Abductive Reasoning

CMPT 411/721

Topics

Topics

- Reasoning with Prime Implicates
- Abduction

Bottom-Up Reasoning Via Prime Implicates

Here we give a different flavour for reasoning with ground (variable-free) sets of clauses.

Idea:

- Begin with formulas expressed in clause normal form.

Bottom-Up Reasoning Via Prime Implicates

Here we give a different flavour for reasoning with ground (variable-free) sets of clauses.

Idea:

- Begin with formulas expressed in clause normal form.
- Then find the set of prime implicates of the set of clauses.

Bottom-Up Reasoning Via Prime Implicates

Here we give a different flavour for reasoning with ground (variable-free) sets of clauses.

Idea:

- Begin with formulas expressed in clause normal form.
- Then find the set of prime implicates of the set of clauses.

Notably, prime implicates allow for very efficient reasoning.

Bottom-Up Reasoning Via Prime Implicates

Here we give a different flavour for reasoning with ground (variable-free) sets of clauses.

Idea:

- Begin with formulas expressed in clause normal form.
- Then find the set of prime implicates of the set of clauses.

Notably, prime implicates allow for very efficient reasoning.

- This is an example of knowledge compilation
- I.e. transform a KB so that inference is efficient.
- Reasoning will be done using the prime implicates.
- This is also used in a form of diagnosis, called abduction.
- (Abduction can be though of reasoning backwards from symptoms to causes)

Knowledge Compilation

Idea: Given a general knowledge base $K B$, transform it to $K B^{\prime}$ so that

- $K B \equiv K B^{\prime}$ but
- Determining whether $K B^{\prime} \models \phi$ can be carried out more efficiently than $K B \models \phi$.

Here $K B^{\prime}$ is the set of prime implicates (next slide) of $K B$

Prime Implicates

- An implicate of a theory is a clause that logically follows from that theory.
- I.e. an implicate of $K B$ is a clause c such that $K B \vDash c$.
- E.g. $\neg a \vee b$ and $\neg b \vee c$ have implicates $\neg a \vee c \vee d$ and $\neg a \vee a \vee d$.

Prime Implicates

- An implicate of a theory is a clause that logically follows from that theory.
- I.e. an implicate of $K B$ is a clause c such that $K B=c$.
- E.g. $\neg a \vee b$ and $\neg b \vee c$ have implicates $\neg a \vee c \vee d$ and $\neg a \vee a \vee d$.
- A minimal implicate is a clause that has no strict subset as an implicate.
- I.e. a minimal implicate of $K B$ is an implicate c such that for every implicate c^{\prime} of $K B, c^{\prime} \not \subset c$
- Recall: treating clauses as sets of literals.
- E.g. $\neg a \vee c$ and $\neg a \vee a$ are minimal implicates of $\neg a \vee b, \neg b \vee c$.

Prime Implicates

- An implicate of a theory is a clause that logically follows from that theory.
- I.e. an implicate of $K B$ is a clause c such that $K B=c$.
- E.g. $\neg a \vee b$ and $\neg b \vee c$ have implicates $\neg a \vee c \vee d$ and $\neg a \vee a \vee d$.
- A minimal implicate is a clause that has no strict subset as an implicate.
- I.e. a minimal implicate of $K B$ is an implicate c such that for every implicate c^{\prime} of $K B, c^{\prime} \not \subset c$
- Recall: treating clauses as sets of literals.
- E.g. $\neg a \vee c$ and $\neg a \vee a$ are minimal implicates of $\neg a \vee b, \neg b \vee c$.
- A prime implicate is a minimal implicate that is not trivial, i.e., does not contain complementary literals (of the form $a, \neg a$).
- E.g. $\neg a \vee c$ is a prime implicate of $\neg a \vee b, \neg b \vee c$. The other prime implicates are $\neg a \vee b, \neg b \vee c$.

Bottom-Up Procedure

Motivation:

- We have the result that:

A clause

$$
L_{1} \vee \cdots \vee L_{k}
$$

is a logical consequence of a theory iff either

- there are some L_{i} and L_{j} such that $L_{i}=\neg L_{j}$, or
- some subset of $\left\{L_{1}, \ldots, L_{k}\right\}$ is a prime implicate of the theory.

