Abductive Reasoning

CMPT 411/721

Topics

Topics

- Reasoning with Prime Implicates
- Abduction

Here we give a different flavour for reasoning with ground (variable-free) sets of clauses.

Idea:

• Begin with formulas expressed in *clause normal form*.

Here we give a different flavour for reasoning with ground (variable-free) sets of clauses.

Idea:

- Begin with formulas expressed in *clause normal form*.
- Then find the set of *prime implicates* of the set of clauses.

Here we give a different flavour for reasoning with ground (variable-free) sets of clauses.

Idea:

- Begin with formulas expressed in *clause normal form*.
- Then find the set of *prime implicates* of the set of clauses.
 - Notably, prime implicates allow for very efficient reasoning.

Here we give a different flavour for reasoning with ground (variable-free) sets of clauses.

Idea:

- Begin with formulas expressed in clause normal form.
- Then find the set of *prime implicates* of the set of clauses.
 - Notably, prime implicates allow for very efficient reasoning.
- This is an example of knowledge compilation
 - I.e. transform a KB so that inference is efficient.
 - Reasoning will be done using the prime implicates.
 - This is also used in a form of diagnosis, called *abduction*.
 - (Abduction can be though of reasoning backwards from symptoms to causes)

Knowledge Compilation

Idea: Given a general knowledge base KB, transform it to KB' so that

- $KB \equiv KB'$ but
- Determining whether $KB' \models \phi$ can be carried out more efficiently than $KB \models \phi$.
- Here KB' is the set of prime implicates (next slide) of KB

Prime Implicates

- An *implicate* of a theory is a clause that logically follows from that theory.
 - I.e. an implicate of KB is a clause c such that $KB \models c$.
 - E.g. $\neg a \lor b$ and $\neg b \lor c$ have implicates $\neg a \lor c \lor d$ and $\neg a \lor a \lor d$.

Prime Implicates

- An implicate of a theory is a clause that logically follows from that theory.
 - I.e. an implicate of KB is a clause c such that $KB \models c$.
 - E.g. $\neg a \lor b$ and $\neg b \lor c$ have implicates $\neg a \lor c \lor d$ and $\neg a \lor a \lor d$.
- A minimal implicate is a clause that has no strict subset as an implicate.
 - I.e. a minimal implicate of KB is an implicate c such that for every implicate c' of KB, c' ⊄ c
 - Recall: treating clauses as sets of literals.
 - E.g. $\neg a \lor c$ and $\neg a \lor a$ are minimal implicates of $\neg a \lor b, \neg b \lor c$.

Prime Implicates

- An implicate of a theory is a clause that logically follows from that theory.
 - I.e. an implicate of KB is a clause c such that $KB \models c$.
 - E.g. $\neg a \lor b$ and $\neg b \lor c$ have implicates $\neg a \lor c \lor d$ and $\neg a \lor a \lor d$.
- A minimal implicate is a clause that has no strict subset as an implicate.
 - I.e. a minimal implicate of KB is an implicate c such that for every implicate c' of KB, c' ⊄ c
 - Recall: treating clauses as sets of literals.
 - E.g. $\neg a \lor c$ and $\neg a \lor a$ are minimal implicates of $\neg a \lor b, \neg b \lor c$.
- A prime implicate is a minimal implicate that is not trivial, i.e., does not contain complementary literals (of the form a, ¬a).
 - E.g. $\neg a \lor c$ is a prime implicate of $\neg a \lor b, \neg b \lor c$. The other prime implicates are $\neg a \lor b, \neg b \lor c$.

Bottom-Up Procedure

Motivation:

• We have the result that:

A clause

$$L_1 \vee \cdots \vee L_k$$

is a logical consequence of a theory iff either

- there are some L_i and L_i such that $L_i = \neg L_i$, or
- some subset of $\{L_1, \ldots, L_k\}$ is a prime implicate of the theory.

Bottom-Up Procedure

Motivation:

• We have the result that:

A clause

$$L_1 \vee \cdots \vee L_k$$

is a logical consequence of a theory iff either

- there are some L_i and L_i such that $L_i = \neg L_i$, or
- some subset of $\{L_1, \ldots, L_k\}$ is a prime implicate of the theory.
- ullet So, for a query ϕ and a KB made up of prime implicates,
 - **1** Convert ϕ to clause form, and
 - 2 for each such clause, see if it is a superset of a prime implicate.

