
A Basic Representation and Reasoning System

CMPT 411/721



Reasoning with Definite Clauses

• We next define a simple KR system based on definite clauses.

• A definite clause can be thought of as a simple rule, with no
negation in the head or body of the rule.

• This language is quite restricted, but we can still define
entailment and inference, etc.

• In general, a KB will consist of facts and rules, and we will be
interested in deriving other facts.



The Definite Clause Language: Vocabulary

• Assume that an agent’s knowledge is made up of two
components:
• A database of facts about the domain (or ground atomic

formulas)
E.g. Mother(jane, paul), Male(arvind).

• A collection of rules (or definite clauses)
E.g.
Parent(X ,Y )⇐ Mother(X ,Y )
Gf (X ,Y )⇐ Father(X ,Z ) ∧ Parent(Z ,Y )

• Note that implication is written in the reverse direction from
normal.

• Variables are implicitly universally quantified.

• Variables are local to a clause.



The Definite Clause Language: Vocabulary

The vocabulary of our language is made up of:

1. Logical symbols: “(”, “)”, “,”, “⇐”, “∧”, “.”
• Note that ¬ and ∨ aren’t included.

2. Non-logical symbols:
• Constants, predicate symbols, function symbols

• Uncapitalised strings.
• Meaning of a string is implicit in its use.
• E.g.: johnQsmith, bestFriendOf .

• Variables
• Written as capitalised strings.
• E.g.: X , X1, Variable.



The Definite Clause Language: Syntax

As in FOL, the language expresses

• terms that denote objects in the domain and

• formulas that make assertions about the domain.



The Definite Clause Language: Terms

A term is either

• a variable,

• a constant, or

• an expression of the form f (t1, . . . , tn) where f is a function
symbol, and each ti is a term.



The Definite Clause Language: Formulas

• Formulas are defined as follows:
• An atomic formula (atom) is of the form p or p(t1, . . . , tn)

where p is a predicate symbol, and each ti is a term.
• A body is of the form a1 ∧ · · · ∧ an where each ai is an atom.
• A definite clause is of the form

a. or a⇐ b
where a, the head, is an atom and b is a body.

• A knowledge base is a set of definite clauses.

• Although it isn’t part of the language, a query is
conventionally written in the form ?b. where b is a body.



Example

Example

• (Ground) atomic formulas:

father(ian, sue)
father(fred , chris)
mother(michelle, chris)
num(0)

• Definite clauses:
〈the above atomic formulas〉

gf (ian, chris)⇐ father(ian, fred) ∧ father(fred , chris)
gf (X ,Y )⇐ father(X ,Z ) ∧ father(Z ,Y )
num(s(N))⇐ num(N)
num(X )⇐ father(X ,Y )



Semantics

• Meaning is attaced to symbols the same as in FOL.
• An interpretation is a pair I = 〈D, I 〉 where

1. D 6= ∅ is the domain .
2. I is a mapping that assigns

• to each constant: an element of D
• to each n-ary function symbol: a mapping from Dn ⇒ D and
• to each n-ary predicate symbol: a subset of Dn

(0-ary predicate symbols are assigned true or false in an
interpretation.)



Semantics (continued)

• We first give a semantics for variable-free or ground
expressions:
• Each ground term denotes an individual in the domain:

• Constant c denotes the individual I (c) in I.
• f (t1, . . . , tn) denotes the individual I (f )(t′1, . . . , t

′
n) in I, where

t′i is the individual denoted by ti (i.e. t
′
i = I (t1)).

• Each ground atomic formula is either true or false in an
interpretation.
• Atom p(t1, . . . , tn) is true in I if 〈t′1, . . . , t′n〉 ∈ I (p) where

t′i = I (t1); otherwise false.

• Truth in interpretation I is defined by:
• P ∧ Q is true iff P is true and Q is true.
• Q ⇐ P is true iff P is false or Q is true.

+ At this point every variable-free formula is true or false in an
interpretation.



Semantics (continued)

• We first give a semantics for variable-free or ground
expressions:
• Each ground term denotes an individual in the domain:

• Constant c denotes the individual I (c) in I.
• f (t1, . . . , tn) denotes the individual I (f )(t′1, . . . , t

′
n) in I, where

t′i is the individual denoted by ti (i.e. t
′
i = I (t1)).

• Each ground atomic formula is either true or false in an
interpretation.
• Atom p(t1, . . . , tn) is true in I if 〈t′1, . . . , t′n〉 ∈ I (p) where

t′i = I (t1); otherwise false.

