Formal Argumentation

CMPT 411/721

Introduction

Argumentation:

. . . the study of processes "concerned with how assertions are proposed, discussed, and resolved in the context of issues upon which several diverging opinions may be held".
[Bench-Capon and Dunne, Argumentation in Al, AIJ 171, 2007]

Introduction

Argumentation:
... the study of processes "concerned with how assertions are proposed, discussed, and resolved in the context of issues upon which several diverging opinions may be held".
[Bench-Capon and Dunne, Argumentation in AI, AIJ 171, 2007]

Formal models of argumentation are concerned with

- representing an argument
- representing the relationship between arguments
- solving conflicts between the arguments ("acceptability")

Why Argumentation?

Agent Reasoning

- Internal reasoning:
- Reasoning about beliefs, goals, intentions, etc. often is defeasible
- Interaction with other agents:
- Information exchange, negotiation, collaboration, ...

Why Argumentation?

Application areas

- Medical diagnosis and treatment
- Legal reasoning
- Interpretation
- Evidence / crime investigation
- Single and multi-agent defeasible reasoning about conflicting goals, intentions, etc.
- Decision making
- Policy design

Why Argumentation?

Systems

- PARMENIDES system: Facilitates structured arguments over a proposed course of action
- IMPACT project: Argumentation toolbox for supporting deliberations about public policy
- ASPIC+: Fully developed system; applications to business, medicine
- Decision support systems, etc.

General Process

Steps in the Argumentation Process

- Begin with a knowledge base

$$
K B=\{s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow t\}
$$

General Process

Steps in the Argumentation Process

- Begin with a knowledge base

$$
K B=\{s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow t\}
$$

- Generate arguments from the knowledge base

$$
\begin{aligned}
& A_{1}:\langle\{s, s \rightarrow \neg r\}, \neg r\rangle \\
& A_{2}:\langle\{r, r \rightarrow \neg w\}, \neg w\rangle \\
& A_{3}:\langle\{w, w \rightarrow t\}, t\rangle
\end{aligned}
$$

General Process

Steps in the Argumentation Process

- Begin with a knowledge base

$$
K B=\{s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow t\}
$$

- Generate arguments from the knowledge base

$$
\begin{aligned}
& A_{1}:\langle\{s, s \rightarrow \neg r\}, \neg r\rangle \\
& A_{2}:\langle\{r, r \rightarrow \neg w\}, \neg w\rangle \\
& A_{3}:\langle\{w, w \rightarrow t\}, t\rangle
\end{aligned}
$$

- Identify conflicts: A_{1} attacks A_{2}, A_{2} attacks A_{3}.

General Process

Steps in the Argumentation Process

- Begin with a knowledge base

$$
K B=\{s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow t\}
$$

- Generate arguments from the knowledge base

$$
\begin{aligned}
& A_{1}:\langle\{s, s \rightarrow \neg r\}, \neg r\rangle \\
& A_{2}:\langle\{r, r \rightarrow \neg w\}, \neg w\rangle \\
& A_{3}:\langle\{w, w \rightarrow t\}, t\rangle
\end{aligned}
$$

- Identify conflicts: A_{1} attacks A_{2}, A_{2} attacks A_{3}.
- Abstract from internal structure

$$
\mathrm{A} 1 \longrightarrow \mathrm{~A} 2 \longrightarrow \mathrm{~A} 3
$$

General Process

Steps in the Argumentation Process

- Begin with a knowledge base

$$
K B=\{s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow t\}
$$

- Generate arguments from the knowledge base

$$
\begin{aligned}
& A_{1}:\langle\{s, s \rightarrow \neg r\}, \neg r\rangle \\
& A_{2}:\langle\{r, r \rightarrow \neg w\}, \neg w\rangle \\
& A_{3}:\langle\{w, w \rightarrow t\}, t\rangle
\end{aligned}
$$

- Identify conflicts: A_{1} attacks A_{2}, A_{2} attacks A_{3}.
- Abstract from internal structure

$$
\mathrm{A} 1 \longrightarrow \mathrm{~A} 2 \longrightarrow \mathrm{~A} 3
$$

- Resolve conflicts: A_{1}, A_{3}

General Process

Steps in the Argumentation Process

- Begin with a knowledge base

$$
K B=\{s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow t\}
$$

- Generate arguments from the knowledge base

$$
\begin{aligned}
& A_{1}:\langle\{s, s \rightarrow \neg r\}, \neg r\rangle \\
& A_{2}:\langle\{r, r \rightarrow \neg w\}, \neg w\rangle \\
& A_{3}:\langle\{w, w \rightarrow t\}, t\rangle
\end{aligned}
$$

