ASP Solvers:
The Smodels Language
ASP-solvers

• There are lots of ASP solvers available:
 * smodels, dlv, cmodels, assat, nomore, smodels_{cc}, clasp, platypus, ...*

• We’ll briefly look at the original smodels implementation
Smodes

Origin Helsinki University of Technology
People I. Niemelä, P. Simons, and T. Syrjänen
Web http://www.tcs.hut.fi/Software/smodels/

Input format lparse(gringo)

Extensions • choice rules
 • cardinality/weight constraints
 • optimization via minimize/maximize statements
Assignments

- Let Π be a program and $\text{atoms}(\Pi)$ the atoms in Π.
- An assignment is a partial mapping $A : \text{atoms}(\Pi) \rightarrow \{T, F\}$.
 - Think of A as a three-valued model.

Example: Given $\text{atoms}(\Pi) = \{a, b, c\}$, assignment $A = \{a \mapsto T, c \mapsto F\}$ can be represented as $(\{a\}, \{c\})$ or $\{T \ a, F \ c\}$.
Assignments

- Let Π be a program and $\text{atoms}(\Pi)$ the atoms in Π.
- An assignment is a partial mapping $A : \text{atoms}(\Pi) \rightarrow \{T, F\}$.
 - Think of A as a three-valued model.
- An assignment A can be denoted as a pair (A^T, A^F), where
 - $A^T = \{v \in \text{atoms}(\Pi) \mid A(v) = T\}$
 - $A^F = \{v \in \text{atoms}(\Pi) \mid A(v) = F\}$
Assignments

• Let \(\Pi \) be a program and \(\text{atoms}(\Pi) \) the atoms in \(\Pi \).

• An **assignment** is a partial mapping
 \[
 A : \text{atoms}(\Pi) \rightarrow \{ T, F \}.
 \]
 Think of \(A \) as a three-valued model.

• An assignment \(A \) can be denoted as a pair \((A^T, A^F)\), where
 \[
 \begin{align*}
 A^T &= \{ v \in \text{atoms}(\Pi) \mid A(v) = T \} \\
 A^F &= \{ v \in \text{atoms}(\Pi) \mid A(v) = F \}
 \end{align*}
 \]

• We also denote an assignment \(A \) by a set of **signed objects**:
 \[
 \{ T v \mid v \in A^T \} \cup \{ F v \mid v \in A^F \}
 \]
Assignments

- Let Π be a program and $atoms(\Pi)$ the atoms in Π.
- An assignment is a partial mapping $A : atoms(\Pi) \rightarrow \{T, F\}$.
 - Think of A as a three-valued model.
- An assignment A can be denoted as a pair (A^T, A^F), where
 - $A^T = \{v \in atoms(\Pi) \mid A(v) = T\}$
 - $A^F = \{v \in atoms(\Pi) \mid A(v) = F\}$
- We also denote an assignment A by a set of signed objects:
 $$\{Tv \mid v \in A^T\} \cup \{Fv \mid v \in A^F\}$$
- Example: Given $atoms(\Pi) = \{a, b, c\}$, assignment $A = \{a \mapsto T, c \mapsto F\}$
 can be represented as
 $$(\{a\}, \{c\}) \quad \text{or} \quad \{Ta, Fc\}.$$
(Simplified) Smodels Algorithm

Let Π be a program and A a (partial) assignment.

smodels(Π, A):

$A \leftarrow \text{expand}(\Pi, A)$

if $A^T \cap A^F \neq \emptyset$ then return

if $A^T \cup A^F = \text{atoms}(\Pi)$ then exit with A^T

$x \leftarrow \text{select}(\text{atoms}(\Pi) \setminus (A^T \cup A^F))$

smodels(Π, $A \cup \{T x\}$)

smodels(Π, $A \cup \{F x\}$)

Call: smodels(Π, \emptyset)
smoeds al\textsuperscript{}\textit{g}\textsuperscript{}rh\textit{m}\textsuperscript{}\textsuperscript{}\textsuperscript{}\text{algorithm}

