A Basic Representation and Reasoning System

CMPT 411/721

Reasoning with Definite Clauses

We next define a simple KR system based on definite clauses.

A definite clause can be thought of as a simple rule, with no
negation in the head or body of the rule.

This language is quite restricted, but we can still define
entailment and inference, etc.

In general, a KB will consist of facts and rules, and we will be
interested in deriving other facts.

The Definite Clause Language: Vocabulary

® Assume that an agent’s knowledge is made up of two
components:
® A database of facts about the domain (or ground atomic
formulas)
E.g. Mother(jane, paul), Male(arvind).
® A collection of rules (or definite clauses)
Eg.
Parent(X,Y) < Mother(X,Y)
Gf(X,Y) < Father(X,Z) A Parent(Z,Y)
® Note that implication is written in the reverse direction from
normal.

® Variables are implicitly universally quantified.

® Variables are local to a clause.

The Definite Clause Language: Vocabulary

The vocabulary of our language is made up of:
1. Logical symbols: “(", “)", “", “&", “A", "
® Note that — and V aren’t included.
2. Non-logical symbols:
® Constants, predicate symbols, function symbols
® Uncapitalised strings.
® Meaning of a string is implicit in its use.
® E.g.: johnQsmith, bestFriendOf.
® Variables

® Written as capitalised strings.
® E.g.: X, Xi, Variable.

The Definite Clause Language: Syntax

As in FOL, the language expresses
® terms that denote objects in the domain and

® formulas that make assertions about the domain.

The Definite Clause Language: Terms

A term is either
® 3 variable,
® 3 constant, or

® an expression of the form f(ti,...,t,) where f is a function
symbol, and each t; is a term.

The Definite Clause Language: Formulas

® Formulas are defined as follows:
® An atomic formula (atom) is of the form p or p(ty,...,t,)
where p is a predicate symbol, and each t; is a term.
® A body is of the form a; A --- A a, where each a; is an atom.
® A definite clause is of the form
a. or a<b
where a, the head, is an atom and b is a body.

® A knowledge base is a set of definite clauses.

® Although it isn't part of the language, a query is
conventionally written in the form 7b. where b is a body.

Example

Example

¢ (Ground) atomic formulas:
father(ian, sue)
father(fred, chris)
mother(michelle, chris)
num(0)

® Definite clauses:
(the above atomic formulas)

gf (ian, chris) <= father(ian, fred) A father(fred, chris)
gf(X,Y) < father(X, Z) A father(Z,Y)

num(s(N)) <= num(N)

num(X) < father(X,Y)

Semantics

® Meaning is attaced to symbols the same as in FOL.
® An interpretation is a pair Z = (D,) where
1. D #) is the domain .
2. | is a mapping that assigns
® to each constant: an element of D
® to each n-ary function symbol: a mapping from D" = D and
® to each n-ary predicate symbol: a subset of D"

(0-ary predicate symbols are assigned true or false in an
interpretation.)

Semantics (continued)

® We first give a semantics for variable-free or ground
expressions:
® Each ground term denotes an individual in the domain:

® Constant ¢ denotes the individual /(c) in Z.
® f(ti,...,t,) denotes the individual I(f)(t{,...,t;) in Z, where
t/ is the individual denoted by t; (i.e. t/ = I(t1)).

Semantics (continued)

® We first give a semantics for variable-free or ground
expressions:
® Each ground term denotes an individual in the domain:
® Constant ¢ denotes the individual /(c) in Z.
® f(ti,...,t,) denotes the individual I(f)(t{,...,t;) in Z, where
t/ is the individual denoted by t; (i.e. t/ = I(t1)).
® Each ground atomic formula is either true or false in an
interpretation.
® Atom p(ti,...,ts) is truein T if (t1,...,t},) € I(p) where
t! = I(t1); otherwise false.

Semantics (continued)

® We first give a semantics for variable-free or ground
expressions:
® Each ground term denotes an individual in the domain:
® Constant ¢ denotes the individual /(c) in Z.
® f(ti,...,t,) denotes the individual I(f)(t{,...,t;) in Z, where
t/ is the individual denoted by t; (i.e. t/ = I(t1)).
® Each ground atomic formula is either true or false in an
interpretation.
® Atom p(ti,...,ts) is truein T if (t1,...,t},) € I(p) where
t/ = I(t1); otherwise false.
® Truth in interpretation Z is defined by:
® PAQ is true iff Pis true and Q is true.
® Q < Pis true iff P is false or Q is true.