Bottom-Up Procedure

Motivation:

- We have the result that:

A clause

$$
L_{1} \vee \cdots \vee L_{k}
$$

is a logical consequence of a theory iff either

- there are some L_{i} and L_{j} such that $L_{i}=\neg L_{j}$, or
- some subset of $\left\{L_{1}, \ldots, L_{k}\right\}$ is a prime implicate of the theory.
- So, for a query ϕ and a KB made up of prime implicates,
(1) Convert ϕ to clause form, and
(2) for each such clause, see if it is a superset of a prime implicate.

Bottom-Up Procedure

Motivation:

- We have the result that:

A clause

$$
L_{1} \vee \cdots \vee L_{k}
$$

is a logical consequence of a theory iff either

- there are some L_{i} and L_{j} such that $L_{i}=\neg L_{j}$, or
- some subset of $\left\{L_{1}, \ldots, L_{k}\right\}$ is a prime implicate of the theory.
- So, for a query ϕ and a KB made up of prime implicates,
(1) Convert ϕ to clause form, and
(2) for each such clause, see if it is a superset of a prime implicate.
- Thus if we can compute the prime implicates of a theory, we can perform deduction by table lookup, which is very fast.

Bottom-Up Procedure: Notes

- The main operation for computing prime implicates is binary resolution.
- Recall:

Rule of resolution: from $R \vee L$ and $S \vee \neg L$ we can infer $R \vee S$.

- Since we implicitely use sets, disjuncts of the form $A \vee A$ can be collapsed to A.

Bottom-Up Procedure: Notes

- The main operation for computing prime implicates is binary resolution.
- Recall:

Rule of resolution: from $R \vee L$ and $S \vee \neg L$ we can infer $R \vee S$.

- Since we implicitely use sets, disjuncts of the form $A \vee A$ can be collapsed to A.
- Earlier, we used resolution in a top-down procedure.

Bottom-Up Procedure: Notes

- The main operation for computing prime implicates is binary resolution.
- Recall:

Rule of resolution: from $R \vee L$ and $S \vee \neg L$ we can infer $R \vee S$.

- Since we implicitely use sets, disjuncts of the form $A \vee A$ can be collapsed to A.
- Earlier, we used resolution in a top-down procedure.
- Here, resolution is used as a bottom-up procedure to compile out all resolution steps.

Bottom-Up Procedure for Computing Prime Implicates

Input: Theory T in clause form
repeat

$$
\begin{aligned}
& \text { choose }\{L\} \cup R \in T \text { and }\{\neg L\} \cup S \in T \text { such that } \\
& \nexists \text { atom } A \text { such that }\{A, \neg A\} \subseteq R \cup S \text { and } \\
& \nexists C \in T \text { such that } C \subseteq R \cup S ; \\
& \text { remove all } C \text { from } T \text { for which } R \cup S \subset C ; \\
& T:=T \cup\{R \cup S\}
\end{aligned}
$$

until no more choices

Example

- Consider:

$$
\begin{aligned}
& c \Rightarrow a \vee \neg b \\
& \neg c \Rightarrow \neg e \\
& b \vee d \\
& d \Rightarrow a \vee b \\
& \neg a \Rightarrow e
\end{aligned}
$$

- In clause form:

$$
\{\{a, \neg b, \neg c\},\{c, \neg e\},\{b, d\},\{a, b, \neg d\},\{a, e\}\}
$$

Example (continued)

- These clauses have prime implicates $a, \quad b \vee d, \quad \neg e \vee c$

Example (continued)

- These clauses have prime implicates $a, \quad b \vee d, \quad \neg e \vee c$
- We can now quickly answer queries. For example:

$$
? a \vee \neg b \quad \text { is }
$$

Example (continued)

- These clauses have prime implicates $a, \quad b \vee d, \quad \neg e \vee c$
- We can now quickly answer queries. For example:

$$
\begin{array}{lll}
? a \vee \neg b & \text { is } & y e s \\
? \neg e \vee \neg b & \text { is } &
\end{array}
$$