- Identify conflicts: A_{1} attacks A_{2}, A_{2} attacks A_{3}.
- Abstract from internal structure

$$
\mathrm{A} 1 \longrightarrow \mathrm{~A} 2 \longrightarrow \mathrm{~A} 3
$$

- Resolve conflicts: A_{1}, A_{3}
- Draw conclusions: $\neg r, t$

Example

Argument a:
(1) John Smith is a public person.
(2) \therefore It's ok to publish an article about his public life

Example

Argument a:
(1) John Smith is a public person.
(2) \therefore It's ok to publish an article about his public life

Argument b:
(1) John Smith has retired from politics.
(2) $\therefore \mathrm{He}$ is no longer a public person.

Example

Argument a:
(1) John Smith is a public person.
(2) \therefore It's ok to publish an article about his public life

Argument b:
(1) John Smith has retired from politics.
(2) $\therefore \mathrm{He}$ is no longer a public person.

Form:

$$
\mathrm{b} \longrightarrow \mathrm{a}
$$

Terminology: Argument b attacks a.

Example

Argument c:
(1) John Smith continues to write articles and blog.
(2) $\therefore \mathrm{He}$ is a public person.

Example

Argument c:
(1) John Smith continues to write articles and blog.
(2) $\therefore \mathrm{He}$ is a public person.

Form:

Example

Argument a:
(1) Richard is a Quaker and Quakers are pacifists.
(2) \therefore Richard is a pacifist.

Example

Argument a:
(1) Richard is a Quaker and Quakers are pacifists.
(2) \therefore Richard is a pacifist.

Argument b:
(1) Richard is a (US) Republican and Republicans are not pacifists.
(2) \therefore Richard is not a pacifist.

Example

Argument a:
(1) Richard is a Quaker and Quakers are pacifists.
(2) \therefore Richard is a pacifist.

Argument b:
(1) Richard is a (US) Republican and Republicans are not pacifists.
(2) Richard is not a pacifist.

Form:

Abstract Argumentation

- Begin with a knowledge base
- Generate arguments from the knowledge base
- Identify conflicts between arguments
- Abstract from internal structure

Resolve conflicts
Draw conclusions

Abstract Argumentation

- Originally due to Dung [Dung, 1995].
- Still the most active research area in argumentation.
- Main idea: Abstract away from the logical content of arguments and only consider the relation between arguments.
- Select subsets of arguments respecting certain criteria as the accepted arguments.
- Key question: What are these criteria?
- Obtain:
- Simple, yet powerful, formalism
- Downside: Lots of competing semantics

Argumentation Framework

Definition
An argumentation framework (AF) is a pair (A, R) where

- A is the set of arguments
- $R \subseteq A \times A$ represents the attacks relation

Example:

Argumentation Framework

Definition

An argumentation framework (AF) is a pair (A, R) where

- A is the set of arguments
- $R \subseteq A \times A$ represents the attacks relation

Example:

Key Issue:
What are the accepted arguments?
I.e. What is the appropriate subset $S \subseteq A$ to accept?

General Approach: Basic Definitions

Given an AF $F=(A, R)$:

- A set $S \subseteq A$ is conflict free if for every $a, b \in S$, we have $(a, b) \notin R$.

General Approach: Basic Definitions

Given an AF $F=(A, R)$:

- A set $S \subseteq A$ is conflict free if for every $a, b \in S$, we have $(a, b) \notin R$.
- A set $S \subseteq A$ is admissible in F, if
- S is conflict free in F
- each $a \in S$ is defended by S in F
- $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists $c \in S$, such that $(c, b) \in R$.

General Approach: Basic Definitions

Given an AF $F=(A, R)$:

- A set $S \subseteq A$ is conflict free if for every $a, b \in S$, we have $(a, b) \notin R$.
- A set $S \subseteq A$ is admissible in F, if
- S is conflict free in F
- each $a \in S$ is defended by S in F
- $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists $c \in S$, such that $(c, b) \in R$.
Intuition: For a set of arguments to be accepted, it must be
- coherent (i.e. conflict free), and
- if any argument in the set is challenged by a counterargument, an argument in the set offers a counterargument to that counterargument.