== At this point every variable-free formula is true or false in an
interpretation.

Semantics: Variables
A variable assignment v is used to define the semantics of formulas
with variables.

® As with FOL, a variable assignment is a function from the set
of variables into the domain.

Semantics: Variables

A variable assignment v is used to define the semantics of formulas
with variables.
® As with FOL, a variable assignment is a function from the set
of variables into the domain.

® A clause C with variables is false in interpretation Z just if
there is a variable assignment v under which the clause is

false.

Semantics: Variables

A variable assignment v is used to define the semantics of formulas
with variables.
® As with FOL, a variable assignment is a function from the set
of variables into the domain.
® A clause C with variables is false in interpretation Z just if
there is a variable assignment v under which the clause is
false.

® Recall: Variables are local to a clause.
® Recall: Variables in a clause are regarded as universally

quantified.
® A clause C with variables is true in Z just if it isn’t false.
® |.e. C is true for every variable assignment.

Semantics: Entailment

Finally:
® A set of clauses C is true in an interpretation T iff every
element of C is true in Z.
® T is a model of C.

Semantics: Entailment

Finally:
® A set of clauses C is true in an interpretation T iff every
element of C is true in Z.
® T is a model of C.

e If S is a set of clauses and g is an atom or conjunction of
atoms, then g is logically entailed by S, written S |= g, iff g
is true in every model of S.

® |.e. every model of S is a model of g.
® So the same definition as in FOL, but in a restricted language.
1= Note the restricted form of |=.

® The relation |= says nothing about computation, proof,
derivation, etc.
1= |= just says what is true, given that other things are true.

User's View of Semantics

Recall that the idea behind our use of logic is that we have a
particular domain in mind to represent, the intended interpretation.

® We choose denotations for our symbols with respect to this
domain and write, as clauses, what is true in that world.
® |.e. we axiomatise our domain.

® When the system gives us a logical consequence of our axioms
we can interpret this answer with respect to our intended
interpretation.

® Again, this is no different than in FOL, except that we have a
limited language.

Semantics and Logical Consequence

® The computer does not have access to the intended
interpretation, but only to the axiomatisation.

® Given an appropriate inference procedure, the computer will
be able to tell whether some statement is a logical
consequence of the axioms.

® If it is a logical consequence, then it is true in the intended
interpretation (assuming the axioms are correct).

Queries and Answers

® As with FOL, we build a formal description of the world in
order to ask questions about it.

® Want to ask about information implicit in the knowledge base.
® |f we were just interested in retrieval of explicit information (as
in a database) we wouldn't need a formal model.
® A query defines the syntax by which we ask whether
something is a logical consequence of the knowledge base.

® Queries can be represented syntactically as
?body.

Queries and Answers

® A query is a question to which we want the answer:
® yes if the query is a consequence of the knowledge base and
® no if the query is not a consequence of the knowledge base.

® No doesn't mean that the query is false in the intended
interpretation.

® Rather no means that we don’t know whether it is true in the
intended interpretation.

Queries and Answers

One way of treating queries, is that for
?body.

it is as if we added a clause
answer < body.

to the knowledge base (for new atom answer)

We then try to show that answer is a logical consequence of
the KB.

If we can show that answer is a logical consequence, then so
is body.

This scheme provides a uniformity wrt query answering; as well
it allows us to express answers via an answer predicate (later).

Variables

® Recall: When a clause contains variables, that clause is true in
an interpretation only if it is true for every possible value of
the variables.

® So if X appears in clause C then
C is true in an interpretation
means that
C is true no matter what individual is denoted by X.

® For example, for
gf(X,Y) < father(X, Z) A parent(Z,Y).

to be true, it must be true no matter what individuals are
denoted by X, Y and Z.

Variables

One potentially confusing point is the following:
Variables that appear only in the body of a clause can be
considered to be universally quantified at the level of the
clause, and existentially quantified in the body.

For example, if we use explicit quantifiers VX and 3X, then we
have that

VXVYVZ(gf(X,Y) < father(X, Z) A parent(Z,Y))
means the same thing as

VXVY (gf(X,Y) < 3Z(father(X, Z) A parent(Z,Y)))

Variables and Queries

Variables in queries are handled by our previous translation.
e Example: 7gf(X,ian) can be translated to:

answer < gf (X, ian)
Or, using the second reading from the previous slide:
answer < 3X gf (X, ian)

® |.e answer is true if there is some X who is the grandfather of
ian.

Variables and Queries

Typically we want to know not just whether there is a
grandfather of lan, but who the grandfather of lan is.

