs
(which means that many argument graphs cannot be generated as classical exhaus-
tive graphs). Perhaps more problematical is that even for small knowledgebases, the
classical exhaustive graphs that are generated are complex. Because of the richness
of classical logic, the knowledge can be in different combinations to create many
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arguments. Whilst, we can ameliorate this problem by presenting argument graphs
using a representative for a class of structurally equivalent arguments, and by using
focal graphs, the graphs can still be large. What is evident from this is that there
needs to be a more selectivity in the process of generating argument graphs. The
generation process needs to discriminate between the arguments (and/or the at-
tacks) based on extra information about the arguments and/or information about
the audience. There are many ways that this can be done. In the next section, we
consider a simple proposal for augmenting the generation process with preferences
over arguments.

5.3.2. Preferential exhaustive graphs

One of the first proposals for capturing the idea of preferences in constructing
argument graphs was preference-based argumentation frameworks (PAF) by Am-
goud and Cayrol (2002). This generalizes Dung’s definition for an argument graph
by introducing a preference relation over arguments that in effect causes an attack
to be ignored when the attacked argument is preferred over the attacker. So in
PAF, we assume a preference relation over arguments, denoted �, as well as a set
of arguments A and an attack relation R. From this, we need to define a defeat
relation D as follows, and then (A,D) is used as the argument graph, instead of
(A,R), with Dung’s usual definitions for extensions.

D = {(Ai, Aj) ∈ R | (Aj , Ai) 6∈�}

So with this definition for defeat, extensions for a preference-based argument graph
(A,R,�) can be obtained as follows: For S denoting complete, preferred, stable or
grounded semantics, Γ ⊆ A, Γ is an extension of (A,R,�) w.r.t. semantics S iff Γ
is an extension of (A,D) w.r.t. semantics S.

We now revise the definition for classical exhaustive graphs to give the following
definition for preferential exhaustive graphs.

Definition 5.8: Let ∆ be a classical logic knowledgebase. A preferential ex-
haustive graph is an argument graph (Argumentsc(∆),AttacksXc,�(∆)) defined as
follows where X is one of the attacks given in Definition 4.5 such as defeater, direct
undercut, or rebuttal.

Argumentsc(∆) = {〈Φ, α〉 | Φ ⊆ ∆ & 〈Φ, α〉 is a classical argument }
AttacksXc,�(∆) = {(A,B) | A,B ∈ Argumentsc(∆) & A is X of B & (B,A) 6∈�}

We give an illustration of a preferential exhaustive graph in Figure 8, and we
give an illustration of a focal graph obtained from a preferential exhaustive graph
in Example 5.9.

Example 5.9 This example concerns two possible treatments for glaucoma caused
by raised pressure in the eye. The first is a prostoglandin analogue (PGA) and the
second is a betablocker (BB). Let ∆ contain the following six formulae. The atom
p1 is the fact that the patient has glaucoma, the atom p2 is the assumption that
it is ok to give PGA, and the atom p3 is the assumption that it is ok to give BB.
Each implicational formula (i.e. p4 and p5) captures the knowledge that if a patient
has glaucoma, and it is ok to give a particular drug, then give that drug. Formula
p6 is an integrity constraint that ensures that only one treatment is given for the
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A1 = 〈{a,¬a ∨ ¬b},¬b〉 A2 = 〈{b,¬a ∨ ¬b},¬a〉

A3 = 〈{a, b},¬(¬a ∨ ¬b)〉

A4 = 〈{b}, . . .〉 A5 = 〈{a}, . . .〉

A6 = 〈{¬a ∨ ¬b}, . . .〉 A7 = 〈{a,¬a ∨ ¬b}, . . .〉A8 = 〈{b,¬a ∨ ¬b}, . . .〉

A9 = 〈{a, b}, . . .〉

Figure 8. The preferential exhaustive graph where the knowledgesbase is ∆ = {a, b,¬a ∨ ¬b} and the
attack is direct undercut. This is the same knowledgebase and attack relation as in Figure 7. For the
preference relation, A1 is preferred to all other arguments, A2 is preferred to all other arguments apart
from A1, and the remaining arguments are equally preferred. So for all i such that i 6= 1, A1 ≺ Ai, and
for all i such that i 6= 1 and i 6= 2, A2 ≺ Ai.

condition.

p1 = glaucoma p4 = glaucoma ∧ ok(PGA)→ give(PGA)
p2 = ok(PGA) p5 = glaucoma ∧ ok(BB)→ give(BB)
p3 = ok(BB) p6 = ¬ok(PGA) ∨ ¬ok(BB)

There are numerous arguments that can be constructed from this set of formulae
such as the following.