Example

In:

- Conflict-free:
- Admissable:

Example

In:

- Conflict-free: $\{a, c\},\{a, d\},\{b, d\},\{a\},\{b\},\{c\},\{d\}, \emptyset$
- Admissable:

Example

In:

- Conflict-free: $\{a, c\},\{a, d\},\{b, d\},\{a\},\{b\},\{c\},\{d\}, \emptyset$
- Admissable: $\{a, c\},\{a, d\}, \quad\{a\}, \quad\{c\},\{d\}, \emptyset$

Example

In:

- Conflict-free: $\{a, c\},\{a, d\},\{b, d\},\{a\},\{b\},\{c\},\{d\}, \emptyset$
- Admissable: $\{a, c\},\{a, d\}, \quad\{a\}, \quad\{c\},\{d\}, \emptyset$

However, it seems funny to have admissable sets that don't include a, since a isn't attacked.

A Simple Approach: Grounded Extensions

Given an AF $F=(A, R)$. The unique grounded extension of F is defined as the outcome S of the following procedure:
(1) Set $S \leftarrow \emptyset$.
(2) Select an argument a which is not attacked; if no such argument exists, return S.
(3) $S \leftarrow S \cup\{a\}$.
(4) Remove from F all arguments attacked by a, together with their "attacks" relations.
(5) Go to Step 2.

Grounded Extensions

Example:

Grounded Extensions

Example:

There is one grounded extension $\{a\}$

Grounded Extensions

Example:

There is one grounded extension $\{a\}$

- Grounded extensions are clearly conflict-free and admissable.

Grounded Extensions

Example:

There is one grounded extension $\{a\}$

- Grounded extensions are clearly conflict-free and admissable.
- Grounded extensions are unique.

Grounded Extensions

Example:

There is one grounded extension $\{a\}$

- Grounded extensions are clearly conflict-free and admissable.
- Grounded extensions are unique.
- However, the results are quite weak.

Preferred Extensions

Definition

A set $S \subseteq A$ is a preferred extension iff

- S is admissable in (A, R)
- for each admissable $T \subseteq A, S \not \subset T$.

That is, a preferred extension is a \subseteq-maximal admissable set.

Preferred Extensions

Definition

A set $S \subseteq A$ is a preferred extension iff

- S is admissable in (A, R)
- for each admissable $T \subseteq A, S \not \subset T$.
(T) That is, a preferred extension is a \subseteq-maximal admissable set.

Example

Preferred Extensions

Definition

A set $S \subseteq A$ is a preferred extension iff

- S is admissable in (A, R)
- for each admissable $T \subseteq A, S \not \subset T$.

That is, a preferred extension is a \subseteq-maximal admissable set.
Example

Preferred extensions: $\{a, c\},\{a, d\}$

Stable Extensions

Last, it might be expected that arguments not in an extension are not accepted - i.e. they are attacked by arguments in the extension.

Stable Extensions

Last, it might be expected that arguments not in an extension are not accepted - i.e. they are attacked by arguments in the extension.

Definition

A set $S \subseteq A$ is a stable extension iff

- S is conflict free and
- for each $a \in A \backslash S$, there is $b \in S$, such that $(b, a) \in R$
- I.e. S attacks each argument not in S.

Stable Extensions

Last, it might be expected that arguments not in an extension are not accepted - i.e. they are attacked by arguments in the extension.

Definition

A set $S \subseteq A$ is a stable extension iff

- S is conflict free and
- for each $a \in A \backslash S$, there is $b \in S$, such that $(b, a) \in R$
- I.e. S attacks each argument not in S.

Example

Stable Extensions

Last, it might be expected that arguments not in an extension are not accepted - i.e. they are attacked by arguments in the extension.

Definition

A set $S \subseteq A$ is a stable extension iff

- S is conflict free and
- for each $a \in A \backslash S$, there is $b \in S$, such that $(b, a) \in R$
- I.e. S attacks each argument not in S.

Example

Stable extension: $\{a, d\}$.

Some Properties

For any $\mathrm{AF} F=(A, R)$ the following hold:

- Each stable extension of F is admissible
- Each stable extension of F is also a preferred extension

Also

- Grounded and preferred extensions always exist.
- A stable extension may not exist.
- If (A, R) has no cycles then there is a single grounded, stable (and thus preferred) extension.

Decision Problems on AFs

Credulous Acceptance
Given AF $F=(A, R)$ and $a \in A$:
Is a contained in at least one extension of F ?
Skeptical Acceptance
Given AF $F=(A, R)$ and $a \in A$:
Is a contained in every extension of F ?

Complexity Results

Credulous reasoning

Theorem
(1) CRED is in P for the grounded semantics
(2) CRED is NP-complete for admissability
(3) CRED is NP-complete for the preferred semantics
(4) CRED is NP-complete for the stable semantics

Complexity Results

Skeptical reasoning

Theorem
(1) SKEPT is in P for the grounded semantics
(2) SKEPT is computationally trivial for admissability.
(3) SKEPT is coNP-hard for the preferred semantics
(4) SKEPT is coNP-complete for the stable semantics.