For this we translate the query ?gf (X, ian) to the answer
clause

answer(X) < gf (X, ian)

In general, if the query is B with free variables Xi, ..., X,
then the answer clause is

answer(Xi,...,X,) < B

The aim now is to determine which instance of
answer(Xi,...,Xy) is a consequence of the KB.

Inference

® So far we have specified what we would like an answer to be,
but not how it can be computed.
® |.e. we have just considered conditions under which a clause is
true in an interpretation.

® Now we want to explore means by which logical consequences
of a set of clauses can be computed solely on the basis of
their form, and without considering interpretations.

® |.e. we want to determine an inference procedure or proof
procedure for our clause language.
® For a proof procedure, we write
Skg
to mean g can be derived from S.

Proof Procedures

® A proof procedure can be judged by whether it computes
what it is meant to compute.

® As before:

® A proof procedure is sound with respect to a semantics if
everything derivable is justified by the semantics.
That is
IfStgthenS = g.

® A proof procedure is complete with respect to a semantics if
there is a proof for every logical consequence of the clauses.
That is
IfSEgthenStg.

A Bottom-up Proof Procedure

Idea: Starting from the initial facts and rules in the KB, derive
further facts.

1= Also called forward chaining.

The procedure is based on a rule of derivation, a generalised

rule of “modus ponens”:
If h <<= by AN --- A by, is a clause, and each b; has been

derived, then h can be derived.

As a base case, we have that every fact is (trivially) derived.

We consider the variable-free case first.

A Bottom-up Proof Procedure

Procedure:
C={}h
repeat

choose r € S such that
ris‘h<biAN---NAbpy’
b;j € C for all i, and
h¢ C;

C:=CU{h}

until no more choices

We write S F g if g € C at the end of the procedure.

Example

Example
a<=bAc
b<=dAne
c<e
d
e
f<alg

Obtain:

Example

Example
a<=bAc
b<=dAne
c<e
d
e
f<alg

Obtain: {d, e,

Example

Example
a<=bAc
b<=dAne
c<e
d
e
f<alg

Obtain: {d,e,c,

Example

Example
a<=bAc
b<=dAne
c<e
d
e
f<alg

Obtain: {d,e,c,b,

Example

Example
a<=bAc
b<=dAne
c<e
d
e
f<alg

Obtain: {d,e,c, b, a}.

Properties of the Procedure:

@ Soundness: Every atom in C is a logical consequence of S.

Properties of the Procedure:

@ Soundness: Every atom in C is a logical consequence of S.

® Completeness: If S = g then S+ g.
v This just applies to atoms (and not clauses in general).

Properties of the Procedure:

@ Soundness: Every atom in C is a logical consequence of S.

® Completeness: If S = g then S+ g.
v This just applies to atoms (and not clauses in general).

© Complexity: The algorithm halts and the number of iterations
is bounded by the number of clauses in S.

® The algorithm is linear in the size of the KB (provided we
index the clauses so that the inside loop can be carried out in
constant time).

Properties of the Procedure:

@ Soundness: Every atom in C is a logical consequence of S.

® Completeness: If S = g then S+ g.
v This just applies to atoms (and not clauses in general).

© Complexity: The algorithm halts and the number of iterations
is bounded by the number of clauses in S.

® The algorithm is linear in the size of the KB (provided we
index the clauses so that the inside loop can be carried out in
constant time).

O Fixed Point: The final C is called a fixed point.

® Let Z be the interpretation in which every atom in the fixed
point is true and every atom not in the fixed point is false.
Then: Z is a model of S.

Properties of the Procedure:

@ Soundness: Every atom in C is a logical consequence of S.

® Completeness: If S = g then S+ g.
v This just applies to atoms (and not clauses in general).

© Complexity: The algorithm halts and the number of iterations
is bounded by the number of clauses in S.

® The algorithm is linear in the size of the KB (provided we
index the clauses so that the inside loop can be carried out in
constant time).

O Fixed Point: The final C is called a fixed point.

® Let Z be the interpretation in which every atom in the fixed
point is true and every atom not in the fixed point is false.
Then: Z is a model of S.

Exercise: Prove the above items.

A Top-down Proof Procedure

An alternative proof method is to search backwards from the query
to determine whether it is a logical consequence of S.
1= Also called backward-chaining inference

A Top-down Proof Procedure

An alternative proof method is to search backwards from the query
to determine whether it is a logical consequence of S.
1= Also called backward-chaining inference

® We define definite clause resolution for the ground case, then
consider the general case with variables.

