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Introduction

Argumentation:

. . . the study of processes “concerned with how assertions are
proposed, discussed, and resolved in the context of issues upon
which several diverging opinions may be held”.
[Bench-Capon and Dunne, Argumentation in AI, AIJ 171, 2007]

Formal models of argumentation are concerned with

• representing an argument

• representing the relationship between arguments

• solving conflicts between the arguments (“acceptability”)
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Why Argumentation?

Agent Reasoning

• Internal reasoning:
• Reasoning about beliefs, goals, intentions, etc. often is

defeasible

• Interaction with other agents:
• Information exchange, negotiation, collaboration, . . .



Why Argumentation?

Application areas

• Medical diagnosis and treatment
• Legal reasoning

• Interpretation
• Evidence / crime investigation

• Single and multi-agent defeasible reasoning about conflicting
goals, intentions, etc.

• Decision making

• Policy design

• . . .



Why Argumentation?

Systems

• PARMENIDES system: Facilitates structured arguments over
a proposed course of action

• IMPACT project: Argumentation toolbox for supporting
deliberations about public policy

• ASPIC+: Fully developed system; applications to business,
medicine

• Decision support systems, etc.



General Process

Steps in the Argumentation Process

• Begin with a knowledge base
KB = {s, r , w , s → ¬r , r → ¬w , w → t}

• Generate arguments from the knowledge base
A1 : 〈{s, s → ¬r}, ¬r〉
A2 : 〈{r , r → ¬w}, ¬w〉
A3 : 〈{w ,w → t}, t〉

• Identify conflicts: A1 attacks A2, A2 attacks A3.

• Abstract from internal structure

A2A1 A3

• Resolve conflicts: A1, A3

• Draw conclusions: ¬r , t
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Example

Argument a:

1 John Smith is a public person.

2 ∴ It’s ok to publish an article about his public life

Argument b:

1 John Smith has retired from politics.

2 ∴ He is no longer a public person.

Form:

b a

Terminology: Argument b attacks a.
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Example

Argument c:

1 John Smith continues to write articles and blog.

2 ∴ He is a public person.

Form:

b ac
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Example

Argument a:

1 Richard is a Quaker and Quakers are pacifists.

2 ∴ Richard is a pacifist.

Argument b:

1 Richard is a (US) Republican and Republicans are not
pacifists.

2 ∴ Richard is not a pacifist.
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Abstract Argumentation

• Begin with a knowledge base

• Generate arguments from the knowledge base

• Identify conflicts between arguments

• Abstract from internal structure

+ Resolve conflicts

+ Draw conclusions



Abstract Argumentation

• Originally due to Dung [Dung, 1995].
• Still the most active research area in argumentation.

• Main idea: Abstract away from the logical content of
arguments and only consider the relation between arguments.
• Select subsets of arguments respecting certain criteria as the

accepted arguments.
• Key question: What are these criteria?

• Obtain:
• Simple, yet powerful, formalism

• Downside: Lots of competing semantics



Argumentation Framework

Definition
An argumentation framework (AF) is a pair (A,R) where

• A is the set of arguments

• R ⊆ A× A represents the attacks relation

Example:

eb ca d

Key Issue:

What are the accepted arguments?

+ I.e. What is the appropriate subset S ⊆ A to accept?
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General Approach: Basic Definitions

Given an AF F = (A,R):

• A set S ⊆ A is conflict free if for every a, b ∈ S , we have
(a, b) 6∈ R.

• A set S ⊆ A is admissible in F , if
• S is conflict free in F
• each a ∈ S is defended by S in F

• a ∈ A is defended by S in F , if for each b ∈ A with (b, a) ∈ R,
there exists c ∈ S , such that (c, b) ∈ R.

Intuition: For a set of arguments to be accepted, it must be

• coherent (i.e. conflict free), and

• if any argument in the set is challenged by a
counterargument, an argument in the set offers a
counterargument to that counterargument.
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Example

In:

eb ca d

• Conflict-free:

{a, c}, {a, d}, {b, d}, {a}, {b}, {c}, {d}, ∅

• Admissable:

{a, c}, {a, d}, {a}, {c}, {d}, ∅

+ However, it seems funny to have admissable sets that don’t
include a, since a isn’t attacked.
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A Simple Approach: Grounded Extensions

Given an AF F = (A,R). The unique grounded extension of F is
defined as the outcome S of the following procedure:

1 Set S ← ∅.
2 Select an argument a which is not attacked; if no such

argument exists, return S .

3 S ← S ∪ {a}.
4 Remove from F all arguments attacked by a, together with

their “attacks” relations.

5 Go to Step 2.



Grounded Extensions

Example:

eb ca d

There is one grounded extension {a}

• Grounded extensions are clearly conflict-free and admissable.

• Grounded extensions are unique.

