ASP Solvers:

The Smodels Language

ASP-solvers

® There are lots of ASP solvers available:
smodels, dlv, cmodels, assat, nomore, smodels.., clasp,

platypus, ...

o We'll briefly look at the original smodels implementation

Smodels

Origin Helsinki University of Technology
People I. Niemela, P. Simons, and T. Syrjanen
Web http://www.tcs.hut.fi/Software /smodels/
Input format /Iparse(gringo)
Extensions @ choice rules

® cardinality/weight constraints
® optimization via minimize/maximize statements

Assignments

® Let 1 be a program and atoms(I1) the atoms in [1.

® An assignment is a partial mapping
A:atoms(M) — {T,F}.
1= Think of A as a three-valued model.

Assignments

® Let 1 be a program and atoms(I1) the atoms in [1.
® An assignment is a partial mapping
A:atoms(M) — {T,F}.
1= Think of A as a three-valued model.
® An assignment A can be denoted as a pair (AT, AF), where
o AT = {v € atoms(M) | A(v) = T}
o AF = v € atoms(M) | A(v) = F}

Assignments

Let I be a program and atoms([1) the atoms in I1.
An assignment is a partial mapping
A:atoms(M) — {T,F}.
1= Think of A as a three-valued model.
An assignment A can be denoted as a pair (AT, AF), where
o AT = {v € atoms(M) | A(v) = T}
* AF = {v € atoms(N) | A(v) = F}
We also denote an assighment A by a set of signed objects:
{Tv|veAT}U{Fv|v e AF}

Assignments

Let I be a program and atoms([1) the atoms in I1.
An assignment is a partial mapping
A:atoms(M) — {T,F}.
1= Think of A as a three-valued model.
An assignment A can be denoted as a pair (AT, AF), where
o AT = {v € atoms(M) | A(v) = T}
o AF = v € atoms(M) | A(v) = F}
We also denote an assighment A by a set of signed objects:
{Tv|veAT}U{Fv|v e AF}
Example: Given atoms(1) = {a, b, c}, assignment
A={a— T,c— F}
can be represented as

({a}, {c}) or {Ta,Fc}.

(Simplified) Smodels Algorithm
Let M be a program and A a (partial) assignment.

smodels(1, A):
A < expand([1, A)
if AT N AF =£ () then return
if AT UAF = atoms(IM) then exit with AT
x + select(atoms(M) \ (AT U AF))
smodels(1, AU {Tx})
smodels(I1, AU {Fx})

Call: smodels(I1, ()

smodels algorithm

® Backtracking search, building a binary search tree

® Choices on unassigned atoms
® The search space is pruned by

® making one choice at a time by appeal to a heuristics (select)
® the set of remaining choices is reduced and conflicts are
detected (expand)

A closer look at expand

e expand(M, A):
repeat
A «+ atleast(IN, A)
A+ A
A<+ AU{Fx | x € atom(N) \ atmost(IN, A)}
until A=A’

A closer look at expand

e expand(M, A):

repeat
A «+ atleast(IN, A)
A+ A
A<+ AU{Fx | x € atom(N) \ atmost(IN, A)}
until A=A’

® atleast amounts to Fitting's operation
® These are atoms that must be true or false, given A.

A closer look at expand

e expand(M, A):

repeat
A «+ atleast(IN, A)
A+ A
A<+ AU{Fx | x € atom(N) \ atmost(IN, A)}
until A=A’

® atleast amounts to Fitting's operation
® These are atoms that must be true or false, given A.

® atmost computes those atoms derivable in the underlying
positive program of I1.
® |ts complement contains those atoms that cannot be derived,
given A.
® This is called the greatest unfounded set

A closer look at expand

expand ([, A):

repeat
A «+ atleast(IN, A)
A+ A
A<+ AU{Fx | x € atom(N) \ atmost(IN, A)}
until A=A’

atleast amounts to Fitting's operation
® These are atoms that must be true or false, given A.

atmost computes those atoms derivable in the underlying
positive program of I1.
® |ts complement contains those atoms that cannot be derived,
given A.
® This is called the greatest unfounded set

expand computes the well-founded model of T1.

Heuristics: Lookahead

e Strengthen propagation by failed literal detection

® Given a program [1, an atom x, and an assignment A
e if expand(M, AU { Tx}) yields a conflict, then add Fx to A
® if expand(N, AU {Fx}) yields a conflict, then add Tx to A
® if both yield a conflict, “backtrack”

Heuristics: Lookahead

e Strengthen propagation by failed literal detection

® Given a program [1, an atom x, and an assignment A

e if expand(M, AU { Tx}) yields a conflict, then add Fx to A
® if expand(N, AU {Fx}) yields a conflict, then add Tx to A
® if both yield a conflict, “backtrack”

® |ookahead is also used for selecting the next unassigned atom
X

Heuristics: Lookahead

Strengthen propagation by failed literal detection

Given a program [1, an atom x, and an assignment A

e if expand(M, AU { Tx}) yields a conflict, then add Fx to A
® if expand(N, AU {Fx}) yields a conflict, then add Tx to A
® if both yield a conflict, “backtrack”

Lookahead is also used for selecting the next unassigned atom
X
That is, given that

® xT is the number of atoms that are assigned through
expand(M, AU {Tx}) and

® x~ is the number of atoms that are assigned through
expand(M, AU {Fx}),

select an atom x with a maximal min(x™, x™)

	ASP Solvers
	ASP Solvers