Other Semantics

- An arrow from σ to τ specifies that each σ-extension is also a τ-extension.
- (Diagram from Stefan Woltran)

Argumentation Based on Classical Logic

So far we haven't said anything about what arguments look like

- We next consider a specific approach to argumentation due to Besnard and Hunter [2014].

Argumentation Based on Classical Logic

So far we haven't said anything about what arguments look like

- We next consider a specific approach to argumentation due to Besnard and Hunter [2014].

Idea:

- An argument involves premisses and a conclusion.

Argumentation Based on Classical Logic

So far we haven't said anything about what arguments look like

- We next consider a specific approach to argumentation due to Besnard and Hunter [2014].

Idea:

- An argument involves premisses and a conclusion.
- In general, the connection between premisses and conclusion could involve analogical, causal, inductive, normative, or any other type of inference.

Argumentation Based on Classical Logic

So far we haven't said anything about what arguments look like

- We next consider a specific approach to argumentation due to Besnard and Hunter [2014].

Idea:

- An argument involves premisses and a conclusion.
- In general, the connection between premisses and conclusion could involve analogical, causal, inductive, normative, or any other type of inference.
- In the B\&H approach, classical logic is used.
- We'll consider a restriction of classical logic to what B\&H call simple logic.

Simple Logic

Simple logic is a restriction of propositional logic.

- The language is formed from a set of atomic sentences $\{a, b, \ldots\}$.
- The language consists of literals (atoms or their negation) and rules of the form

$$
I_{1} \wedge \cdots \wedge I_{n} \rightarrow I
$$

where I_{1}, \ldots, I_{n}, l are all literals.

- The only inference rule is modus ponens.
- E.g. from $p, p \rightarrow s$, conclude s from $\neg s, p \rightarrow s$, don't conclude anything

Introduction

- An argument is a pair $\langle\Psi, \alpha\rangle$, where Ψ is a minimal consistent sets of formulas that entails α.
- Ψ is the support and α is the claim of the argument.
- E.g. $\langle\{a, b, a \wedge b \rightarrow c\}, c\rangle$ $\langle\{a, a \rightarrow b, b \rightarrow c\}, c\rangle$

Introduction

- In the simplest case, a claim follows iff
- there is an argument for the claim
- and no other argument against the claim.

Introduction

- In the simplest case, a claim follows iff
- there is an argument for the claim
- and no other argument against the claim.
- An argument can be undercut if some of the reasons for the argument are contradicted by another argument.
- E.g. $\langle\{d, d \rightarrow \neg b\}, \neg b\rangle$ undercuts $\langle\{a, b, a \wedge b \rightarrow c\}, c\rangle$

Introduction

- In the simplest case, a claim follows iff
- there is an argument for the claim
- and no other argument against the claim.
- An argument can be undercut if some of the reasons for the argument are contradicted by another argument.
- E.g. $\langle\{d, d \rightarrow \neg b\}, \neg b\rangle$ undercuts $\langle\{a, b, a \wedge b \rightarrow c\}, c\rangle$
- Each undercut is itself an argument and so in turn may be undercut, and so on.

Introduction

- In the simplest case, a claim follows iff
- there is an argument for the claim
- and no other argument against the claim.
- An argument can be undercut if some of the reasons for the argument are contradicted by another argument.
- E.g. $\langle\{d, d \rightarrow \neg b\}, \neg b\rangle$ undercuts $\langle\{a, b, a \wedge b \rightarrow c\}, c\rangle$
- Each undercut is itself an argument and so in turn may be undercut, and so on.
- This leads to an argument graph, a synthesis of arguments and counterarguments.

Introduction

- In the simplest case, a claim follows iff
- there is an argument for the claim
- and no other argument against the claim.
- An argument can be undercut if some of the reasons for the argument are contradicted by another argument.
- E.g. $\langle\{d, d \rightarrow \neg b\}, \neg b\rangle$ undercuts $\langle\{a, b, a \wedge b \rightarrow c\}, c\rangle$
- Each undercut is itself an argument and so in turn may be undercut, and so on.
- This leads to an argument graph, a synthesis of arguments and counterarguments.
- Basic approach: Systematically explore the space of arguments to show that a given claim does or does not hold.

Approach

Definition:
Let Δ be a set of formulas in a logic (here, simple logic). An argument is a pair $\langle\Psi, \alpha\rangle$ such that
(1) $\Psi \nvdash \perp$
(2) $\psi \vdash \alpha$
(3) Ψ is a minimal subset of Δ satisfying 2 .

