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Problem 7−→ Logic Program

General Approach

For solving a problem instance I in problem class P, encode

1. the problem instance I as a set of facts C(I) and

2. the problem class P as a set of rules C(P),

such that the solutions to P for I can be extracted from the
answer sets of C(P) ∪ C(I).



Example: n-colorability of Graphs

Problem instance
A graph (V ,E ).

Problem class
Assign each vertex in V one of n colors such that no
two vertices in V connected by an edge in E have
the same color.



3–colorability of graphs

C(I) vertex(1) ← edge(1,2) ←
vertex(2) ← edge(2,3) ←
vertex(3) ← edge(3,1) ←

C(P) colored(V,r) ← not colored(V,b), not colored(V,g),
vertex(V)

colored(V,b) ← not colored(V,r), not colored(V,g),
vertex(V)

colored(V,g) ← not colored(V,r), not colored(V,b),
vertex(V)

← edge(V,U), colored(V,C), colored(U,C),
color(C)

Answer set { colored(1,r), colored(2,b), colored(3,g), . . . }

Aside: The answer sets will also contain extraneous information
such as vertex(1), etc.



n-colorability of graphs with n = 3

C(I) vertex(1) ← edge(1,2) ←
vertex(2) ← edge(2,3) ←
vertex(3) ← edge(3,1) ←

C(P) color(r) ← color(b) ← color(g) ←

colored(V,C) ← not othercolor(V,C), vertex(V), color(C)
othercolor(V,C) ← colored(V,C’), C 6=C’,

vertex(V), color(C), color(C’)
← edge(V,U), colored(V,C), colored(U,C),

color(C)
Answer set { colored(1,r), colored(2,b), colored(3,g), . . . }

+ Mnemonically, hasothercolour may be better than othercolour.



n-colorability of graphs with n = 3

C(I) vertex(1). vertex(2). vertex(3).

edge(1,2). edge(2,3). edge(3,1).

C(P) color(r). color(b). color(g).

colored(V,C) :- not othercolor(V,C),

vertex(V),color(C).

othercolor(V,C) :- colored(V,C1), C != C1,

vertex(V),color(C),color(C1).

:- edge(V,U),color(C),

colored(V,C),colored(U,C).



Running the program

> lparse 3color.lp | smodels 0

smodels version 2.25. Reading...done

Answer: 1

Stable Model: colored(3,g) othercolor(2,g) othercolor(1,g)

othercolor(3,b) colored(2,b) othercolor(1,b) othercolor(3,r)

othercolor(2,r) colored(1,r) color(g) color(b) color(r)

edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2) vertex(1)



And the rest!

Answer: 2

Stable Model: colored(3,g) othercolor(2,g) othercolor(1,g) othercolor(3,b)

othercolor(2,b) colored(1,b) othercolor(3,r) colored(2,r) othercolor(1,r)

color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)

vertex(1)

Answer: 3

Stable Model: othercolor(3,g) colored(2,g) othercolor(1,g) colored(3,b)

othercolor(2,b) othercolor(1,b) othercolor(3,r) othercolor(2,r) colored(1,r)

color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)

vertex(1)

Answer: 4

Stable Model: othercolor(3,g) othercolor(2,g) colored(1,g) colored(3,b)

othercolor(2,b) othercolor(1,b) othercolor(3,r) colored(2,r) othercolor(1,r)

color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)

vertex(1)

Answer: 5

Stable Model: othercolor(3,g) colored(2,g) othercolor(1,g) othercolor(3,b)

othercolor(2,b) colored(1,b) colored(3,r) othercolor(2,r) othercolor(1,r)

color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)

vertex(1)

Answer: 6

Stable Model: othercolor(3,g) othercolor(2,g) colored(1,g) othercolor(3,b)

colored(2,b) othercolor(1,b) colored(3,r) othercolor(2,r) othercolor(1,r)

color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)

vertex(1)

False



Basic Methodology

Generate and Test (or: Guess and Check) approach:

Generator: Generate potential candidates answer sets

• Typically using non-deterministic constructs

Tester: Eliminate non-valid candidates

• Typically via integrity constraints

As a slogan:

Logic program = Data + Generator + Tester



Basic Methodology: Graph Colourability

Recall we had the description:

Problem instance
A graph (V ,E ).