• Truth in interpretation I is defined by:
• P ∧ Q is true iff P is true and Q is true.
• Q ⇐ P is true iff P is false or Q is true.

+ At this point every variable-free formula is true or false in an
interpretation.



Semantics (continued)

• We first give a semantics for variable-free or ground
expressions:
• Each ground term denotes an individual in the domain:

• Constant c denotes the individual I (c) in I.
• f (t1, . . . , tn) denotes the individual I (f )(t′1, . . . , t

′
n) in I, where

t′i is the individual denoted by ti (i.e. t
′
i = I (t1)).

• Each ground atomic formula is either true or false in an
interpretation.
• Atom p(t1, . . . , tn) is true in I if 〈t′1, . . . , t′n〉 ∈ I (p) where

t′i = I (t1); otherwise false.

• Truth in interpretation I is defined by:
• P ∧ Q is true iff P is true and Q is true.
• Q ⇐ P is true iff P is false or Q is true.

+ At this point every variable-free formula is true or false in an
interpretation.



Semantics: Variables

A variable assignment ν is used to define the semantics of formulas
with variables.

• As with FOL, a variable assignment is a function from the set
of variables into the domain.

• A clause C with variables is false in interpretation I just if
there is a variable assignment ν under which the clause is
false.
• Recall: Variables are local to a clause.
• Recall: Variables in a clause are regarded as universally

quantified.

• A clause C with variables is true in I just if it isn’t false.
• I.e. C is true for every variable assignment.



Semantics: Variables

A variable assignment ν is used to define the semantics of formulas
with variables.

• As with FOL, a variable assignment is a function from the set
of variables into the domain.

• A clause C with variables is false in interpretation I just if
there is a variable assignment ν under which the clause is
false.

• Recall: Variables are local to a clause.
• Recall: Variables in a clause are regarded as universally

quantified.

• A clause C with variables is true in I just if it isn’t false.
• I.e. C is true for every variable assignment.



Semantics: Variables

A variable assignment ν is used to define the semantics of formulas
with variables.

• As with FOL, a variable assignment is a function from the set
of variables into the domain.

• A clause C with variables is false in interpretation I just if
there is a variable assignment ν under which the clause is
false.
• Recall: Variables are local to a clause.
• Recall: Variables in a clause are regarded as universally

quantified.

• A clause C with variables is true in I just if it isn’t false.
• I.e. C is true for every variable assignment.



Semantics: Entailment

Finally:
• A set of clauses C is true in an interpretation I iff every

element of C is true in I.
• I is a model of C .

• If S is a set of clauses and g is an atom or conjunction of
atoms, then g is logically entailed by S , written S |= g , iff g
is true in every model of S .
• I.e. every model of S is a model of g .
• So the same definition as in FOL, but in a restricted language.

+ Note the restricted form of |=.

• The relation |= says nothing about computation, proof,
derivation, etc.
+ |= just says what is true, given that other things are true.



Semantics: Entailment

Finally:
• A set of clauses C is true in an interpretation I iff every

element of C is true in I.
• I is a model of C .

• If S is a set of clauses and g is an atom or conjunction of
atoms, then g is logically entailed by S , written S |= g , iff g
is true in every model of S .
• I.e. every model of S is a model of g .
• So the same definition as in FOL, but in a restricted language.

+ Note the restricted form of |=.

• The relation |= says nothing about computation, proof,
derivation, etc.
+ |= just says what is true, given that other things are true.



User’s View of Semantics

Recall that the idea behind our use of logic is that we have a
particular domain in mind to represent, the intended interpretation.

• We choose denotations for our symbols with respect to this
domain and write, as clauses, what is true in that world.
• I.e. we axiomatise our domain.

• When the system gives us a logical consequence of our axioms
we can interpret this answer with respect to our intended
interpretation.

• Again, this is no different than in FOL, except that we have a
limited language.



Semantics and Logical Consequence

• The computer does not have access to the intended
interpretation, but only to the axiomatisation.

• Given an appropriate inference procedure, the computer will
be able to tell whether some statement is a logical
consequence of the axioms.
• If it is a logical consequence, then it is true in the intended

interpretation (assuming the axioms are correct).



Queries and Answers

• As with FOL, we build a formal description of the world in
order to ask questions about it.
• Want to ask about information implicit in the knowledge base.
• If we were just interested in retrieval of explicit information (as

in a database) we wouldn’t need a formal model.

• A query defines the syntax by which we ask whether
something is a logical consequence of the knowledge base.

• Queries can be represented syntactically as
?body .