Bottom-Up Procedure

Motivation:

• We have the result that:

A clause

$$L_1 \vee \cdots \vee L_k$$

is a logical consequence of a theory iff either

- there are some L_i and L_j such that $L_i = \neg L_j$, or
- some subset of $\{L_1, \ldots, L_k\}$ is a prime implicate of the theory.
- ullet So, for a query ϕ and a KB made up of prime implicates,
 - **1** Convert ϕ to clause form, and
 - 2 for each such clause, see if it is a superset of a prime implicate.
- Thus if we can compute the prime implicates of a theory, we can perform deduction by table lookup, which is very fast.

Bottom-Up Procedure: Notes

- The main operation for computing prime implicates is *binary* resolution.
- Recall:

Rule of resolution: from $R \vee L$ and $S \vee \neg L$ we can infer $R \vee S$.

 Since we implicitely use sets, disjuncts of the form A ∨ A can be collapsed to A.

Bottom-Up Procedure: Notes

- The main operation for computing prime implicates is *binary* resolution.
- Recall:
 - Rule of resolution: from $R \vee L$ and $S \vee \neg L$ we can infer $R \vee S$.
 - Since we implicitely use sets, disjuncts of the form A ∨ A can be collapsed to A.
- Earlier, we used resolution in a top-down procedure.

Bottom-Up Procedure: Notes

- The main operation for computing prime implicates is *binary* resolution.
- Recall:
 - Rule of resolution: from $R \vee L$ and $S \vee \neg L$ we can infer $R \vee S$.
 - Since we implicitely use sets, disjuncts of the form A ∨ A can be collapsed to A.
- Earlier, we used resolution in a top-down procedure.
- Here, resolution is used as a bottom-up procedure to compile out all resolution steps.

Bottom-Up Procedure for Computing Prime Implicates

Example

Consider:

$$c \Rightarrow a \lor \neg b$$
$$\neg c \Rightarrow \neg e$$
$$b \lor d$$
$$d \Rightarrow a \lor b$$
$$\neg a \Rightarrow e$$

• In clause form:

$$\{\{a, \neg b, \neg c\}, \{c, \neg e\}, \{b, d\}, \{a, b, \neg d\}, \{a, e\}\}$$

• These clauses have prime implicates

```
a, b \lor d, \neg e \lor c
```

- These clauses have prime implicates $a, b \lor d, \neg e \lor c$
- We can now quickly answer queries. For example:

$$?a \lor \neg b$$
 is

• These clauses have prime implicates $a, b \lor d, \neg e \lor c$

• We can now quickly answer queries. For example:

 $?a \lor \neg b$ is yes $?\neg e \lor \neg b$ is

• These clauses have prime implicates $a, b \lor d, \neg e \lor c$

• We can now quickly answer queries. For example:

 $?a \lor \neg b$ is yes $?\neg e \lor \neg b$ is no $?b \lor \neg e \lor \neg b$ is

• These clauses have prime implicates $a, b \lor d, \neg e \lor c$

• We can now quickly answer queries. For example:

 $?a \lor \neg b$ is yes $?\neg e \lor \neg b$ is no $?b \lor \neg e \lor \neg b$ is yes

Inference Procedure using Prime Implicates

Input: Knowledge base KB expressed as prime implicates Query Q, a formula of propositional logic.

```
Q':=CNF(Q); for each C\in Q' If \not\exists P\in KB s.t. P\subseteq C return "fail" return "yes"
```

More Notes

• This is an example of *knowledge compilation*, i.e. translating knowledge (usually offline) into a form for faster reasoning.

More Notes

- This is an example of knowledge compilation, i.e. translating knowledge (usually offline) into a form for faster reasoning.
- Computing prime implicates can be expensive, since resolution is exponential in the worse case.
 - I.e. determining whether a formula follows by resolution may take exponential time.
 - Also there may be an exponential number of prime implicates.

More Notes

- This is an example of knowledge compilation, i.e. translating knowledge (usually offline) into a form for faster reasoning.
- Computing prime implicates can be expensive, since resolution is exponential in the worse case.
 - I.e. determining whether a formula follows by resolution may take exponential time.
 - Also there may be an exponential number of prime implicates.
- Nonetheless prime implicates have played an important role in several areas of KR.

Applications

Prime implicates have found extensive use in KR.

- One major area is *abduction* or *diagnosis*.
 - This derives from earlier work on the assumption-based truth-maintenance system (ATMS).
- As well, there has been work on using prime implicates in belief revision.

(See Chapter 13 of the Brachman and Levesque text)

So far, reasoning has been primarily deductive:

• Main question: Given KB, is α a logical consequence?