A1 = 〈{p1,p2, p4, p6}, give(PGA) ∧ ¬ok(BB)〉 A5 = 〈{p1,p2,p4}, give(PGA)〉
A2 = 〈{p1,p3, p5,p6}, give(BB) ∧ ¬ok(PGA)〉 A6 = 〈{p1,p3,p5}, give(BB)〉
A3 = 〈{p2,p3}, ok(PGA) ∧ ok(BB)〉 A7 = 〈{p2,p6},¬ok(BB)〉
A4 = 〈{p6},¬ok(PGA) ∨ ¬ok(BB)〉 A8 = 〈{p3,p6},¬ok(PGA)〉

Let Argumentsc(∆) be the set of all classical arguments that can be constructed
from ∆, and let the preference relation � be such that Ai � A1 and Ai � A2 for
all i such that i 6= 1 and i 6= 2. Furthermore, let Π = {A1, A2} be the focus (i.e. the
arguments of interest). In other words, we know that each of these two arguments
in the focus contains all the information we are interested in (i.e. we want to
determine the options for treatment taking into account the integrity constraint).
This would give us the following focal graph.

A1 = 〈{p1,p2, p4, p6}, give(PGA) ∧ ¬ok(BB)〉

A2 = 〈{p1,p3, p5, p6}, give(BB) ∧ ¬ok(PGA)〉

By taking this focal graph, we have ignored arguments such as A3 to A8 which do
not affect the dialectical status of A1 or A2 given this preference relation.

Using preferences is a general approach. There is no restriction on what prefer-
ence relation we use over arguments, and there are various natural interpretations
for this ranking such as capturing belief for arguments (where the belief in the
argument can be based on the belief for the premises and/or claim), and capturing
the relative number of votes for arguments (where a group of voters will vote for
or against each argument), etc.

To conclude, by introducing preferences over arguments, we can reduce the num-
ber of attacks that occur. Using preferences over arguments is a form of meta-
information, and with the definition for preference-based argumentation (as de-
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fined by Amgoud and Cayrol (2002)), it supports selectivity in generating argu-
ment graphs that discriminates between arguments and thereby between attacks.
With this definition more practical argument graphs can be constructed than with
the definition for classical exhaustive graphs. Furthermore, using an appropriate
definition for the preference relation, the definition for preference exhaustive graphs
is structurally complete for graphs, and for some choices of preference relation and
dialectical semantics, the consistent extensions property holds (see for example
the use of probability theory for obtaining preferences over arguments by Hunter
(2013)).

6. Comparison with other approaches

To summarize what we have covered in this tutorial, the use of deductive argu-
ments gives a simple, transparent and precise way of representing arguments and
counterarguments. Futhermore, by appropriate choice of base logic, it can capture
a wide variety of real-world examples in descriptive graphs, and by augmenting
the information about the arguments (e.g. by using preferences or probabilistic
information), practical generative graphs can be obtained.

We now briefly compare the approach with the other approaches to structured
argumentation considered in this special issue.

6.1. Assumption-based Argumentation (ABA)

This is a general framework for defining logic-based argumentation systems. As
with deductive argumentation, a language needs to be specified for representing
the information. Rule-based languages and classical logic are possibilities. In addi-
tion, a set of inference rules needs to be specified. This corresponds to a base logic
consequence relation augmented with a set of domain specific inference rules. A
subset of the language is specified as the set of assumptions, and each argument is a
subset of these assumptions. The assumptions in an argument can be viewed as the
premises of the argument, with the claim being implicit. The approach incorporates
a generalized notion of negation that specifies which individual formulae contra-
dict an assumption, and a form of undercut is defined using this notion. Given
a knowledgebase, all the arguments and counterarguments can be generated, and
the attacks relation identified, thereby producing an ”exhaustive graph”. However,
a significant feature of the approach is a set of proof procedures for determining
whether there exists an argument with a given claim in a preferred, grounded, or
ideal extension. Many of the examples used to illustrate and develop ABA are a
simple rule-based language (analogous to simple logic for deductive argumenta-
tion). However, the approach is general, and can use a wide variety of underlying
logics including classical logic (though the same issues as raised in Section 5.3.1
would arise for ABA).