Queries and Answers

• A query is a question to which we want the answer:
• yes if the query is a consequence of the knowledge base and
• no if the query is not a consequence of the knowledge base.

• No doesn’t mean that the query is false in the intended
interpretation.

• Rather no means that we don’t know whether it is true in the
intended interpretation.



Queries and Answers

• One way of treating queries, is that for
?body .

it is as if we added a clause
answer ⇐ body .

to the knowledge base (for new atom answer)

• We then try to show that answer is a logical consequence of
the KB.

• If we can show that answer is a logical consequence, then so
is body .

• This scheme provides a uniformity wrt query answering; as well
it allows us to express answers via an answer predicate (later).



Variables

• Recall: When a clause contains variables, that clause is true in
an interpretation only if it is true for every possible value of
the variables.

• So if X appears in clause C then
C is true in an interpretation

means that
C is true no matter what individual is denoted by X .

• For example, for

gf (X ,Y )⇐ father(X ,Z ) ∧ parent(Z ,Y ).

to be true, it must be true no matter what individuals are
denoted by X , Y and Z .



Variables

One potentially confusing point is the following:
Variables that appear only in the body of a clause can be
considered to be universally quantified at the level of the
clause, and existentially quantified in the body.

For example, if we use explicit quantifiers ∀X and ∃X , then we
have that

∀X∀Y ∀Z (gf (X ,Y )⇐ father(X ,Z ) ∧ parent(Z ,Y ))

means the same thing as

∀X∀Y (gf (X ,Y )⇐ ∃Z (father(X ,Z ) ∧ parent(Z ,Y )))



Variables and Queries

Variables in queries are handled by our previous translation.

• Example: ?gf (X , ian) can be translated to:

answer ⇐ gf (X , ian)

Or, using the second reading from the previous slide:

answer ⇐ ∃X gf (X , ian)

• I.e answer is true if there is some X who is the grandfather of
ian.



Variables and Queries

• Typically we want to know not just whether there is a
grandfather of Ian, but who the grandfather of Ian is.

• For this we translate the query ?gf (X , ian) to the answer
clause

answer(X )⇐ gf (X , ian)

• In general, if the query is B with free variables X1, . . . ,Xn,
then the answer clause is

answer(X1, . . . ,Xn)⇐ B

• The aim now is to determine which instance of
answer(X1, . . . ,Xn) is a consequence of the KB.



Inference

• So far we have specified what we would like an answer to be,
but not how it can be computed.
• I.e. we have just considered conditions under which a clause is

true in an interpretation.

• Now we want to explore means by which logical consequences
of a set of clauses can be computed solely on the basis of
their form, and without considering interpretations.
• I.e. we want to determine an inference procedure or proof

procedure for our clause language.

• For a proof procedure, we write
S ` g

to mean g can be derived from S .



Proof Procedures

• A proof procedure can be judged by whether it computes
what it is meant to compute.

• As before:
• A proof procedure is sound with respect to a semantics if

everything derivable is justified by the semantics.
That is

If S ` g then S |= g.

• A proof procedure is complete with respect to a semantics if
there is a proof for every logical consequence of the clauses.
That is

If S |= g then S ` g.



A Bottom-up Proof Procedure

• Idea: Starting from the initial facts and rules in the KB, derive
further facts.
+ Also called forward chaining.

• The procedure is based on a rule of derivation, a generalised
rule of “modus ponens”:

If h ⇐ b1 ∧ · · · ∧ bm is a clause, and each bi has been
derived, then h can be derived.

• As a base case, we have that every fact is (trivially) derived.

• We consider the variable-free case first.



A Bottom-up Proof Procedure

Procedure:
C := {};
repeat

choose r ∈ S such that
r is ‘h⇐ b1 ∧ · · · ∧ bm’
bi ∈ C for all i , and
h 6∈ C ;

C := C ∪ {h}

until no more choices

We write S ` g if g ∈ C at the end of the procedure.



Example

Example
a⇐ b ∧ c
b ⇐ d ∧ e
c ⇐ e
d
e
f ⇐ a ∧ g

Obtain:

{d , e, c , b, a}.



Example

Example
a⇐ b ∧ c
b ⇐ d ∧ e
c ⇐ e
d
e
f ⇐ a ∧ g

Obtain: {d , e,

c , b, a}.



Example

Example
a⇐ b ∧ c
b ⇐ d ∧ e
c ⇐ e
d
e
f ⇐ a ∧ g

Obtain: {d , e, c ,

b, a}.



Example

Example
a⇐ b ∧ c
b ⇐ d ∧ e
c ⇐ e
d
e
f ⇐ a ∧ g

Obtain: {d , e, c , b,

a}.



