
ASP Solvers:

The Smodels Language

ASP-solvers

• There are lots of ASP solvers available:
smodels, dlv, cmodels, assat, nomore, smodelscc, clasp,
platypus, ...

• We’ll briefly look at the original smodels implementation

Smodels

Origin Helsinki University of Technology

People I. Niemelä, P. Simons, and T. Syrjänen

Web http://www.tcs.hut.fi/Software/smodels/

Input format lparse(g ringo)

Extensions • choice rules
• cardinality/weight constraints
• optimization via minimize/maximize statements

Assignments

• Let Π be a program and atoms(Π) the atoms in Π.

• An assignment is a partial mapping
A : atoms(Π)→ {T ,F}.

+ Think of A as a three-valued model.

• An assignment A can be denoted as a pair (AT ,AF), where
• AT = {v ∈ atoms(Π) | A(v) = T}
• AF = {v ∈ atoms(Π) | A(v) = F}

• We also denote an assignment A by a set of signed objects:
{Tv | v ∈ AT} ∪ {Fv | v ∈ AF}

• Example: Given atoms(Π) = {a, b, c}, assignment
A = {a 7→ T , c 7→ F}

can be represented as
({a}, {c}) or {Ta,Fc}.

Assignments

• Let Π be a program and atoms(Π) the atoms in Π.

• An assignment is a partial mapping
A : atoms(Π)→ {T ,F}.

+ Think of A as a three-valued model.
• An assignment A can be denoted as a pair (AT ,AF), where

• AT = {v ∈ atoms(Π) | A(v) = T}
• AF = {v ∈ atoms(Π) | A(v) = F}

• We also denote an assignment A by a set of signed objects:
{Tv | v ∈ AT} ∪ {Fv | v ∈ AF}

• Example: Given atoms(Π) = {a, b, c}, assignment
A = {a 7→ T , c 7→ F}

can be represented as
({a}, {c}) or {Ta,Fc}.

Assignments

• Let Π be a program and atoms(Π) the atoms in Π.

• An assignment is a partial mapping
A : atoms(Π)→ {T ,F}.

+ Think of A as a three-valued model.
• An assignment A can be denoted as a pair (AT ,AF), where

• AT = {v ∈ atoms(Π) | A(v) = T}
• AF = {v ∈ atoms(Π) | A(v) = F}

• We also denote an assignment A by a set of signed objects:
{Tv | v ∈ AT} ∪ {Fv | v ∈ AF}

• Example: Given atoms(Π) = {a, b, c}, assignment
A = {a 7→ T , c 7→ F}

can be represented as
({a}, {c}) or {Ta,Fc}.

Assignments

• Let Π be a program and atoms(Π) the atoms in Π.

• An assignment is a partial mapping
A : atoms(Π)→ {T ,F}.

+ Think of A as a three-valued model.
• An assignment A can be denoted as a pair (AT ,AF), where

• AT = {v ∈ atoms(Π) | A(v) = T}
• AF = {v ∈ atoms(Π) | A(v) = F}

• We also denote an assignment A by a set of signed objects:
{Tv | v ∈ AT} ∪ {Fv | v ∈ AF}

• Example: Given atoms(Π) = {a, b, c}, assignment
A = {a 7→ T , c 7→ F}

can be represented as
({a}, {c}) or {Ta,Fc}.

(Simplified) Smodels Algorithm

Let Π be a program and A a (partial) assignment.

smodels(Π,A):
A← expand(Π,A)
if AT ∩ AF 6= ∅ then return
if AT ∪ AF = atoms(Π) then exit with AT

x ← select(atoms(Π) \ (AT ∪ AF))
smodels(Π,A ∪ {Tx})
smodels(Π,A ∪ {Fx})

Call: smodels(Π, ∅)

smodels algorithm

• Backtracking search, building a binary search tree

• Choices on unassigned atoms
• The search space is pruned by

• making one choice at a time by appeal to a heuristics (select)
• the set of remaining choices is reduced and conflicts are

detected (expand)

A closer look at expand

• expand(Π,A):

repeat

A← atleast(Π,A)
A′ ← A
A← A ∪ {Fx | x ∈ atom(Π) \ atmost(Π,A)}

until A = A′

• atleast amounts to Fitting’s operation
• These are atoms that must be true or false, given A.