Approach

Definition:

Let Δ be a set of formulas in a logic (here, simple logic). An argument is a pair $\langle\Psi, \alpha\rangle$ such that
(1) $\Psi \nvdash \perp$
(2) $\psi \vdash \alpha$
(3) Ψ is a minimal subset of Δ satisfying 2 .

If $A=\langle\Psi, \alpha\rangle$ is an argument, then

- A is an argument for α
- Ψ is a support for α
- α is the claim of the argument

Argumentation Definition: Condition 1

Condition 1: $\Psi \nvdash \perp$

- For Condition 1 of the definition, want to exclude arguments of the form
$\langle\{a, \neg a\}, b\rangle$
- E.g. exclude

John is a student
John is not a student,
Therefore today is Tuesday

Argumentation Definition: Condition 2

Condition 2: $\Psi \vdash \alpha$

- That is, Ψ gives a reason for accepting α.

Argumentation Definition: Condition 3

Condition 3: Ψ is a minimal subset of Δ satisfying 2 .

- In Condition 3, we exclude irrelevant arguments.
- So, for example, exclude
$\langle\{a, a \rightarrow b, c\}, b\rangle$
- E.g. exclude:

John is a grad student
Grad student are students
Today is Wednesday
Therefore John is a student

Argumentation Definition: Condition 3

Condition 3: Ψ is a minimal subset of Δ satisfying 2 .

- In Condition 3, we exclude irrelevant arguments.
- So, for example, exclude
$\langle\{a, a \rightarrow b, c\}, b\rangle$
- E.g. exclude:

John is a grad student
Grad student are students
Today is Wednesday
Therefore John is a student

- Hence each $\beta \in \Psi$ is an essential part of the argument for α.
- So the claim α can be attacked by attacking any $\beta \in \Psi$.

Example

Let $\Delta=\{a, a \rightarrow b, b \rightarrow d, c \rightarrow \neg b, c, d, d \rightarrow b, \neg a, \neg c\}$
The following are possible arguments:

$$
\begin{aligned}
& \langle\{a, a \rightarrow b\}, b\rangle \\
& \langle\{a, a \rightarrow b, b \rightarrow d\}, d\rangle \\
& \langle\{c, c \rightarrow \neg b\}, \neg b\rangle \\
& \langle\{d, d \rightarrow b\}, b\rangle \\
& \langle\{\neg a\}, \neg a\rangle \\
& \langle\{\neg c\}, \neg c\rangle
\end{aligned}
$$

Example

Let $\Delta=\{a, a \rightarrow b, b \rightarrow d, c \rightarrow \neg b, c, d, d \rightarrow b, \neg a, \neg c\}$
The following are possible arguments:

$$
\begin{aligned}
& \langle\{a, a \rightarrow b\}, b\rangle \\
& \langle\{a, a \rightarrow b, b \rightarrow d\}, d\rangle \\
& \langle\{c, c \rightarrow \neg b\}, \neg b\rangle \\
& \langle\{d, d \rightarrow b\}, b\rangle \\
& \langle\{\neg a\}, \neg a\rangle \\
& \langle\{\neg c\}, \neg c\rangle
\end{aligned}
$$

The following are not arguments:

$$
\begin{aligned}
& \langle\{a, \neg a\}, a\rangle \\
& \langle\{a, c, c \rightarrow b\}, b\rangle
\end{aligned}
$$

Counterarguments

An argument that disagrees with another is a counterargument. The two most important notions of conflict between arguments are:

- An undercut for an argument $\langle\Psi, \alpha\rangle$ is an argument $\left\langle\Psi^{\prime}, \neg \phi\right\rangle$ where $\Psi \vdash \phi$.
- An argument $\langle\Psi, \beta\rangle$ is a rebuttal for an argument $\left\langle\Psi^{\prime}, \alpha\right\rangle$ iff α is equivalent to $\neg \beta$.

Counterarguments

An argument that disagrees with another is a counterargument. The two most important notions of conflict between arguments are:

- An undercut for an argument $\langle\Psi, \alpha\rangle$ is an argument $\left\langle\Psi^{\prime}, \neg \phi\right\rangle$ where $\Psi \vdash \phi$.
- An argument $\langle\Psi, \beta\rangle$ is a rebuttal for an argument $\left\langle\Psi^{\prime}, \alpha\right\rangle$ iff α is equivalent to $\neg \beta$.

Example

Let $\Delta=\{a, a \rightarrow b, b \rightarrow d, c, c \rightarrow \neg a, c \rightarrow \neg b\}$.
Then

- $\langle\{c, c \rightarrow \neg a\}, \neg a\rangle$ is an undercut for $\langle\{a, a \rightarrow b\}, b\rangle$.