Example

Example
a⇐ b ∧ c
b ⇐ d ∧ e
c ⇐ e
d
e
f ⇐ a ∧ g

Obtain: {d , e, c , b, a}.



Properties of the Procedure:

1 Soundness: Every atom in C is a logical consequence of S .

2 Completeness: If S |= g then S ` g .
+ This just applies to atoms (and not clauses in general).

3 Complexity: The algorithm halts and the number of iterations
is bounded by the number of clauses in S .
• The algorithm is linear in the size of the KB (provided we

index the clauses so that the inside loop can be carried out in
constant time).

4 Fixed Point: The final C is called a fixed point.
• Let I be the interpretation in which every atom in the fixed

point is true and every atom not in the fixed point is false.
Then: I is a model of S .

Exercise: Prove the above items.



Properties of the Procedure:

1 Soundness: Every atom in C is a logical consequence of S .

2 Completeness: If S |= g then S ` g .
+ This just applies to atoms (and not clauses in general).

3 Complexity: The algorithm halts and the number of iterations
is bounded by the number of clauses in S .
• The algorithm is linear in the size of the KB (provided we

index the clauses so that the inside loop can be carried out in
constant time).

4 Fixed Point: The final C is called a fixed point.
• Let I be the interpretation in which every atom in the fixed

point is true and every atom not in the fixed point is false.
Then: I is a model of S .

Exercise: Prove the above items.



Properties of the Procedure:

1 Soundness: Every atom in C is a logical consequence of S .

2 Completeness: If S |= g then S ` g .
+ This just applies to atoms (and not clauses in general).

3 Complexity: The algorithm halts and the number of iterations
is bounded by the number of clauses in S .
• The algorithm is linear in the size of the KB (provided we

index the clauses so that the inside loop can be carried out in
constant time).

4 Fixed Point: The final C is called a fixed point.
• Let I be the interpretation in which every atom in the fixed

point is true and every atom not in the fixed point is false.
Then: I is a model of S .

Exercise: Prove the above items.



Properties of the Procedure:

1 Soundness: Every atom in C is a logical consequence of S .

2 Completeness: If S |= g then S ` g .
+ This just applies to atoms (and not clauses in general).

3 Complexity: The algorithm halts and the number of iterations
is bounded by the number of clauses in S .
• The algorithm is linear in the size of the KB (provided we

index the clauses so that the inside loop can be carried out in
constant time).

4 Fixed Point: The final C is called a fixed point.
• Let I be the interpretation in which every atom in the fixed

point is true and every atom not in the fixed point is false.
Then: I is a model of S .

Exercise: Prove the above items.



Properties of the Procedure:

1 Soundness: Every atom in C is a logical consequence of S .

2 Completeness: If S |= g then S ` g .
+ This just applies to atoms (and not clauses in general).

3 Complexity: The algorithm halts and the number of iterations
is bounded by the number of clauses in S .
• The algorithm is linear in the size of the KB (provided we

index the clauses so that the inside loop can be carried out in
constant time).

4 Fixed Point: The final C is called a fixed point.
• Let I be the interpretation in which every atom in the fixed

point is true and every atom not in the fixed point is false.
Then: I is a model of S .

Exercise: Prove the above items.



A Top-down Proof Procedure

An alternative proof method is to search backwards from the query
to determine whether it is a logical consequence of S .
+ Also called backward-chaining inference

• We define definite clause resolution for the ground case, then
consider the general case with variables.

• An answer clause is of the form

answer ⇐ a1 ∧ · · · ∧ am

• A resolution of the above clause with the clause

a1 ⇐ b1 ∧ · · · ∧ bn is the answer clause

answer ⇐ b1 ∧ · · · ∧ bn ∧ a2 ∧ · · · ∧ am

• An answer is an answer clause with no body



A Top-down Proof Procedure

An alternative proof method is to search backwards from the query
to determine whether it is a logical consequence of S .
+ Also called backward-chaining inference

• We define definite clause resolution for the ground case, then
consider the general case with variables.

• An answer clause is of the form

answer ⇐ a1 ∧ · · · ∧ am

• A resolution of the above clause with the clause

a1 ⇐ b1 ∧ · · · ∧ bn is the answer clause

answer ⇐ b1 ∧ · · · ∧ bn ∧ a2 ∧ · · · ∧ am

• An answer is an answer clause with no body



A Top-down Proof Procedure

An alternative proof method is to search backwards from the query
to determine whether it is a logical consequence of S .
+ Also called backward-chaining inference

• We define definite clause resolution for the ground case, then
consider the general case with variables.