A Top-down Proof Procedure

An alternative proof method is to search backwards from the query
to determine whether it is a logical consequence of S.
1= Also called backward-chaining inference

® We define definite clause resolution for the ground case, then
consider the general case with variables.

® An answer clause is of the form

answer <=ai AN---N\am

A Top-down Proof Procedure

An alternative proof method is to search backwards from the query
to determine whether it is a logical consequence of S.
1= Also called backward-chaining inference

® We define definite clause resolution for the ground case, then
consider the general case with variables.

® An answer clause is of the form
answer <=ai AN---N\am

® A resolution of the above clause with the clause
ay <= by AN---ANb, isthe answer clause

answer <= by AN---AbyNaxA---Aam

A Top-down Proof Procedure

An alternative proof method is to search backwards from the query
to determine whether it is a logical consequence of S.
1= Also called backward-chaining inference

® We define definite clause resolution for the ground case, then
consider the general case with variables.

® An answer clause is of the form
answer <=ai AN---N\am

® A resolution of the above clause with the clause
ay <= by AN---ANb, isthe answer clause

answer <= by AN---AbyNaxA---Aam

® An answer is an answer clause with no body

A Top-down Proof Procedure

® A derivation of a query 71 A--- A gk from rules S is a
sequence of answer clauses 7, . ..,7p such that

@ o is the answer clause:
answer <= q; A -+ A qx,

@® ~; is obtained by resolving «;_; with a clause in S, and
© , is an answer.

A Top-down Proof Procedure

® A derivation of a query 71 A--- A gk from rules S is a
sequence of answer clauses 7, . ..,7p such that

@ o is the answer clause:
answer <= qi1 N\ --- N\ qk,

@® ~; is obtained by resolving «;_; with a clause in S, and
© , is an answer.

® This is just proposition resolution under a (slightly) different
guise and in a simpler language.

® Note that it implements a set of support strategy.

A Top-down Interpreter:

solve(gi A -+ A qk):
ac := {answer <= q1 A -+ A qk}
choose C from S

repeat ac := resolve(ac, C)

until ac is an answer

® Note that in this case, the nondeterministic “choose” relies on
guessing the “right” clause for resolution.

® The differing types of nondeterminism (as in the bottom-up
and top-down procedures) have been called select vs. choose
nondeterminism.

Aside: Select and Choose Nondeterminism

Select nondeterminism:
® For select nondeterminism, if the language is finite and there
are no variables, then it doesn’'t matter what nondeterministic
choice you make.
® E.g. for the bottom-up procedure, eventually every derivable
atom will be derived.
® For variables you have to be more careful.
Choose nondeterminism:
® For choose nondeterminism, one has to make the “right”
nondeterministic choice.

® Just because one choice doesn't lead to an answer doesn't
mean other choices will be futile.

® So here we also have a search problem.

Example:

Example
a<=bAc
b<dAne
c<e
d
e
f<aAg
7a

One sequence of assignments to answer is:
answer < a

Example:

Example
a<=bAc
b<dAne
c<e
d
e
f<aAg
7a

One sequence of assignments to answer is:
answer < a

answer <= b A ¢

Example:

Example
a<=bAc
b<dAne
cee
d
e

f<aAg
?a

One sequence of assignments to answer is:
answer < a

answer <= b A ¢
answer <=dANeAc

Example:

Example
a<=bAc
b<dAne
cee
d
e

f<aAg
?a

One sequence of assignments to answer is:
answer < a

answer <= b A ¢
answer <=dANeAc
answer <=e N cC

Example:

Example
a<=bAc
b<dAne
cee
d
e

f<aAg
?a

One sequence of assignments to answer is:
answer < a

answer <= b A c
answer <=d ANeAc
answer <=eNc
answer < ¢

Example:

Example
a<=bAc
b<dAne
cee
d
e

f<aAg
?a

One sequence of assignments to answer is:
answer < a

answer <= b A c
answer <=d ANeAc
answer <=eNc
answer < ¢

answer < e

Example:

Example
a<=bAc
b<dAne
cee
d
e

f<aAg
?a

One sequence of assignments to answer is:
answer < a

answer <= b A c
answer <=d ANeAc
answer <=eNc
answer < ¢

answer < e

answer <

Notes

@ When we have derived the answer, we can read a bottom-up
“proof” in the opposite direction.