6.2. ASPIC+

This is a general framework for defining structured argumentation systems. As with
deductive argumentation and ABA, a language needs to be specified for represent-
ing the information. Rule-based languages and classical logic are possibilities. As
with ABA, a set of inference rules needs to be specified. Inference rules can be do-
main specific. This contrasts with deductive argumentation where inference rules
are specified by the base logic. An argument in ASPIC+ contains the structure
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of the proof used to obtain the claim from the premises, and so the same pair of
premises and claim can potentially result in many arguments. The defeasibility of
an argument based on a defeasible rule can come from a counterargument that
attacks the use of defeasible rule. This is done via a naming mechanism for the
rules, so an attacker of a defeasible rule has a claim that is the contrary (nega-
tion) of the name of that rule. The defeasibility of a defeasible rule can also come
from counterarguments that either rebut or undercut (called undermine in AS-
PIC+) an argument. ASPIC+ incorporates a preference relation over arguments
which allows for some attacks to be ignored. Given a knowledgebase, all the argu-
ments and counterarguments can be generated, and the attacks relation identified,
thereby producing an ”exhaustive graph”. A main objective in the development
of ASPIC+ is to identify conditions under which instantiations of ASPIC+ satisfy
logical consistency and closure properties.

6.3. Defeasible logic programming (DeLP)

This is an approach to argumentation based on a logic programming language. Each
argument is generated from the knowledgebase, which contains defeasible rules and
strict rules, and these are used to form a tree of arguments and counterarguments:
An argument for a claim of interest is used for the root, and then counterarguments
to this root are children to this root, and then by recursion for each counterargu-
ment, the counterarguments to it are given as its children. The construction process
imposes some consistency constraints, and ensures that no branch is infinite. This
tree provides an exploration of the possible reasons for and against the root of the
tree being a warranted argument. To compare the approach with that of deductive
argumentation, each argument in DeLP can be viewed as a deductive argument
where the base logic is a form of logic programming consequence relation, and each
counterargument can be seen as a form of undercut, but the approach does not in-
volve instantiating abstract argument graphs. A number of variants of DeLP have
been proposed incorporating features such as variable strength arguments Martinez
et al. (2008) and possibility theory Alsinet et al. (2008).

7. Further reading

We provide further reading on formalization of deductive arguments and coun-
terarguments, properties of exhaustive graphs, the importance of selectivity in
generating argument graphs, and on automated reasoning.

7.1. Deductive arguments and counterarguments

There have been a number of proposals for deductive arguments using classical
propositional logic (Amgoud and Cayrol (2002), Besnard and Hunter (2001), Cay-
rol (1995), Gorogiannis and Hunter (2011)), classical predicate logic (Besnard and
Hunter (2005)), description logic (Black et al. (2009), Moguillansky et al. (2010),
Zhang and Lin (2013), Zhang et al. (2010)), temporal logic (Mann and Hunter
(2008)), simple (defeasible) logic (Governatori et al. (2004), Hunter (2010)), con-
ditional logic (Besnard et al. (2013)), and probabilistic logic (Haenni (1998, 2001),
Hunter (2013)).

There has also been progress in understanding the nature of classical logic in com-
putational models of argument. Various types of counterarguments have been pro-
posed including rebuttals (Pollock (1987, 1992)), direct undercuts ((Cayrol (1995),



October 30, 2013 21:0 Argument & Computation deductivefinal

22 Taylor & Francis and I.T. Consultant

Elvang-Gøransson and Hunter (1995), Elvang-Gøransson et al. (1993))), and un-
dercuts and canonical undercuts (Besnard and Hunter (2001)). In most proposals
for deductive argumentation, an argument A is a counterargument to an argu-
ment B when the claim of A is inconsistent with the support of B. It is possible
to generalize this with alternative notions of counterargument. For instance, with
some common description logics, there is not an explicit negation symbol. In the
proposal for argumentation with description logics, Black et al. (2009) used the
description logic notion of incoherence to define the notion of counterargument: A
set of formulae in a description logic is incoherent when there is no set of assertions
(i.e. ground literals) that would be consistent with the formulae. Using this, an ar-
gument A is a counterargument to an argument B when the claim of A together
with the support of B is incoherent.