• An answer clause is of the form

answer ⇐ a1 ∧ · · · ∧ am

• A resolution of the above clause with the clause

a1 ⇐ b1 ∧ · · · ∧ bn is the answer clause

answer ⇐ b1 ∧ · · · ∧ bn ∧ a2 ∧ · · · ∧ am

• An answer is an answer clause with no body



A Top-down Proof Procedure

An alternative proof method is to search backwards from the query
to determine whether it is a logical consequence of S .
+ Also called backward-chaining inference

• We define definite clause resolution for the ground case, then
consider the general case with variables.

• An answer clause is of the form

answer ⇐ a1 ∧ · · · ∧ am

• A resolution of the above clause with the clause

a1 ⇐ b1 ∧ · · · ∧ bn is the answer clause

answer ⇐ b1 ∧ · · · ∧ bn ∧ a2 ∧ · · · ∧ am

• An answer is an answer clause with no body



A Top-down Proof Procedure

An alternative proof method is to search backwards from the query
to determine whether it is a logical consequence of S .
+ Also called backward-chaining inference

• We define definite clause resolution for the ground case, then
consider the general case with variables.

• An answer clause is of the form

answer ⇐ a1 ∧ · · · ∧ am

• A resolution of the above clause with the clause

a1 ⇐ b1 ∧ · · · ∧ bn is the answer clause

answer ⇐ b1 ∧ · · · ∧ bn ∧ a2 ∧ · · · ∧ am

• An answer is an answer clause with no body



A Top-down Proof Procedure

• A derivation of a query ?q1 ∧ · · · ∧ qk from rules S is a
sequence of answer clauses γ0, . . . , γp such that

1 γ0 is the answer clause:

answer ⇐ q1 ∧ · · · ∧ qk ,

2 γi is obtained by resolving γi−1 with a clause in S , and
3 γp is an answer.

• This is just proposition resolution under a (slightly) different
guise and in a simpler language.

• Note that it implements a set of support strategy.



A Top-down Proof Procedure

• A derivation of a query ?q1 ∧ · · · ∧ qk from rules S is a
sequence of answer clauses γ0, . . . , γp such that

1 γ0 is the answer clause:

answer ⇐ q1 ∧ · · · ∧ qk ,

2 γi is obtained by resolving γi−1 with a clause in S , and
3 γp is an answer.

• This is just proposition resolution under a (slightly) different
guise and in a simpler language.

• Note that it implements a set of support strategy.



A Top-down Interpreter:

solve(q1 ∧ · · · ∧ qk):

ac := {answer ⇐ q1 ∧ · · · ∧ qk}

repeat

choose C from S
ac := resolve(ac ,C )

until ac is an answer

• Note that in this case, the nondeterministic “choose” relies on
guessing the “right” clause for resolution.

• The differing types of nondeterminism (as in the bottom-up
and top-down procedures) have been called select vs. choose
nondeterminism.



Aside: Select and Choose Nondeterminism

Select nondeterminism:

• For select nondeterminism, if the language is finite and there
are no variables, then it doesn’t matter what nondeterministic
choice you make.

• E.g. for the bottom-up procedure, eventually every derivable
atom will be derived.

• For variables you have to be more careful.

Choose nondeterminism:

• For choose nondeterminism, one has to make the “right”
nondeterministic choice.

• Just because one choice doesn’t lead to an answer doesn’t
mean other choices will be futile.

• So here we also have a search problem.



Example:

Example
a⇐ b ∧ c
b ⇐ d ∧ e
c ⇐ e
d
e
f ⇐ a ∧ g

?a

One sequence of assignments to answer is:
answer ⇐ a

answer ⇐ b ∧ c
answer ⇐ d ∧ e ∧ c
answer ⇐ e ∧ c
answer ⇐ c
answer ⇐ e
answer ⇐



Example:

Example
a⇐ b ∧ c
b ⇐ d ∧ e
c ⇐ e
d
e
f ⇐ a ∧ g

?a

One sequence of assignments to answer is:
answer ⇐ a
answer ⇐ b ∧ c

answer ⇐ d ∧ e ∧ c
answer ⇐ e ∧ c
answer ⇐ c
answer ⇐ e
answer ⇐



Example:

Example
a⇐ b ∧ c
b ⇐ d ∧ e
c ⇐ e
d
e
f ⇐ a ∧ g

?a

One sequence of assignments to answer is:
answer ⇐ a
answer ⇐ b ∧ c
answer ⇐ d ∧ e ∧ c

answer ⇐ e ∧ c
answer ⇐ c
answer ⇐ e
answer ⇐



Example:

Example
a⇐ b ∧ c
b ⇐ d ∧ e
c ⇐ e
d
e
f ⇐ a ∧ g

?a

One sequence of assignments to answer is:
answer ⇐ a
answer ⇐ b ∧ c
answer ⇐ d ∧ e ∧ c
answer ⇐ e ∧ c

answer ⇐ c
answer ⇐ e
answer ⇐



Example:

Example
a⇐ b ∧ c
b ⇐ d ∧ e
c ⇐ e
d
e
f ⇐ a ∧ g

?a

One sequence of assignments to answer is:
answer ⇐ a
answer ⇐ b ∧ c
answer ⇐ d ∧ e ∧ c
answer ⇐ e ∧ c
answer ⇐ c

answer ⇐ e
answer ⇐



Example:

Example
a⇐ b ∧ c
b ⇐ d ∧ e
c ⇐ e
d
e
f ⇐ a ∧ g

?a

One sequence of assignments to answer is:
answer ⇐ a
answer ⇐ b ∧ c
answer ⇐ d ∧ e ∧ c
answer ⇐ e ∧ c
answer ⇐ c
answer ⇐ e

answer ⇐



Example:

Example
a⇐ b ∧ c
b ⇐ d ∧ e
c ⇐ e
d
e
f ⇐ a ∧ g

?a

One sequence of assignments to answer is:
answer ⇐ a
answer ⇐ b ∧ c
answer ⇐ d ∧ e ∧ c
answer ⇐ e ∧ c
answer ⇐ c
answer ⇐ e
answer ⇐



Notes

1 When we have derived the answer, we can read a bottom-up
“proof” in the opposite direction.
• Also every top-down derivation corresponds to a bottom-up

proof and every bottom-up proof has a corresponding
top-down derivation.

2 The preceding equivalence can be used to show the soundness
and completeness of the derivation procedure.



Variables and Substitutions

Variables and substitutions are handled exactly as in FOL:

• An instance of a clause is obtained by uniformly substituting
terms for variables in the clause.

• If a clause is true in an interpretation then any instance will
also be true in that interpretation.

• A substitution is a set of statements of the form v/t, where v
is a variable and t is a term.

Problem: There may be infinitely many instances of a clause if we
have function symbols.

• E.g.: num(0), num(s(0)), num(s(s(0))), . . .



Variables and Substitutions

• A substitution is in normal form if each variable on the
left-hand side appears nowhere else in the substitution.
• Assume all substitutions are in normal form.

• A substitution θ applied to an expression e is an expression eθ
which is like e, but with all instances of variables on the lhs of
a ”/” replaced by the term on the rhs.

• E.g., applying
θ = {X/Y ,Z/f (U)}

to
p(X ,Y )⇐ q(a,Z ).

is the instance
p(Y ,Y )⇐ q(a, f (U)).



Variables and Substitutions

Recall:

• Substitution θ is a unifier of atoms e1 and e2 if e1θ = e2θ.
• E.g. {X/a,Y /b} is a unifier of t(a,Y , c) and t(X , b, c).

• There may be many unifiers for terms and clauses.
• E.g, p(X ,Y ) and p(Z ,Z ) have unifiers

{X/b, Y /b, Z/b}
{X/f (a), Y /f (a), Z/f (a)}
{X/Z , Y /Z}.

• The third unifier is preferred because it implies the first two.
• This is called the most general unifier, or MGU.
• So the MGU is a unifier of two terms that is implied by all

other unifiers.

• MGU’s exist and are unique, up to the renaming of variables.



Variables and Substitutions

Recall:

• Substitution θ is a unifier of atoms e1 and e2 if e1θ = e2θ.
• E.g. {X/a,Y /b} is a unifier of t(a,Y , c) and t(X , b, c).

• There may be many unifiers for terms and clauses.
• E.g, p(X ,Y ) and p(Z ,Z ) have unifiers

{X/b, Y /b, Z/b}
{X/f (a), Y /f (a), Z/f (a)}
{X/Z , Y /Z}.

• The third unifier is preferred because it implies the first two.
• This is called the most general unifier, or MGU.
• So the MGU is a unifier of two terms that is implied by all

other unifiers.

• MGU’s exist and are unique, up to the renaming of variables.



Variables and Substitutions

Recall:

• Substitution θ is a unifier of atoms e1 and e2 if e1θ = e2θ.
• E.g. {X/a,Y /b} is a unifier of t(a,Y , c) and t(X , b, c).