® Also every top-down derivation corresponds to a bottom-up
proof and every bottom-up proof has a corresponding
top-down derivation.
® The preceding equivalence can be used to show the soundness
and completeness of the derivation procedure.

Variables and Substitutions

Variables and substitutions are handled exactly as in FOL:

® An instance of a clause is obtained by uniformly substituting
terms for variables in the clause.

® |f a clause is true in an interpretation then any instance will
also be true in that interpretation.

® A substitution is a set of statements of the form v/t, where v
is a variable and t is a term.

Problem: There may be infinitely many instances of a clause if we
have function symbols.

e E.g.: num(0), num(s(0)), num(s(s(0))), ...

Variables and Substitutions

® A substitution is in normal form if each variable on the
left-hand side appears nowhere else in the substitution.
® Assume all substitutions are in normal form.

® A substitution 6 applied to an expression e is an expression el
which is like e, but with all instances of variables on the lhs of

a replaced by the term on the rhs.
e E.g., applying
0 ={X/Y,Z/f(U)}
to
p(X,Y) < q(a, Z).
is the instance
p(Y,Y) < a(a, F(U)).

Variables and Substitutions

Recall:

® Substitution 0 is a unifier of atoms e; and e if 160 = ex0.
® Eg. {X/a,Y/b} is a unifier of t(a, Y, c) and t(X, b, c).

Variables and Substitutions

Recall:

® Substitution 0 is a unifier of atoms e; and e if 160 = ex0.
® Eg. {X/a,Y/b} is a unifier of t(a, Y, c) and t(X, b, c).
® There may be many unifiers for terms and clauses.
® Eg p(X,Y) and p(Z, Z) have unifiers
{X/b, Y /b, Z]b}

{X/f(a), Y/f(a), Z/f(a)}
(X/2,Y/Z}.

Variables and Substitutions

Recall:

® Substitution 0 is a unifier of atoms e; and e if 160 = ex0.
® Eg. {X/a,Y/b} is a unifier of t(a, Y, c) and t(X, b, c).
® There may be many unifiers for terms and clauses.
® Eg p(X,Y) and p(Z, Z) have unifiers
{X/b, Y/b, Z/b}
{X/f(a), Y/f(a), Z/f(a)}
{X/Z, Y]Z}.
® The third unifier is preferred because it implies the first two.

® This is called the most general unifier, or MGU.
® So the MGU is a unifier of two terms that is implied by all
other unifiers.

® MGU's exist and are unique, up to the renaming of variables.

Bottom-up Procedure with Variables

We can do the bottom-up procedure for clauses with
variables, if we carry out the bottom-up procedure for all
ground instances of the variables in the axioms.

We must make certain that our procedure is fair, in that every
usable rule is chosen eventually.

E.g., consider:

num(s(N)) < num(N)

num(0)

mother(sue, mary).

An unfair strategy could always choose the first rule, and so
never derive that mother(sue, mary).

Our previous procedure, extended to allow variables, is sound
and complete (so long as it is fair).

Bottom-up Procedure with Variables

If the domain is known to be finite, then one can handle variables
by:
@ Substitute all possible instances of terms for the variables in
the KB.
® This is known as grounding the KB.
® Then work with the grounded KB, using the procedure for
propositional KBs.

1= Thus the first-order set of rules is effectively translated into a
KB in propositional logic.

Top-down Procedure with Variables

Or: Definite clause resolution with variables.

Suppose we have the answer clause
answer(ty, ..., tx) <= ai A+ Aam
The resolution of the above clause with the clause
a<=b A+ Ab,
where a and a; have most general unifier 6 is the answer
clause:
[answer(t1, ..., tk) = bi A~ AbyANax A+ A apld
This is known as SLD resolution

SLD resolution is the principal control strategy that underlies
PROLOG.

Definite clause resolution with variables

® A derivation from rules S is a sequence of answer clauses
0, - - - 5 Yn SUch that
@ o is the original answer clause.
If the query is B with free variables Vi, ..., Vj, then v is
answer(Vi,..., Vi) < B.
@® ~; is obtained by resolving 7;_1 with a clause in S.
© 7, is an answer.
® That is, 7, is of the form

answer(ty, ..., tx) <.

When this occurs we have an answer, (V4 = t1,..., Vi = t).