Counterarguments

An argument that disagrees with another is a counterargument. The two most important notions of conflict between arguments are:

- An undercut for an argument $\langle\Psi, \alpha\rangle$ is an argument $\left\langle\Psi^{\prime}, \neg \phi\right\rangle$ where $\Psi \vdash \phi$.
- An argument $\langle\Psi, \beta\rangle$ is a rebuttal for an argument $\left\langle\Psi^{\prime}, \alpha\right\rangle$ iff α is equivalent to $\neg \beta$.

Example
Let $\Delta=\{a, a \rightarrow b, b \rightarrow d, c, c \rightarrow \neg a, c \rightarrow \neg b\}$.
Then

- $\langle\{c, c \rightarrow \neg a\}, \neg a\rangle$ is an undercut for $\langle\{a, a \rightarrow b\}, b\rangle$.
- $\langle\{c, c \rightarrow \neg b\}, \neg b\rangle$ is an undercut for $\langle\{a, a \rightarrow b, b \rightarrow d\}, d\rangle$.

Counterarguments

An argument that disagrees with another is a counterargument. The two most important notions of conflict between arguments are:

- An undercut for an argument $\langle\Psi, \alpha\rangle$ is an argument $\left\langle\Psi^{\prime}, \neg \phi\right\rangle$ where $\Psi \vdash \phi$.
- An argument $\langle\Psi, \beta\rangle$ is a rebuttal for an argument $\left\langle\Psi^{\prime}, \alpha\right\rangle$ iff α is equivalent to $\neg \beta$.

Example
Let $\Delta=\{a, a \rightarrow b, b \rightarrow d, c, c \rightarrow \neg a, c \rightarrow \neg b\}$.
Then

- $\langle\{c, c \rightarrow \neg a\}, \neg a\rangle$ is an undercut for $\langle\{a, a \rightarrow b\}, b\rangle$.
- $\langle\{c, c \rightarrow \neg b\}, \neg b\rangle$ is an undercut for $\langle\{a, a \rightarrow b, b \rightarrow d\}, d\rangle$.
- $\langle\{a\}, a\rangle$ is a simple rebuttal for $\langle\{c, c \rightarrow \neg a\}, \neg a\rangle$.

A More Realistic Example

$p \quad$ Simon Jones is a Member of Parliament
$p \rightarrow \neg q \quad$ If Simon Jones is a Member of Parliament then we need not keep quiet about details of his private life
$r \quad$ Simon Jones just resigned from the House of Commons
$r \rightarrow \neg p \quad$ If Simon Jones just resigned from the House of Commons then he is not a Member of Parliament
$\neg p \rightarrow q \quad$ If Simon Jones is not a Member of Parliament then we need to keep quiet about details of his private life

A More Realistic Example

$p \quad$ Simon Jones is a Member of Parliament
$p \rightarrow \neg q \quad$ If Simon Jones is a Member of Parliament then we need not keep quiet about details of his private life
$r \quad$ Simon Jones just resigned from the House of Commons
$r \rightarrow \neg p \quad$ If Simon Jones just resigned from the House of Commons then he is not a Member of Parliament
$\neg p \rightarrow q$ If Simon Jones is not a Member of Parliament then we need to keep quiet about details of his private life
Consider:

$$
\langle\{p, p \rightarrow \neg q\}, \neg q\rangle
$$

A More Realistic Example

$p \quad$ Simon Jones is a Member of Parliament
$p \rightarrow \neg q \quad$ If Simon Jones is a Member of Parliament then we need not keep quiet about details of his private life
$r \quad$ Simon Jones just resigned from the House of Commons
$r \rightarrow \neg p \quad$ If Simon Jones just resigned from the House of Commons then he is not a Member of Parliament
$\neg p \rightarrow q$ If Simon Jones is not a Member of Parliament then we need to keep quiet about details of his private life
Consider:

$$
\langle\{p, p \rightarrow \neg q\}, \neg q\rangle
$$

An undercut is:

$$
\langle\{r, r \rightarrow \neg p\}, \neg p\rangle
$$

A More Realistic Example

$p \quad$ Simon Jones is a Member of Parliament
$p \rightarrow \neg q \quad$ If Simon Jones is a Member of Parliament then we need not keep quiet about details of his private life
$r \quad$ Simon Jones just resigned from the House of Commons
$r \rightarrow \neg p \quad$ If Simon Jones just resigned from the House of Commons then he is not a Member of Parliament
$\neg p \rightarrow q$ If Simon Jones is not a Member of Parliament then we need to keep quiet about details of his private life
Consider:

$$
\langle\{p, p \rightarrow \neg q\}, \neg q\rangle
$$

An undercut is:

$$
\langle\{r, r \rightarrow \neg p\}, \neg p\rangle
$$

A rebuttal is:

$$
\langle\{r, r \rightarrow \neg p, \neg p \rightarrow q\}, q\rangle .
$$

Constructing Argument Graphs

There are two possibilities for forming abstract argument graphs.
Descriptive Argument Graphs
Given a set of arguments and counterarguments, form the abstract (directed) graph.

