
CMPT 411/721 - Knowledge Representation and Reasoning

Assignment 2

Due date: October 25, 2019 J.P. Delgrande
October 7, 2019

Important Note: Students must work individually on this and other CMPT 411/721 as-
signments. You may not discuss the specific questions in this assignment, nor their solutions
with any other student. You may not provide or use any solution, in whole or in part, to or
by another student.

You are encouraged to discuss the general concepts involved in the questions in the context
of completely different problems. If you are in doubt as to what constitutes acceptable
discussion, please ask!

Implementing the Fitting Operator [10 marks]

This question involves generalising forward chaining (bottom-up) Horn derivations to
implement the Fitting Operator, as covered in class.

Recall that we had the following from class: A knowledge base KB consists of a set of
rules of the form a ⇐ a1, . . . , an where n ≥ 0, a is an atom, and each ai is either of the
form p or ∼ p, where p is an atom. By maintaining a set of conclusions C, and adding an
atom p to C when p is known to be solved and ∼ p when p is known to be insoluble, the
forward-chaining procedure can be extended to handle negation as failure. So, now we can
add atoms of the form ∼p to the set C of consequences, where ∼p means that p cannot be
proven. Here is the procedure:

A Bottom-up Procedure:

C := {};
repeat

either
choose r ∈ KB such that

r is ‘a⇐ a1, . . . , am’ and
ai ∈ C for all i, and a 6∈ C;

C := C ∪ {a}
or

choose a such that for every rule a⇐ a1, . . . , am
either for some ai we have ∼ai ∈ C
or some ai =∼g and g ∈ C

C := C ∪ { ∼a}
until no more choices

1

For full marks, your program should run in linear time, relative to the size of the knowl-
edge base and your documentation should contain an argument as to why your program
runs in linear time. See questions in the Brachman and Levesque text for Chapters 5 and
6 as to how this might be done. Note that if your program doesn’t run in linear time, it is
still possible to get an “A” on the assignment. In either case, your documentation should
contain a section on the running time of your algorithm.

Example:

p⇐ q, ∼r

p⇐ s

q ⇐∼s

r ⇐∼ t

t

s⇐ w

The following is a sequence of atoms added to C:

t, ∼r, ∼w, ∼s, q, p.

Test your program on the preceding example, as well as the next one:

a⇐ b
b⇐∼h
c⇐ d, e
e⇐
d⇐ f, ∼b
f ⇐∼g, ∼h, ∼j
f ⇐ j
g ⇐∼j
h⇐ e
i⇐∼k
k ⇐∼ i

Notes for the implementation:

1. Please implement your program in Python. (Other languages are acceptable, but you
must first get an ok from the TA.)

2. You need to hand in a copy of everything: program listing, documentation, and test
results (see below).

3. You should write a command-line program for the assignment.

2

4. You need to have a file called README.TXT. This file contains the technical infor-
mation necessary to execute your program. Your README.TXT file should at least
contain the following:

• An example command-line to run your program.

• Anything else one needs to know in order to test your code.

5. You will need to pass a file name as a parameter to your program (e.g. testcase1.txt).
The file you pass to your program will contain the rules.

6. You must run your program for each test case file and submit your results. In addition
you may submit your own test cases to provide further evidence that your program is
working as expected.

7. Your program should accept the following syntax for the rules file.

Each rule in the file is specified by a triple:
[h [p1 ... pn] [n1 ... nm]]

• h is an atom which is the head of the rule

• A list containing p1, ..., pn as positive atoms

• A list containing n1, ..., nm as negative atoms

• All white-space characters (space, tab, newline) are ignored

• Anything after a ’#’ character to the end of the line is ignored (i.e. use # for
comments)

• The following is an example set of rules which could be stored in a text file:

here are some example rules:

[a [b1 b2] [c c10]] # i.e. a <- b1, b2, not c, not c10

[h [a b c] []] # i.e. h <- a, b, c

[g [] [e f]] # i.e. g <- not e, not f

[f [] []] # i.e. f <-

8. Your program should output literals as they are derived. Ideally you will also print the
reason why a literal was derived.

3