• Backtracking search, building a binary search tree
• Choices on unassigned atoms
• The search space is pruned by
 • making one choice at a time by appeal to a heuristic (\textit{select})
 • the set of remaining choices is reduced and conflicts are detected (\textit{expand})
A closer look at \textit{expand}

\begin{itemize}
 \item \texttt{expand}(\Pi, A):
 \begin{verbatim}
 repeat
 \begin{align*}
 &A \leftarrow \textit{atleast}(\Pi, A) \\
 &A' \leftarrow A \\
 &A \leftarrow A \cup \{F x \mid x \in \textit{atom}(\Pi) \setminus \textit{atmost}(\Pi, A)\}
 \end{align*}
 until \quad A = A'
 \end{verbatim}
\end{itemize}
A closer look at \textit{expand}

- \textbf{expand}(\Pi, A):

 repeat

 \begin{align*}
 A & \leftarrow \text{atleast}(\Pi, A) \\
 A' & \leftarrow A \\
 A & \leftarrow A \cup \{F_x \mid x \in \text{atom}(\Pi) \setminus \text{atmost}(\Pi, A)\}

 & \text{until } A = A'
 \end{align*}

- \textbf{atleast} amounts to Fitting's operation

 - These are atoms that must be true or false, given \(A \).
A closer look at expand

- **$\text{expand}(\Pi, A)$:**

 repeat

 \[
 A \leftarrow \text{atleast}(\Pi, A)
 \]
 \[
 A' \leftarrow A
 \]
 \[
 A \leftarrow A \cup \{Fx \mid x \in \text{atom}(\Pi) \setminus \text{atmost}(\Pi, A)\}
 \]

 until $A = A'$

- **atleast** amounts to Fitting’s operation
 - These are atoms that must be true or false, given A.

- **atmost** computes those atoms derivable in the underlying positive program of Π.
 - Its complement contains those atoms that cannot be derived, given A.
 - This is called the **greatest unfounded set**
A closer look at expand

• expand(\(\Pi, A\)):
 repeat

 \(A \leftarrow \text{atleast}(\Pi, A)\)
 \(A' \leftarrow A\)

 \(A \leftarrow A \cup \{F \mid x \in \text{atom}(\Pi) \setminus \text{atmost}(\Pi, A)\}\)
 until \(A = A'\)

• \text{atleast} amounts to Fitting’s operation
 • These are atoms that \textbf{must} be true or false, given \(A\).

• \text{atmost} computes those atoms derivable in the underlying positive program of \(\Pi\).
 • Its complement contains those atoms that \textbf{cannot} be derived, given \(A\).
 • This is called the \textit{greatest unfounded set}

• expand computes the \textit{well-founded model} of \(\Pi\).
Heuristics: Lookahead

• Strengthen propagation by failed literal detection

• Given a program Π, an atom x, and an assignment A
 • if $\text{expand}(\Pi, A \cup \{T \cdot x\})$ yields a conflict, then add $F \cdot x$ to A
 • if $\text{expand}(\Pi, A \cup \{F \cdot x\})$ yields a conflict, then add $T \cdot x$ to A
 • if both yield a conflict, “backtrack”
Heuristics: Lookahead

- Strengthen propagation by failed literal detection
- Given a program Π, an atom x, and an assignment A
 - if $\text{expand}(\Pi, A \cup \{T_x\})$ yields a conflict, then add F_x to A
 - if $\text{expand}(\Pi, A \cup \{F_x\})$ yields a conflict, then add T_x to A
 - if both yield a conflict, “backtrack”

- Lookahead is also used for selecting the next unassigned atom x
Heuristics: Lookahead

- Strengthen propagation by **failed literal detection**
- Given a program Π, an atom x, and an assignment A
 - if $\text{expand}(\Pi, A \cup \{T x\})$ yields a conflict, then add $F x$ to A
 - if $\text{expand}(\Pi, A \cup \{F x\})$ yields a conflict, then add $T x$ to A
 - if both yield a conflict, “backtrack”

- Lookahead is also used for selecting the next unassigned atom x
- That is, given that
 - x^+ is the number of atoms that are assigned through $\text{expand}(\Pi, A \cup \{T x\})$ and
 - x^- is the number of atoms that are assigned through $\text{expand}(\Pi, A \cup \{F x\})$,

select an atom x with a maximal $\min(x^+, x^-)$