• There may be many unifiers for terms and clauses.
• E.g, p(X ,Y ) and p(Z ,Z ) have unifiers

{X/b, Y /b, Z/b}
{X/f (a), Y /f (a), Z/f (a)}
{X/Z , Y /Z}.

• The third unifier is preferred because it implies the first two.
• This is called the most general unifier, or MGU.
• So the MGU is a unifier of two terms that is implied by all

other unifiers.

• MGU’s exist and are unique, up to the renaming of variables.



Bottom-up Procedure with Variables

• We can do the bottom-up procedure for clauses with
variables, if we carry out the bottom-up procedure for all
ground instances of the variables in the axioms.

• We must make certain that our procedure is fair, in that every
usable rule is chosen eventually.

• E.g., consider:
num(s(N))⇐ num(N)
num(0)
mother(sue,mary).

An unfair strategy could always choose the first rule, and so
never derive that mother(sue,mary).

• Our previous procedure, extended to allow variables, is sound
and complete (so long as it is fair).



Bottom-up Procedure with Variables

If the domain is known to be finite, then one can handle variables
by:

1 Substitute all possible instances of terms for the variables in
the KB.
• This is known as grounding the KB.

2 Then work with the grounded KB, using the procedure for
propositional KBs.

+ Thus the first-order set of rules is effectively translated into a
KB in propositional logic.



Top-down Procedure with Variables

Or: Definite clause resolution with variables.

• Suppose we have the answer clause
answer(t1, . . . , tk)⇐ a1 ∧ · · · ∧ am

• The resolution of the above clause with the clause
a⇐ b1 ∧ · · · ∧ bn

where a and a1 have most general unifier θ is the answer
clause:

[answer(t1, . . . , tk)⇐ b1 ∧ · · · ∧ bn ∧ a2 ∧ · · · ∧ am]θ

• This is known as SLD resolution

• SLD resolution is the principal control strategy that underlies
PROLOG.



Definite clause resolution with variables

• A derivation from rules S is a sequence of answer clauses
γ0, . . . , γn such that

1 γ0 is the original answer clause.
If the query is B with free variables V1, . . . , Vk , then γ0 is

answer(V1, . . . ,Vk)⇐ B.
2 γi is obtained by resolving γi−1 with a clause in S .
3 γn is an answer.

• That is, γn is of the form

answer(t1, . . . , tk)⇐ .

When this occurs we have an answer, (V1 = t1, . . . ,Vk = tk).



Example

Example

(from before):

gf (X ,Y )⇐ father(X ,Z ) ∧ parent(Z ,Y )
parent(X ,Y )⇐ mother(X ,Y )
parent(X ,Y )⇐ father(X ,Y )
mother(michelle, sue)
father(ian, sue)
mother(sue, chris)
father(george, ian)



Example

For query ?gf (G , sue), we have the derivation:

1 answer(G )⇐ gf (G , sue)

This is resolved with the first clause in the KB with
substitution {X1/G ,Y1/sue} to obtain

2 answer(G )⇐ father(G ,Z1) ∧ parent(Z1, sue)
This is resolved with father(george, ian) with substitution
{G/george,Z1/ian} to obtain

3 answer(george)⇐ parent(ian, sue)
This is resolved with parent(X2,Y2)⇐ father(X2,Y2) with
substitution {X2/ian,Y2/sue} to obtain

4 answer(george)⇐ father(ian, sue)
This is resolved with father(ian, sue) to obtain

5 answer(george)⇐
An answer thus is G = george.



Example

For query ?gf (G , sue), we have the derivation:

1 answer(G )⇐ gf (G , sue)
This is resolved with the first clause in the KB with
substitution {X1/G ,Y1/sue} to obtain

2 answer(G )⇐ father(G ,Z1) ∧ parent(Z1, sue)

This is resolved with father(george, ian) with substitution
{G/george,Z1/ian} to obtain

3 answer(george)⇐ parent(ian, sue)
This is resolved with parent(X2,Y2)⇐ father(X2,Y2) with
substitution {X2/ian,Y2/sue} to obtain

4 answer(george)⇐ father(ian, sue)
This is resolved with father(ian, sue) to obtain

5 answer(george)⇐
An answer thus is G = george.