• However, the results are quite weak.
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Preferred Extensions

Definition
A set S ⊆ A is a preferred extension iff

• S is admissable in (A,R)

• for each admissable T ⊆ A, S 6⊂ T .

+ That is, a preferred extension is a ⊆-maximal admissable set.

Example

eb ca d

Preferred extensions: {a, c}, {a, d}
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Stable Extensions

Last, it might be expected that arguments not in an extension are
not accepted – i.e. they are attacked by arguments in the extension.

Definition
A set S ⊆ A is a stable extension iff

• S is conflict free and

• for each a ∈ A \ S , there is b ∈ S , such that (b, a) ∈ R
• I.e. S attacks each argument not in S .

Example

eb ca d

Stable extension: {a, d}.
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Some Properties

For any AF F = (A,R) the following hold:

• Each stable extension of F is admissible

• Each stable extension of F is also a preferred extension

Also

• Grounded and preferred extensions always exist.

• A stable extension may not exist.

• If (A,R) has no cycles then there is a single grounded, stable
(and thus preferred) extension.



Decision Problems on AFs

Credulous Acceptance

Given AF F = (A,R) and a ∈ A:
Is a contained in at least one extension of F?

Skeptical Acceptance

Given AF F = (A,R) and a ∈ A:
Is a contained in every extension of F?



Complexity Results

Credulous reasoning

Theorem

1 CRED is in P for the grounded semantics

2 CRED is NP-complete for admissability

3 CRED is NP-complete for the preferred semantics

4 CRED is NP-complete for the stable semantics



Complexity Results

Skeptical reasoning

Theorem

1 SKEPT is in P for the grounded semantics

2 SKEPT is computationally trivial for admissability.

3 SKEPT is coNP-hard for the preferred semantics

4 SKEPT is coNP-complete for the stable semantics.



Other Semantics

conflict-free

naive

stage

stable

admissible

complete

preferred

semi-stable

ideal eager

grounded

res.b. grounded

cf2

• An arrow from σ to τ specifies that each σ-extension is also a
τ -extension.

• (Diagram from Stefan Woltran)



Argumentation Based on Classical Logic

So far we haven’t said anything about what arguments look like

• We next consider a specific approach to argumentation due to
Besnard and Hunter [2014].

Idea:

• An argument involves premisses and a conclusion.

• In general, the connection between premisses and conclusion
could involve analogical, causal, inductive, normative, or any
other type of inference.

• In the B&H approach, classical logic is used.

• We’ll consider a restriction of classical logic to what B&H call
simple logic.
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Simple Logic

Simple logic is a restriction of propositional logic.

• The language is formed from a set of atomic sentences
{a, b, . . . }.
• The language consists of literals (atoms or their negation) and

rules of the form

l1 ∧ · · · ∧ ln → l

where l1, . . . , ln, l are all literals.
• The only inference rule is modus ponens.

• E.g. from p, p → s, conclude s
from ¬s, p → s, don’t conclude anything



Introduction

• An argument is a pair 〈Ψ, α〉, where Ψ is a minimal consistent
sets of formulas that entails α.

• Ψ is the support and α is the claim of the argument.

• E.g. 〈{a, b, a ∧ b → c}, c〉
〈{a, a→ b, b → c}, c〉



Introduction

• In the simplest case, a claim follows iff
• there is an argument for the claim
• and no other argument against the claim.

• An argument can be undercut if some of the reasons for the
argument are contradicted by another argument.
• E.g. 〈{d , d → ¬b}, ¬b〉 undercuts 〈{a, b, a ∧ b → c}, c〉

• Each undercut is itself an argument and so in turn may be
undercut, and so on.

• This leads to an argument graph, a synthesis of arguments
and counterarguments.

• Basic approach: Systematically explore the space of
arguments to show that a given claim does or does not hold.
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Approach

Definition:
Let ∆ be a set of formulas in a logic (here, simple logic).
An argument is a pair 〈Ψ, α〉 such that

1 Ψ 6` ⊥
2 Ψ ` α
3 Ψ is a minimal subset of ∆ satisfying 2.

If A = 〈Ψ, α〉 is an argument, then

• A is an argument for α

• Ψ is a support for α

• α is the claim of the argument
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Argumentation Definition: Condition 1

Condition 1: Ψ 6` ⊥

• For Condition 1 of the definition, want to exclude arguments
of the form
〈{a,¬a}, b〉
• E.g. exclude

John is a student
John is not a student,
Therefore today is Tuesday



Argumentation Definition: Condition 2

Condition 2: Ψ ` α

• That is, Ψ gives a reason for accepting α.



Argumentation Definition: Condition 3

Condition 3: Ψ is a minimal subset of ∆ satisfying 2.

• In Condition 3, we exclude irrelevant arguments.