Example (continued)

- These clauses have prime implicates $a, \quad b \vee d, \quad \neg e \vee c$
- We can now quickly answer queries. For example:

$$
\begin{array}{lll}
? a \vee \neg b & \text { is } & \text { yes } \\
? \neg e \vee \neg b & \text { is } & \text { no } \\
? b \vee \neg e \vee \neg b & \text { is } &
\end{array}
$$

Example (continued)

- These clauses have prime implicates $a, \quad b \vee d, \quad \neg e \vee c$
- We can now quickly answer queries. For example:

$$
\begin{array}{lll}
? a \vee \neg b & \text { is } & \text { yes } \\
? \neg e \vee \neg b & \text { is } & \text { no } \\
? b \vee \neg e \vee \neg b & \text { is } & \text { yes }
\end{array}
$$

Inference Procedure using Prime
 Implicates

Input: Knowledge base $K B$ expressed as prime implicates Query Q, a formula of propositional logic.
$Q^{\prime}:=\operatorname{CNF}(Q)$;
for each $C \in Q^{\prime}$
If $\nexists P \in K B$ s.t. $P \subseteq C$ return "fail"
return "yes"

More Notes

- This is an example of knowledge compilation, i.e. translating knowledge (usually offline) into a form for faster reasoning.

More Notes

- This is an example of knowledge compilation, i.e. translating knowledge (usually offline) into a form for faster reasoning.
- Computing prime implicates can be expensive, since resolution is exponential in the worse case.
- I.e. determining whether a formula follows by resolution may take exponential time.
- Also there may be an exponential number of prime implicates.

More Notes

- This is an example of knowledge compilation, i.e. translating knowledge (usually offline) into a form for faster reasoning.
- Computing prime implicates can be expensive, since resolution is exponential in the worse case.
- I.e. determining whether a formula follows by resolution may take exponential time.
- Also there may be an exponential number of prime implicates.
- Nonetheless prime implicates have played an important role in several areas of KR.

Applications

Prime implicates have found extensive use in KR.

- One major area is abduction or diagnosis.
- This derives from earlier work on the assumption-based truth-maintenance system (ATMS).
- As well, there has been work on using prime implicates in belief revision.

Application: Abduction

(See Chapter 13 of the Brachman and Levesque text)
So far, reasoning has been primarily deductive:

- Main question: Given $K B$, is α a logical consequence?

Application: Abduction

(See Chapter 13 of the Brachman and Levesque text)
So far, reasoning has been primarily deductive:

- Main question: Given $K B$, is α a logical consequence?

Now consider a new type of question:
Given:

- A KB, and a fact α,

Application: Abduction

(See Chapter 13 of the Brachman and Levesque text)
So far, reasoning has been primarily deductive:

- Main question: Given $K B$, is α a logical consequence?

Now consider a new type of question:
Given:

- A KB, and a fact α,

Ask:

- what would be a sufficient reason for α to be true?

Application: Abduction

(See Chapter 13 of the Brachman and Levesque text)
So far, reasoning has been primarily deductive:

- Main question: Given $K B$, is α a logical consequence?

Now consider a new type of question:
Given:

- A KB, and a fact α,

Ask:

- what would be a sufficient reason for α to be true?
- or, if I didn't believe α, what else would I have to believe for α to become an implicit belief?

Application: Abduction

(See Chapter 13 of the Brachman and Levesque text)
So far, reasoning has been primarily deductive:

- Main question: Given $K B$, is α a logical consequence?

Now consider a new type of question:
Given:

- A KB, and a fact α,

Ask:

- what would be a sufficient reason for α to be true?
- or, if I didn't believe α, what else would I have to believe for α to become an implicit belief?
- or, what would explain α being true?