(See Chapter 13 of the Brachman and Levesque text)

So far, reasoning has been primarily deductive:

• Main question: Given KB, is α a logical consequence?

Now consider a new type of question:

Given:

• A KB, and a fact α ,

(See Chapter 13 of the Brachman and Levesque text)

So far, reasoning has been primarily deductive:

• Main question: Given KB, is α a logical consequence?

Now consider a new type of question:

Given:

• A KB, and a fact α ,

Ask:

• what would be a sufficient *reason* for α to be true?

(See Chapter 13 of the Brachman and Levesque text)

So far, reasoning has been primarily deductive:

• Main question: Given KB, is α a logical consequence?

Now consider a new type of question:

Given:

• A KB, and a fact α ,

Ask:

- what would be a sufficient *reason* for α to be true?
- or, if I didn't believe α , what else would I have to believe for α to become an implicit belief?

(See Chapter 13 of the Brachman and Levesque text)

So far, reasoning has been primarily deductive:

• Main question: Given KB, is α a logical consequence?

Now consider a new type of question:

Given:

• A KB, and a fact α ,

Ask:

- what would be a sufficient *reason* for α to be true?
- or, if I didn't believe α, what else would I have to believe for α to become an implicit belief?
- or, what would explain α being true?

Aside: Forms of Reasoning

Deduction: Given $p \Rightarrow q$, from p, deduce q

Aside: Forms of Reasoning

Deduction: Given $p \Rightarrow q$, from p, deduce q Abduction: Given $p \Rightarrow q$, from q, abduce p

- I.e. p is sufficient for q, or one way for q to be true is for p to be true.
- Can be used for causal reasoning: (cause ⇒ effect)

Aside: Forms of Reasoning

```
Deduction: Given p \Rightarrow q, from p, deduce q Abduction: Given p \Rightarrow q, from q, abduce p
```

- I.e. p is sufficient for q, or one way for q to be true is for p to be true.
- Can be used for causal reasoning: (cause ⇒ effect)

```
Induction: Given p(t_1), q(t_1), ..., p(t_n), q(t_n), induce \forall x (p(x) \Rightarrow q(x)).
```

Using Abduction for Diagnosis

- One simple version of diagnosis uses abductive reasoning
- KB has facts about symptoms and diseases including:

 $Disease \land Hedges \Rightarrow Symptoms$

Goal: Find disease(s) that best explain observed symptoms

Abduction Example

Example:

 $TennisElbow \Rightarrow SoreElbow$

 $TennisElbow \Rightarrow TennisPlayer$

 $Arthritis \land \neg Treated \Rightarrow Sore Joints$

 $SoreJoints \Rightarrow SoreElbow$

 $SoreJoints \Rightarrow SoreHips$

Abduction Example

Example:

 $TennisElbow \Rightarrow SoreElbow$

TennisElbow ⇒ *TennisPlayer*

Arthritis $\land \neg Treated \Rightarrow Sore Joints$

SoreJoints ⇒ SoreElbow

 $SoreJoints \Rightarrow SoreHips$

Explain: SoreElbow

Abduction Example

Example:

 $TennisElbow \Rightarrow SoreElbow$

TennisElbow ⇒ *TennisPlayer*

 $Arthritis \land \neg Treated \Rightarrow Sore Joints$

 $SoreJoints \Rightarrow SoreElbow$

 $SoreJoints \Rightarrow SoreHips$

Explain: SoreElbow

Want: TennisElbow, Arthritis $\land \neg Treated$

Obtain multiple equally-good explanations

- $oldsymbol{0}$ α is sufficient to account for β
 - $\mathit{KB} \cup \{\alpha\} \models \beta \text{ or } \mathit{KB} \models \alpha \Rightarrow \beta$

- **1** α is sufficient to account for β
 - $KB \cup \{\alpha\} \models \beta$ or $KB \models \alpha \Rightarrow \beta$
- $\mathbf{2}$ α is not ruled out by KB
 - $\mathit{KB} \cup \{\alpha\}$ is consistent or $\mathit{KB} \not\models \neg \alpha$

- **11** α is sufficient to account for β
 - $KB \cup \{\alpha\} \models \beta \text{ or } KB \models \alpha \Rightarrow \beta$
- \mathbf{Q} α is not ruled out by KB
 - $KB \cup \{\alpha\}$ is consistent or $KB \not\models \neg \alpha$
- $oldsymbol{3}$ α is as simple as possible
 - Parsimonious: as few terms as possible
 - Explanations should not unnecessarily strong or weak