Meta-arguments for deductive argumentation was first proposed by Wooldridge
et al. (2005), and the investigation of the representation of argument schemes in
deductive argumentation was first proposed by Hunter (2008).

7.2. Properties of exhaustive argument graphs

In order to investigate how Dung’s notion of abstract argumentation can be in-
stantiated with classical logic, Cayrol (1995) presents results concerning stable
extensions of argument graphs where the nodes are classical logic arguments, and
the attacks are direct undercuts. As well as being the first paper to propose instan-
tiating abstract argument graphs with classical arguments, it also showed how the
premises in the arguments in the stable extension correspond to maximal consistent
subsets of the knowledgebase, when the attack relation is direct undercut.

Insights into the options for instantiating abstract argumentation with classical
logic can be based on postulates. Amgoud and Besnard (2009) have proposed a
consistency condition and they examine special cases of knowledge bases and sym-
metric attack relations and whether consistency is satisfied in this context. Then
Amgoud and Besnard (2010) extend this analysis by showing correspondences be-
tween the maximal consistent subsets of a knowledgebase and the maximal conflict-
free sets of arguments.

Given the wide range of options for attack in classical logic, Gorogiannis and
Hunter (2011) propose a series of desirable properties of attack relations to classify
and characterize attack relations for classical logic. Furthermore, they present pos-
tulates regarding the logical content of extensions of argument graphs that may be
constructed with classical logic, and a systematic study is presented of the status
of these postulates in the context of the various combinations of attack relations
and extension semantics.

Use of the notion of generative graphs then raises the question of whether for
a specific logical argument system S, and for any graph G, there is a knowledge-
base such that S generates G. If it holds, then it can be described as a kind of
“structural” property of the system (Hunter and Woltran (2013)). If it fails then,
it means that there are situations that cannot be captured by the system. The ap-
proach of simple exhaustive graphs is constructively complete for graphs, whereas
the approach of classical exhaustive graphs is not.

Preferences have been introduced into classical logic argumentation, and used
to instantiate abstract argumentation with preferences by Amgoud and Cayrol
(2002). Amgoud and Vesic have shown how preferences can be defined so as to
equate inconsistency handling in argumentation with inconsistency handling using
Brewka’s preferred sub-theories (Amgoud and Vesic (2010)).
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7.3. Importance of selectivity in deductive argumentation

Some of the issues raised with classical exhaustive graphs (i.e. the lack of struc-
tural completeness, the failure of consistent extensions property for some choices
of attack relation, and the correspondences with maximally consistent subsets of
the knowledgebase) suggest that often we need a more sophisticated way of con-
structing argument graphs. In other words, to reflect any abstract argument graph
in a logical argument system based on a richer logic, we need to be selective in the
choice of arguments and counterarguments from those that can be generated from
the knowledgebase. Furthermore, this is not just for theoretical interest. Practical
argumentation often seems to use richer logics such as classical logic, and often
the arguments and counterarguments considered are not exhaustive. Therefore, we
need to better understand how the arguments are selected. For example, suppose
agent 1 posits A1 = 〈{b, b→ a}, a〉, and agent 2 then posits A2 = 〈{c, c→ ¬b},¬b〉.
It would be reasonable for this dialogue to stop at this point even though there
are further arguments that can be constructed from the public knowledge such
as A3 = 〈{b, c → ¬b},¬c〉. So in terms of constructing the constellation of argu-
ments and counterarguments from the knowledge, we need to know what are the
underlying principles for selecting arguments.

Selectivity in argumentation is an important and as yet under-developed topic
(Besnard and Hunter (2008)). Two key dimensions are selectivity based on object-
level information and selectivity based on meta-level information.

• Selectivity based on object-level information In argumentation, object-
level information is the information in the premises and claims of the argu-
ments. So if these are generated by deductive reasoning from a knowledgebase,
then the object-level information is the information in the knowledgebase. Selec-
tivity based on object-level information is concerned with having a more concise
presentation of arguments and counterarguments in an argument graph without
changing the outcome of the argumentation. For instance, a more concise pre-
sentation can be obtained by removing structurally equivalent arguments or by
using focal graphs (as discussed in Section 5.3.1).