• So, for example, exclude
〈{a, a→ b, c}, b〉
• E.g. exclude:

John is a grad student
Grad student are students
Today is Wednesday
Therefore John is a student

• Hence each β ∈ Ψ is an essential part of the argument for α.
• So the claim α can be attacked by attacking any β ∈ Ψ.
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Counterarguments

An argument that disagrees with another is a counterargument.
The two most important notions of conflict between arguments are:

• An undercut for an argument 〈Ψ, α〉 is an argument 〈Ψ′,¬φ〉
where Ψ ` φ.

• An argument 〈Ψ, β〉 is a rebuttal for an argument 〈Ψ′, α〉 iff α
is equivalent to ¬β.

Example

Let ∆ = {a, a→ b, b → d , c, c → ¬a, c → ¬b}.
Then

• 〈{c , c → ¬a},¬a〉 is an undercut for 〈{a, a→ b}, b〉.
• 〈{c , c → ¬b},¬b〉 is an undercut for 〈{a, a→ b, b → d}, d〉.
• 〈{a}, a〉 is a simple rebuttal for 〈{c , c → ¬a},¬a〉.
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• 〈{a}, a〉 is a simple rebuttal for 〈{c , c → ¬a},¬a〉.
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A More Realistic Example
p Simon Jones is a Member of Parliament
p → ¬q If Simon Jones is a Member of Parliament then we need

not keep quiet about details of his private life
r Simon Jones just resigned from the House of Commons
r → ¬p If Simon Jones just resigned from the House of

Commons then he is not a Member of Parliament
¬p → q If Simon Jones is not a Member of Parliament then we

need to keep quiet about details of his private life

Consider:
〈{p, p → ¬q},¬q〉

An undercut is:
〈{r , r → ¬p},¬p〉

A rebuttal is:
〈{r , r → ¬p,¬p → q}, q〉.
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Constructing Argument Graphs

There are two possibilities for forming abstract argument graphs.

Descriptive Argument Graphs

Given a set of arguments and counterarguments, form the abstract
(directed) graph.

Generative Argument Graphs

Given a knowledge base, automatically generate possible
arguments, and from them generate the argument graph.

+ In either case, can then use techniques from the first part
to come up with conclusions (i.e. supported claims).
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Descriptive Argument Graphs

Example 1

A1 : “The flight is low cost and luxury, therefore it is a good flight”

A2 : “If a flight is low cost then it can’t be luxury. Since it is low
cost, it’s not luxury”

Thus A2 attacks A1:

A1A2
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Descriptive Argument Graphs

Example 2

Assertions:

• bp(high) – patient has high blood pressure

• ok(bb) – it’s ok to give a betablocker

• ok(di) – it’s ok to give a diuretic

• give(bb) – prescribe a betablocker

• give(di) – prescribe a diuretic

• symp(emph) – patient shows signs of emphysema



Descriptive Argument Graphs

Informally:

A1: The patient has high blood pressure, it’s ok to give them
diuretics and it’s not ok to give them betablockers.
∴ Give a diuretic

A2: The patient has high blood pressure, it’s ok to give them a
betablocker and it’s not ok to give them a diuretic.
∴ Give a betablocker

A3: The patient has symptoms of emphysema. Since if someone
has symptoms of emphysema it’s not ok to give a betablocker,
∴ It’s not ok to give them betablockers.



Descriptive Argument Graphs

Formally:

A1: 〈{bp(high), ok(di),¬give(bb)
bp(high) ∧ ok(di) ∧ ¬give(bb)→ give(di)},

give(di)〉
A2: 〈{bp(high), ok(bb),¬give(di)

bp(high) ∧ ok(bb) ∧ ¬give(di)→ give(bb)},
give(bb)〉

A3: 〈{symp(emph), symp(emph)→ ¬ok(bb)},¬ok(bb)〉

Form:

A2 A3A1
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Generative Argument Graphs

Let ∆ be a simple logic knowledge base.

Define:
Arguments(∆) =

{〈Ψ, α〉 | Ψ ⊆ ∆ and 〈Ψ, α〉 is a simple argument }

Attacks(∆) =
{(A;B) | A,B ∈ Arguments(∆) and A is an undercut of B}

Aside: In simple logic, any rebuttal is also an undercut, so we just
need to consider undercuts.

An exhaustive graph for ∆ is an argument graph G = (A,R) where

– A is Arguments(∆) and
– R is Attacks(∆).
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Example

∆1 = {a, b, c , ¬a, ¬b, ¬c , a→ ¬b, b → ¬c , c → d}

A1 : 〈{a, a→ ¬b}, ¬b〉

A2 : 〈{b, b → ¬c}, ¬c〉

A3 : 〈{c , c → d}, d〉

Form:

A2A1 A3

+ There is one (grounded or preferred or stable) extension with
A1 and A3, supporting the claims ¬b and d .
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and no stable extension.

+ In either case no claims are supported.
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