Example

For query ?gf (G , sue), we have the derivation:

1 answer(G )⇐ gf (G , sue)
This is resolved with the first clause in the KB with
substitution {X1/G ,Y1/sue} to obtain

2 answer(G )⇐ father(G ,Z1) ∧ parent(Z1, sue)
This is resolved with father(george, ian) with substitution
{G/george,Z1/ian} to obtain

3 answer(george)⇐ parent(ian, sue)

This is resolved with parent(X2,Y2)⇐ father(X2,Y2) with
substitution {X2/ian,Y2/sue} to obtain

4 answer(george)⇐ father(ian, sue)
This is resolved with father(ian, sue) to obtain

5 answer(george)⇐
An answer thus is G = george.



Example

For query ?gf (G , sue), we have the derivation:

1 answer(G )⇐ gf (G , sue)
This is resolved with the first clause in the KB with
substitution {X1/G ,Y1/sue} to obtain

2 answer(G )⇐ father(G ,Z1) ∧ parent(Z1, sue)
This is resolved with father(george, ian) with substitution
{G/george,Z1/ian} to obtain

3 answer(george)⇐ parent(ian, sue)
This is resolved with parent(X2,Y2)⇐ father(X2,Y2) with
substitution {X2/ian,Y2/sue} to obtain

4 answer(george)⇐ father(ian, sue)

This is resolved with father(ian, sue) to obtain

5 answer(george)⇐
An answer thus is G = george.



Example

For query ?gf (G , sue), we have the derivation:

1 answer(G )⇐ gf (G , sue)
This is resolved with the first clause in the KB with
substitution {X1/G ,Y1/sue} to obtain

2 answer(G )⇐ father(G ,Z1) ∧ parent(Z1, sue)
This is resolved with father(george, ian) with substitution
{G/george,Z1/ian} to obtain

3 answer(george)⇐ parent(ian, sue)
This is resolved with parent(X2,Y2)⇐ father(X2,Y2) with
substitution {X2/ian,Y2/sue} to obtain

4 answer(george)⇐ father(ian, sue)
This is resolved with father(ian, sue) to obtain

5 answer(george)⇐
An answer thus is G = george.



Example

Notes:

• Another answer could have been chosen by choosing different
clauses for resolution.

• Some choice of clauses for resolution will lead to a dead end.

• There is an (implicit) renaming of variables for each
instance/use of a clause.

• A full implementation will need to save state information in
order to determine another answer.



Example: Simulating Systems

Example

Consider the domain of circuits.

• We have objects consisting of gates of various types, signal
values (i.e. on and off ), etc.

• We use the following predicates and functions:

1 gate(G ,T ) means that gate G is of type T .
E.g.: gate(x1, xor), gate(x2, xor), gate(a1, and), gate(a2, and),
gate(o1, or).

2 Connected(P1,P2) means that port P1 is connected to port P2.
3 in(N,G ) denotes input port N of gate G .
4 out(G ) denotes the output port of gate G .
5 out(N,G ) denotes output port N of circuit G .



Example: Simulating Systems

• For connectivity we can assert something like:

value(X ,V )⇐ connected(Y ,X ) ∧ value(Y ,V ).

• To say that an and gate has output corresponding to the
conjunction of its inputs we could have:

value(out(D), on) ⇐ gate(D, and)

∧ value(in(1,D), on)

∧ value(in(2,D), on).

value(out(D), off )⇐ gate(D, and)∧ value(in(1,D), off ).

value(out(D), off )⇐ gate(D, and)∧ value(in(2,D), off ).



Example: Simulating Systems

Consider a full adder:

X1	


X2	



A2	



A1	


O1	



Full Adder 

1 
2 

3 

1 

2 



Example: Simulating Systems

• We can add assertions about the values of the inputs to the
circuits such as

value(in(1, adder), on),

value(in(2, adder), off ),

value(in(3, adder), on)

• We can determine the values of the output ports with the
query

?value(out(1, adder),Out1) ∧ value(out(2, adder),Out2)

• This returns Out1 = off and Out2 = on.



Bottom-Up vs. Top-Down Derivations

Ask: why select top-down procedure over bottom-up, or vice versa?
• Top-down/Backward Chaining:

• Query-answering
• Directed reasoning
• Good for user acceptability and diagnosis of KB bugs.
• Worst-case exponential complexity
• Harder to implement

• Bottom-up/Forward Chaining:
• Gives all solutions
• More responsive to changes in domain facts

• E.g. Rules of form: Action ⇐ Condition

• Linear procedure
• More suitable for finite domains.
• With variables, typically need to ground the knowledge base

first


	Basic Reasoners
	Definite Clause Reasoning
	Semantics
	Queries
	Variables
	Inference
	A Bottom-up Proof Procedure
	A Top-down Proof Procedure
	Substitutions