• Selectivity based on meta-level information In argumentation, meta-level
information is the information about the arguments and counterarguments (e.g.
certainty and sources of the premises in arguments) and information about the
participants or audience of the argumentation (e.g. the goals, beliefs, or biases of
the audience). Selectivity based on meta-level information is concerned with gen-
erating an argument graph using the meta-level information according to sound
principles. By using this extra information, a different argument graph may be
obtained than would be obtained without the extra information. For instance,
with a preference relation over arguments which is a form of meta-level infor-
mation, preference-based argumentation offers a principled way of generating
an argument graph that has potentially fewer attacks between arguments than
obtained with the classical exhaustive argument graph (as discussed in Section
5.3.2).

Various kinds of meta-level information can be considered for argumentation in-
cluding preferences over arguments, weights on arguments, weights on attacks, a
probability distribution over models of the language of the deductive argumenta-
tion, etc. The need for meta-level information also calls for better modeling of the
audience, of what they believe, of what they regard as important for their own
goals, etc, are important features of selectivity (see for example Hunter (2004b,a)).
Consider a journalist writing a magazine article on current affairs. There are many
arguments and counterarguments that could be included, but the writer is selec-



October 30, 2013 21:0 Argument & Computation deductivefinal

24 Taylor & Francis and I.T. Consultant

tive. Selectivity may be based on what the likely reader already believes and what
they may find interesting. Or, consider a lawyer in court, again there may be many
arguments and counterarguments, that could be used, but only some will be used.
Selection will in part be based on what could be believed by the jury, and convince
them to take the side of that lawyer. Or, consider a politician giving a speech to
an audience of potential voters. Here, the politician will select arguments based
on what will be of more interest to the audience. For instance, if the audience is
composed of older citizens, there may be more arguments concerning healthcare,
whereas is the audience is composed of younger citizens, there may be more ar-
guments concerning job opportunities. So whilst selectivity is clearly important in
real-world argumentation, we need principled ways of bring selectivity into struc-
tured argumentation such as that based on deductive argumentation.

7.4. Automated reasoning for deductive argumentation

For argumentation, it is computationally challenging to generate arguments from a
knowledgebase with the minimality constraints using classical logic. If we consider
the problem as an abduction problem, where we seek the existence of a minimal
subset of a set of formulae that implies the consequent, then the problem is in the
second level of the polynomial hierarchy (Eiter and Gottlob (1995)). The difficult
nature of argumentation has been underlined by studies concerning the complexity
of finding individual arguments (Parsons et al. (2003)), the complexity of some de-
cision problems concerning the instantiation of argument graphs with classical logic
arguments and the direct undercut attack relation (Wooldridge et al. (2006)), and
the complexity of finding argument trees (Hirsch and Gorogiannis (2009)). Encoda-
tion of these tasks as quantified Boolean formulae also indicate that development
of algorithms is a difficult challenge (Besnard et al. (2009)), and Post’s framework,
has been used to give a breakdown of where complexity lies in logic-based argu-
mentation (Creignou et al. (2011)).

Despite the computational complexity results, there has been progress in devel-
oping algorithms for constructing arguments and counterarguments. One approach
has been to adapt the idea of connection graphs to enable us to find arguments. A
connection graph (Kowalski. (1975, 1979)) is a graph where a clause is represented
by a node and an arc (φ, ψ) denotes that there is a disjunct in φ with its com-
plement being a disjunct in ψ. Essentially this graph is manipulated to obtain a
proof by contradiction. Furthermore, finding this set of formulae can substantially
reduce the number of formulae that need to be considered for finding proofs for a
claim, and therefore for finding arguments and canonical undercuts. Versions for
full propositional logic, and for a subset of first-order logic, have been developed
and implemented (Efstathiou and Hunter (2011)).

Another approach for algorithms for generating arguments and counterarguments
(canonical undercuts) have been given in a proposal that is based on a SAT solver
(Besnard et al. (2010)). This approach is based on standard SAT technology and
it is also based on finding proofs by contradiction
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