Constructing Argument Graphs

There are two possibilities for forming abstract argument graphs.
Descriptive Argument Graphs
Given a set of arguments and counterarguments, form the abstract (directed) graph.

Generative Argument Graphs
Given a knowledge base, automatically generate possible arguments, and from them generate the argument graph.

Constructing Argument Graphs

There are two possibilities for forming abstract argument graphs.
Descriptive Argument Graphs
Given a set of arguments and counterarguments, form the abstract (directed) graph.

Generative Argument Graphs

Given a knowledge base, automatically generate possible arguments, and from them generate the argument graph.
(T) In either case, can then use techniques from the first part to come up with conclusions (i.e. supported claims).

Descriptive Argument Graphs

Example 1

A_{1} : "The flight is low cost and luxury, therefore it is a good flight"
A_{2} : "If a flight is low cost then it can't be luxury. Since it is low cost, it's not luxury"

Descriptive Argument Graphs

Example 1

A_{1} : "The flight is low cost and luxury, therefore it is a good flight"
A_{2} : "If a flight is low cost then it can't be luxury. Since it is low cost, it's not luxury"

Thus A_{2} attacks A_{1} :

$$
\mathrm{A} 2 \longrightarrow \mathrm{~A} 1
$$

Descriptive Argument Graphs

Example 2

Assertions:

- bp(high) - patient has high blood pressure
- ok(bb) - it's ok to give a betablocker
- ok(di) - it's ok to give a diuretic
- give(bb) - prescribe a betablocker
- give(di) - prescribe a diuretic
- $\operatorname{symp}(e m p h)$ - patient shows signs of emphysema

Descriptive Argument Graphs

Informally:

A_{1} : The patient has high blood pressure, it's ok to give them diuretics and it's not ok to give them betablockers.
\therefore Give a diuretic
A_{2} : The patient has high blood pressure, it's ok to give them a betablocker and it's not ok to give them a diuretic.
\therefore Give a betablocker
A_{3} : The patient has symptoms of emphysema. Since if someone has symptoms of emphysema it's not ok to give a betablocker, \therefore It's not ok to give them betablockers.

Descriptive Argument Graphs

Formally:
$A_{1}:\langle\{b p(h i g h), o k(d i), \neg \operatorname{give}(b b)$ $b p($ high $) \wedge o k(d i) \wedge \neg \operatorname{give}(b b) \rightarrow \operatorname{give}(d i)\}$, give(di)〉
$A_{2}:\langle\{b p(h i g h), o k(b b), \neg$ give $(d i)$ $b p($ high $) \wedge o k(b b) \wedge \neg \operatorname{give}(d i) \rightarrow \operatorname{give}(b b)\}$, give(bb) $)$
$A_{3}:\langle\{\operatorname{symp}(e m p h), \operatorname{symp}(e m p h) \rightarrow \neg o k(b b)\}, \neg o k(b b)\rangle$

Descriptive Argument Graphs

Formally:

```
\(A_{1}:\langle\{b p(\) high \()\), ok \((d i), \neg \operatorname{give}(b b)\)
    \(b p(\) high \() \wedge o k(d i) \wedge \neg \operatorname{give}(b b) \rightarrow \operatorname{give}(d i)\}\),
        give(di) \()\)
\(A_{2}:\langle\{b p(h i g h), o k(b b), \neg\) give (di)
        \(b p(h i g h) \wedge o k(b b) \wedge \neg \operatorname{give}(d i) \rightarrow \operatorname{give}(b b)\}\),
    give(bb) \()\)
\(A_{3}:\langle\{\operatorname{symp}(e m p h), \operatorname{symp}(e m p h) \rightarrow \neg o k(b b)\}, \neg \circ k(b b)\rangle\)
```

Form:

Generative Argument Graphs

Let Δ be a simple logic knowledge base.
Define:
$\operatorname{Arguments}(\Delta)=$
$\{\langle\Psi, \alpha\rangle \mid \Psi \subseteq \Delta$ and $\langle\Psi, \alpha\rangle$ is a simple argument $\}$
$\operatorname{Attacks}(\Delta)=$
$\{(A ; B) \mid A, B \in \operatorname{Arguments}(\Delta)$ and A is an undercut of $B\}$

Aside: In simple logic, any rebuttal is also an undercut, so we just need to consider undercuts.