Example

Example

(from before):
gf(X,Y) < father(X, Z) A parent(Z,Y)
parent(X,Y) < mother(X,Y)
parent(X,Y) < father(X,Y)
mother(michelle, sue)
father(ian, sue)
mother(sue, chris)
father(george, ian)

Example

For query ?gf(G, sue), we have the derivation:
@ answer(G) < gf (G, sue)

Example

For query ?gf(G, sue), we have the derivation:
@ answer(G) < gf (G, sue)
This is resolved with the first clause in the KB with
substitution {X1/G, Y1/sue} to obtain

@® answer(G) < father(G, Zy) N\ parent(Zy, sue)

Example

For query ?gf(G, sue), we have the derivation:
@ answer(G) < gf (G, sue)
This is resolved with the first clause in the KB with
substitution {X1/G, Y1/sue} to obtain
@® answer(G) < father(G, Zy) N\ parent(Zy, sue)
This is resolved with father(george, ian) with substitution
{G/george, Z1/ian} to obtain

© answer(george) < parent(ian, sue)

Example

For query ?gf(G, sue), we have the derivation:

@ answer(G) < gf (G, sue)
This is resolved with the first clause in the KB with
substitution {X1/G, Y1/sue} to obtain

@® answer(G) < father(G, Zy) N\ parent(Zy, sue)
This is resolved with father(george, ian) with substitution
{G/george, Z1/ian} to obtain

© answer(george) < parent(ian, sue)
This is resolved with parent(Xa, Y2) <= father(Xz, Y2) with
substitution {X/ian, Y2/sue} to obtain

@ answer(george) < father(ian, sue)

Example

For query ?gf(G, sue), we have the derivation:
@ answer(G) < gf (G, sue)
This is resolved with the first clause in the KB with
substitution {X1/G, Y1/sue} to obtain
@® answer(G) < father(G, Zy) N\ parent(Zy, sue)
This is resolved with father(george, ian) with substitution
{G/george, Z1/ian} to obtain
© answer(george) < parent(ian, sue)
This is resolved with parent(Xa, Y2) <= father(Xz, Y2) with
substitution {X/ian, Y2/sue} to obtain
@ answer(george) < father(ian, sue)
This is resolved with father(ian, sue) to obtain
@ answer(george) <
An answer thus is G = george.

Example

Notes:

® Another answer could have been chosen by choosing different
clauses for resolution.

® Some choice of clauses for resolution will lead to a dead end.

® There is an (implicit) renaming of variables for each
instance/use of a clause.

® A full implementation will need to save state information in
order to determine another answer.

Example: Simulating Systems

Example
Consider the domain of circuits.

® We have objects consisting of gates of various types, signal
values (i.e. on and off), etc.

® We use the following predicates and functions:

@ gate(G, T) means that gate G is of type T.
E.g.: gate(xy, xor), gate(xy, xor), gate(ay, and), gate(ay, and),
gate(oy, or).
® Connected(Py, P2) means that port Py is connected to port Ps.
© in(N, G) denotes input port N of gate G.
O out(G) denotes the output port of gate G.
@ out(N, G) denotes output port N of circuit G.

Example: Simulating Systems
® For connectivity we can assert something like:
value(X, V') < connected(Y, X) A value(Y, V).

® To say that an and gate has output corresponding to the
conjunction of its inputs we could have:

value(out(D),on) <« gate(D, and)

A value(in(1, D), on)

A value(in(2, D), on).
value(out(D), off) <= gate(D, and) A value(in(1, D), off).
value(out(D), off) < gate(D, and) A value(in(2, D), off).

Example: Simulating Systems

Consider a full adder:

: o .
3 _» _\
T o2

Full Adder

—— 1

Example: Simulating Systems

® We can add assertions about the values of the inputs to the
circuits such as

value(in(1, adder), on),
value(in(2, adder), off),
value(in(3, adder), on)
® \We can determine the values of the output ports with the
query

?value(out(1, adder), Outl) A value(out(2, adder), Out2)

® This returns Outl = off and Out2 = on.

Bottom-Up vs. Top-Down Derivations

Ask: why select top-down procedure over bottom-up, or vice versa?
® Top-down/Backward Chaining:

® Query-answering

® Directed reasoning

Good for user acceptability and diagnosis of KB bugs.
Worst-case exponential complexity

Harder to implement

¢ Bottom-up/Forward Chaining:

® Gives all solutions
® More responsive to changes in domain facts

® E.g. Rules of form: Action <= Condition

® Linear procedure

® More suitable for finite domains.

® With variables, typically need to ground the knowledge base
first

	Basic Reasoners
	Definite Clause Reasoning
	Semantics
	Queries
	Variables
	Inference
	A Bottom-up Proof Procedure
	A Top-down Proof Procedure
	Substitutions