Aside: Forms of Reasoning

Deduction: Given $p \Rightarrow q$, from p, deduce q

Aside: Forms of Reasoning

Deduction: Given $p \Rightarrow q$, from p, deduce q
Abduction: Given $p \Rightarrow q$, from q, abduce p

- I.e. p is sufficient for q, or one way for q to be true is for p to be true.
- Can be used for causal reasoning: (cause \Rightarrow effect)

Aside: Forms of Reasoning

Deduction: Given $p \Rightarrow q$, from p, deduce q
Abduction: Given $p \Rightarrow q$, from q, abduce p

- I.e. p is sufficient for q, or one way for q to be true is for p to be true.
- Can be used for causal reasoning: (cause \Rightarrow effect) Induction: Given $p\left(t_{1}\right), q\left(t_{1}\right), \ldots, p\left(t_{n}\right), q\left(t_{n}\right)$, induce $\forall x(p(x) \Rightarrow q(x))$.

Using Abduction for Diagnosis

- One simple version of diagnosis uses abductive reasoning
- KB has facts about symptoms and diseases including:

$$
\text { Disease } \wedge \text { Hedges } \Rightarrow \text { Symptoms }
$$

- Goal: Find disease(s) that best explain observed symptoms

Abduction Example

Example:
TennisElbow \Rightarrow SoreElbow
TennisElbow \Rightarrow TennisPlayer
Arthritis $\wedge \neg$ Treated \Rightarrow SoreJoints
SoreJoints \Rightarrow SoreElbow
SoreJoints \Rightarrow SoreHips

Abduction Example

Example:

TennisElbow \Rightarrow SoreElbow
TennisElbow \Rightarrow TennisPlayer
Arthritis $\wedge \neg$ Treated \Rightarrow SoreJoints
SoreJoints \Rightarrow SoreElbow
SoreJoints \Rightarrow SoreHips
Explain: SoreElbow

Abduction Example

Example:
TennisElbow \Rightarrow SoreElbow
TennisElbow \Rightarrow TennisPlayer
Arthritis $\wedge \neg$ Treated \Rightarrow SoreJoints
SoreJoints \Rightarrow SoreElbow
SoreJoints \Rightarrow SoreHips
Explain: SoreElbow
Want: TennisElbow, Arthritis $\wedge \neg$ Treated
Obtain multiple equally-good explanations

Criteria for an Explanation

Given $K B$, and β to be explained, we want an α such that:

Criteria for an Explanation

Given $K B$, and β to be explained, we want an α such that:
(1) α is sufficient to account for β

- $K B \cup\{\alpha\} \models \beta$ or $K B \models \alpha \Rightarrow \beta$

Criteria for an Explanation

Given $K B$, and β to be explained, we want an α such that:
(1) α is sufficient to account for β

- $K B \cup\{\alpha\} \models \beta$ or $K B \models \alpha \Rightarrow \beta$
(2) α is not ruled out by $K B$
- $K B \cup\{\alpha\}$ is consistent or $K B \not \models \neg \alpha$

Criteria for an Explanation

Given $K B$, and β to be explained, we want an α such that:
(1) α is sufficient to account for β

- $K B \cup\{\alpha\} \models \beta$ or $K B \models \alpha \Rightarrow \beta$
(2) α is not ruled out by $K B$
- $K B \cup\{\alpha\}$ is consistent or $K B \not \models \neg \alpha$
(3) α is as simple as possible
- Parsimonious: as few terms as possible
- Explanations should not unnecessarily strong or weak

Criteria for an Explanation

Given $K B$, and β to be explained, we want an α such that:
(1) α is sufficient to account for β

- $K B \cup\{\alpha\} \models \beta$ or $K B \models \alpha \Rightarrow \beta$
(2) α is not ruled out by $K B$
- $K B \cup\{\alpha\}$ is consistent or $K B \not \models \neg \alpha$
(3) α is as simple as possible
- Parsimonious: as few terms as possible
- Explanations should not unnecessarily strong or weak
(4) α is in the appropriate vocabulary
- Atomic sentences of α should be drawn from a set H of possible hypotheses.
- E.g. diseases, original causes

Criteria for an Explanation

Given $K B$, and β to be explained, we want an α such that:
(1) α is sufficient to account for β

- $K B \cup\{\alpha\} \models \beta$ or $K B \models \alpha \Rightarrow \beta$
(2) α is not ruled out by $K B$
- $K B \cup\{\alpha\}$ is consistent or $K B \not \models \neg \alpha$
(3) α is as simple as possible
- Parsimonious: as few terms as possible
- Explanations should not unnecessarily strong or weak
(4) α is in the appropriate vocabulary
- Atomic sentences of α should be drawn from a set H of possible hypotheses.
- E.g. diseases, original causes

Call such α an explanation of β wrt $K B$.