• atmost computes those atoms derivable in the underlying
positive program of Π.
• Its complement contains those atoms that cannot be derived,

given A.
• This is called the greatest unfounded set

• expand computes the well-founded model of Π.

A closer look at expand

• expand(Π,A):

repeat

A← atleast(Π,A)
A′ ← A
A← A ∪ {Fx | x ∈ atom(Π) \ atmost(Π,A)}

until A = A′

• atleast amounts to Fitting’s operation
• These are atoms that must be true or false, given A.

• atmost computes those atoms derivable in the underlying
positive program of Π.
• Its complement contains those atoms that cannot be derived,

given A.
• This is called the greatest unfounded set

• expand computes the well-founded model of Π.

A closer look at expand

• expand(Π,A):

repeat

A← atleast(Π,A)
A′ ← A
A← A ∪ {Fx | x ∈ atom(Π) \ atmost(Π,A)}

until A = A′

• atleast amounts to Fitting’s operation
• These are atoms that must be true or false, given A.

• atmost computes those atoms derivable in the underlying
positive program of Π.
• Its complement contains those atoms that cannot be derived,

given A.
• This is called the greatest unfounded set

• expand computes the well-founded model of Π.

A closer look at expand

• expand(Π,A):

repeat

A← atleast(Π,A)
A′ ← A
A← A ∪ {Fx | x ∈ atom(Π) \ atmost(Π,A)}

until A = A′

• atleast amounts to Fitting’s operation
• These are atoms that must be true or false, given A.

• atmost computes those atoms derivable in the underlying
positive program of Π.
• Its complement contains those atoms that cannot be derived,

given A.
• This is called the greatest unfounded set

• expand computes the well-founded model of Π.

Heuristics: Lookahead

• Strengthen propagation by failed literal detection

• Given a program Π, an atom x , and an assignment A
• if expand(Π,A ∪ {Tx}) yields a conflict, then add Fx to A
• if expand(Π,A ∪ {Fx}) yields a conflict, then add Tx to A
• if both yield a conflict, “backtrack”

• Lookahead is also used for selecting the next unassigned atom
x
• That is, given that

• x+ is the number of atoms that are assigned through
expand(Π,A ∪ {Tx}) and

• x− is the number of atoms that are assigned through
expand(Π,A ∪ {Fx}),

select an atom x with a maximal min(x+, x−)

Heuristics: Lookahead

• Strengthen propagation by failed literal detection

• Given a program Π, an atom x , and an assignment A
• if expand(Π,A ∪ {Tx}) yields a conflict, then add Fx to A
• if expand(Π,A ∪ {Fx}) yields a conflict, then add Tx to A
• if both yield a conflict, “backtrack”

• Lookahead is also used for selecting the next unassigned atom
x

• That is, given that
• x+ is the number of atoms that are assigned through

expand(Π,A ∪ {Tx}) and
• x− is the number of atoms that are assigned through

expand(Π,A ∪ {Fx}),

select an atom x with a maximal min(x+, x−)

Heuristics: Lookahead

• Strengthen propagation by failed literal detection

• Given a program Π, an atom x , and an assignment A
• if expand(Π,A ∪ {Tx}) yields a conflict, then add Fx to A
• if expand(Π,A ∪ {Fx}) yields a conflict, then add Tx to A
• if both yield a conflict, “backtrack”

• Lookahead is also used for selecting the next unassigned atom
x

• That is, given that
• x+ is the number of atoms that are assigned through

expand(Π,A ∪ {Tx}) and
• x− is the number of atoms that are assigned through

expand(Π,A ∪ {Fx}),

select an atom x with a maximal min(x+, x−)

	ASP Solvers
	ASP Solvers