Generative Argument Graphs

Let Δ be a simple logic knowledge base.
Define:
$\operatorname{Arguments}(\Delta)=$
$\{\langle\Psi, \alpha\rangle \mid \Psi \subseteq \Delta$ and $\langle\Psi, \alpha\rangle$ is a simple argument $\}$
$\operatorname{Attacks}(\Delta)=$
$\{(A ; B) \mid A, B \in \operatorname{Arguments}(\Delta)$ and A is an undercut of $B\}$
Aside: In simple logic, any rebuttal is also an undercut, so we just need to consider undercuts.

An exhaustive graph for Δ is an argument graph $G=(\mathcal{A}, \mathcal{R})$ where
$-\mathcal{A}$ is $\operatorname{Arguments}(\Delta)$ and
$-\mathcal{R}$ is $\operatorname{Attacks}(\Delta)$.

Example

$\Delta_{1}=\{a, b, c, \neg a, \neg b, \neg c, a \rightarrow \neg b, b \rightarrow \neg c, c \rightarrow d\}$
$A_{1}:\langle\{a, a \rightarrow \neg b\}, \neg b\rangle$
$A_{2}:\langle\{b, b \rightarrow \neg c\}, \neg c\rangle$
$A_{3}:\langle\{c, c \rightarrow d\}, d\rangle$

Example

$\Delta_{1}=\{a, b, c, \neg a, \neg b, \neg c, a \rightarrow \neg b, b \rightarrow \neg c, c \rightarrow d\}$
$A_{1}:\langle\{a, a \rightarrow \neg b\}, \neg b\rangle$
$A_{2}:\langle\{b, b \rightarrow \neg c\}, \neg c\rangle$
$A_{3}:\langle\{c, c \rightarrow d\}, d\rangle$
Form:

$$
\mathrm{A} 1 \longrightarrow \mathrm{~A} 2 \longrightarrow \mathrm{~A} 3
$$

Example

$\Delta_{1}=\{a, b, c, \neg a, \neg b, \neg c, a \rightarrow \neg b, b \rightarrow \neg c, c \rightarrow d\}$
$A_{1}:\langle\{a, a \rightarrow \neg b\}, \neg b\rangle$
$A_{2}:\langle\{b, b \rightarrow \neg c\}, \neg c\rangle$
$A_{3}:\langle\{c, c \rightarrow d\}, d\rangle$
Form:

$$
\mathrm{A} 1 \longrightarrow \mathrm{~A} 2 \longrightarrow \mathrm{~A} 3
$$

IE There is one (grounded or preferred or stable) extension with A_{1} and A_{3}, supporting the claims $\neg b$ and d.

Example

$\Delta_{2}=\{a, b, c, \neg a, \neg b, \neg c, a \rightarrow \neg b, b \rightarrow \neg c, c \rightarrow \neg a\}$
$A_{1}:\langle\{a, a \rightarrow \neg b\}, \neg b\rangle$
$A_{2}:\langle\{b, b \rightarrow \neg c\}, \neg c\rangle$
$A_{3}:\langle\{c, c \rightarrow \neg a\}, \neg a\rangle$

Example

$\Delta_{2}=\{a, b, c, \neg a, \neg b, \neg c, a \rightarrow \neg b, b \rightarrow \neg c, c \rightarrow \neg a\}$
$A_{1}:\langle\{a, a \rightarrow \neg b\}, \neg b\rangle$
$A_{2}:\langle\{b, b \rightarrow \neg c\}, \neg c\rangle$
$A_{3}:\langle\{c, c \rightarrow \neg a\}, \neg a\rangle$
Form:

Example

$\Delta_{2}=\{a, b, c, \neg a, \neg b, \neg c, a \rightarrow \neg b, b \rightarrow \neg c, c \rightarrow \neg a\}$
$A_{1}:\langle\{a, a \rightarrow \neg b\}, \neg b\rangle$
$A_{2}:\langle\{b, b \rightarrow \neg c\}, \neg c\rangle$
$A_{3}:\langle\{c, c \rightarrow \neg a\}, \neg a\rangle$
Form:

There is one grounded or preferred extension, the empty set, and no stable extension.
In either case no claims are supported.

Philippe Besnard and Anthony Hunter.
Constructing argument graphs with deductive arguments: A tutorial.
Argument \& Computation, 5(1):5-30, 2014.
P.M. Dung.

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games.
Artificial Intelligence, 77(2):321-358, 1995.