Simplifying the Problem

We can simplify explanations in the propositional case, as follows:

Simplifying the Problem

We can simplify explanations in the propositional case, as follows:

- Assume that we are only going to explain an atom p, rather than an arbitrary formula.

Simplifying the Problem

We can simplify explanations in the propositional case, as follows:

- Assume that we are only going to explain an atom p, rather than an arbitrary formula.
- An explanation will be (equivalent to) a conjunction of literals (that is, the negation of a clause)
- Why?

If α is a purported explanation, and

$$
\operatorname{DNF}[\alpha]=\left(d_{1} \vee d_{2} \vee \cdots \vee d_{n}\right)
$$

then each d_{i} is also an explanation that is simpler than α

Simplifying the Problem

A simplest explanation is then the negation of a clause with a minimal set of literals

Simplifying the Problem

A simplest explanation is then the negation of a clause with a minimal set of literals

To explain a literal I, it will be sufficient to find a minimal clause $C=\neg c_{1} \vee \cdots \vee \neg c_{n}$ such that
(1) $K B \not \vDash C$
(2) $K B \cup \neg C \models 1$ or
$K B \models \neg C \Rightarrow I \quad$ or
$K B \models(C \cup\{l\})$
(sufficient)
Recall that the clause $C \cup\{I\}$ represents $\neg c_{1} \vee \cdots \vee \neg c_{n} \vee I$.

Using Prime Implicates

Recall: Clause C is a prime implicate of $K B$ iff
(1) $K B \models C$
(2) For no $C^{*} \subset C$ do we have $K B \vDash C^{*}$

Using Prime Implicates

Recall: Clause C is a prime implicate of $K B$ iff
(1) $K B \models C$
(2) For no $C^{*} \subset C$ do we have $K B \vDash C^{*}$

For explanations:

- Want minimal C such that $K B \models(C \cup\{I\})$ and $K B \not \vDash C$

Using Prime Implicates

Recall: Clause C is a prime implicate of $K B$ iff
(1) $K B \models C$
(2) For no $C^{*} \subset C$ do we have $K B \vDash C^{*}$

For explanations:

- Want minimal C such that $K B \models(C \cup\{l\})$ and $K B \not \vDash C$ Hence:
- Find prime implicates C such that $I \in C$.
- Then $\neg(C \backslash I)$ must be an explanation for I.

Example

$$
\begin{array}{r}
K B=\quad\{p \wedge q \wedge r \Rightarrow g \\
\neg p \wedge q \Rightarrow g \\
\neg q \wedge r \Rightarrow g\}
\end{array}
$$

Example

$$
\begin{aligned}
& K B=\quad\{p \wedge q \wedge r \Rightarrow g \\
& \neg p \wedge q \Rightarrow g \\
&\neg q \wedge r \Rightarrow g\}
\end{aligned}
$$

$P I(K B)=\{p \vee \neg q \vee g, \neg r \vee g\}+$ tautologies

Example

$$
\begin{aligned}
& K B=\quad\{p \wedge q \wedge r \Rightarrow g, \\
& \\
& \neg p \wedge q \Rightarrow g, \\
& \neg q \wedge r \Rightarrow g\}
\end{aligned} \quad \begin{aligned}
& \\
& P I(K B)=\{p \vee \neg q \vee g, \neg r \vee g\}+\text { tautologies }
\end{aligned}
$$

Explanations for g :

- 2 non-trivial prime implicates contain g, so get 2 explanations: $\neg p \wedge q$ and r.