- **11** α is sufficient to account for β
 - $KB \cup \{\alpha\} \models \beta \text{ or } KB \models \alpha \Rightarrow \beta$
- \mathbf{Q} α is not ruled out by KB
 - $KB \cup \{\alpha\}$ is consistent or $KB \not\models \neg \alpha$
- $oldsymbol{3}$ α is as simple as possible
 - Parsimonious: as few terms as possible
 - Explanations should not unnecessarily strong or weak
- **4** α is in the appropriate vocabulary
 - Atomic sentences of α should be drawn from a set H of possible hypotheses.
 - E.g. diseases, original causes

Given KB, and β to be explained, we want an α such that:

- **11** α is sufficient to account for β
 - $KB \cup \{\alpha\} \models \beta \text{ or } KB \models \alpha \Rightarrow \beta$
- \mathbf{Q} α is not ruled out by KB
 - $KB \cup \{\alpha\}$ is consistent or $KB \not\models \neg \alpha$
- $oldsymbol{3}$ α is as simple as possible
 - Parsimonious: as few terms as possible
 - Explanations should not unnecessarily strong or weak
- \bullet α is in the appropriate vocabulary
 - Atomic sentences of α should be drawn from a set H of possible hypotheses.
 - E.g. diseases, original causes

Call such α an *explanation* of β wrt KB.

We can simplify explanations in the propositional case, as follows:

We can simplify explanations in the propositional case, as follows:

 Assume that we are only going to explain an atom p, rather than an arbitrary formula.

We can simplify explanations in the propositional case, as follows:

- Assume that we are only going to explain an atom p, rather than an arbitrary formula.
- An explanation will be (equivalent to) a conjunction of literals (that is, the negation of a clause)
 - Why?
 - If α is a purported explanation, and $DNF[\alpha] = (d_1 \vee d_2 \vee \cdots \vee d_n)$ then each d_i is also an explanation that is simpler than α

A simplest explanation is then the negation of a clause with a *minimal* set of literals

A simplest explanation is then the negation of a clause with a *minimal* set of literals

- To explain a literal I, it will be sufficient to find a minimal clause $C = \neg c_1 \lor \cdots \lor \neg c_n$ such that

 - ② $KB \cup \neg C \models I$ or $KB \models \neg C \Rightarrow I$ or $KB \models (C \cup \{I\})$ (sufficient)

Recall that the clause $C \cup \{I\}$ represents $\neg c_1 \lor \cdots \lor \neg c_n \lor I$.

Using Prime Implicates

Recall: Clause C is a prime implicate of KB iff

- \bullet KB \models C
- **2** For no $C^* \subset C$ do we have $KB \models C^*$

Using Prime Implicates

Recall: Clause C is a prime implicate of KB iff

- \bullet KB \models C
- **2** For no $C^* \subset C$ do we have $KB \models C^*$

For explanations:

• Want minimal C such that $KB \models (C \cup \{I\})$ and $KB \not\models C$

Using Prime Implicates

Recall: Clause C is a prime implicate of KB iff

- \bullet KB \models C
- **2** For no $C^* \subset C$ do we have $KB \models C^*$

For explanations:

• Want minimal C such that $KB \models (C \cup \{I\})$ and $KB \not\models C$

Hence:

- Find prime implicates C such that $I \in C$.
- Then $\neg(C \setminus I)$ must be an explanation for I.

Example

$$KB = \left\{ \begin{array}{ll} p \wedge q \wedge r \Rightarrow g, \\ \neg p \wedge q \Rightarrow g, \\ \neg q \wedge r \Rightarrow g \end{array} \right\}$$

Example

$$KB = \{ p \land q \land r \Rightarrow g, \\ \neg p \land q \Rightarrow g, \\ \neg q \land r \Rightarrow g \}$$

$$PI(KB) = \{p \lor \neg q \lor g, \ \neg r \lor g\} + \text{tautologies}$$

Example

$$KB = \left\{ \begin{array}{ll} p \wedge q \wedge r \Rightarrow g, \\ \neg p \wedge q \Rightarrow g, \\ \neg q \wedge r \Rightarrow g \end{array} \right\}$$

$$PI(KB) = \{p \lor \neg q \lor g, \ \neg r \lor g\} + \text{tautologies}$$

Explanations for g:

• 2 non-trivial prime implicates contain g, so get 2 explanations: $\neg p \land q$ and r.