Problem class
Assign each vertex in V one of n colors such that no
two vertices in V connected by an edge in E have
the same color.

Note the structure of the problem class:

Generate: Assign each vertex in V one of n colors . . .

Test: . . . such that no two vertices in V connected by an
edge in E have the same color.



Satisfiability

Problem instance
A propositional formula φ.

Problem class
Is there an assignment of propositional variables to
true and false such that a given formula φ is true?



Satisfiability

Consider the formula (a ∨ ¬b) ∧ (¬a ∨ b).

Generator Tester Answer set
a ← not a′

a′ ← not a

b ← not b′

b′ ← not b

← not a, b
← a, not b

A1 = {a,b}
A2 = {a′,b′}
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n-Queens Problem

A solution to n = 4 :

Q

Q

Q

Q



n-Queens in ASP

• q(X ,Y ) gives the legal position of a queen

• negq(X ,Y ) is an independent auxiliary atom

q(X ,Y ) ← not negq(X ,Y )

negq(X ,Y ) ← not q(X ,Y )

← q(X ,Y ), q(X ′,Y ),X 6= X ′

← q(X ,Y ), q(X ,Y ′),Y 6= Y ′

← q(X ,Y ), q(X ′,Y ′), |X − X ′| = |Y − Y ′|,
X 6= X ′,Y 6= Y ′

← not hasq(X )

hasq(X ) ← q(X ,Y )



n-Queens in ASP

• q(X ,Y ) gives the legal position of a queen

• negq(X ,Y ) is an independent auxiliary atom

q(X ,Y ) ← not negq(X ,Y )

negq(X ,Y ) ← not q(X ,Y )

← q(X ,Y ), q(X ′,Y ),X 6= X ′

← q(X ,Y ), q(X ,Y ′),Y 6= Y ′

← q(X ,Y ), q(X ′,Y ′), |X − X ′| = |Y − Y ′|,
X 6= X ′,Y 6= Y ′

← not hasq(X )

hasq(X ) ← q(X ,Y )



n-Queens in ASP

• q(X ,Y ) gives the legal position of a queen

• negq(X ,Y ) is an independent auxiliary atom

q(X ,Y ) ← not negq(X ,Y )

negq(X ,Y ) ← not q(X ,Y )

← q(X ,Y ), q(X ′,Y ),X 6= X ′

← q(X ,Y ), q(X ,Y ′),Y 6= Y ′

← q(X ,Y ), q(X ′,Y ′), |X − X ′| = |Y − Y ′|,
X 6= X ′,Y 6= Y ′

← not hasq(X )

hasq(X ) ← q(X ,Y )



n-Queens in ASP

• q(X ,Y ) gives the legal position of a queen

• negq(X ,Y ) is an independent auxiliary atom

q(X ,Y ) ← not negq(X ,Y )

negq(X ,Y ) ← not q(X ,Y )

← q(X ,Y ), q(X ′,Y ),X 6= X ′

← q(X ,Y ), q(X ,Y ′),Y 6= Y ′

← q(X ,Y ), q(X ′,Y ′), |X − X ′| = |Y − Y ′|,
X 6= X ′,Y 6= Y ′

← not hasq(X )

hasq(X ) ← q(X ,Y )



n-Queens (in the smodels language)

d(1..queens).

q(X,Y) :- d(X), d(Y), not negq(X,Y).

negq(X,Y) :- d(X), d(Y), not q(X,Y).

:- d(X), d(Y), d(X1), q(X,Y), q(X1,Y), X1 != X.

:- d(X), d(Y), d(Y1), q(X,Y), q(X,Y1), Y1 != Y.

:- d(X), d(Y), d(X1), d(Y1), q(X,Y), q(X1,Y1),

X != X1, Y != Y1, abs(X - X1) == abs(Y - Y1).

:- d(X), not hasq(X).

hasq(X) :- d(X), d(Y), q(X,Y).



Hamiltonian Path

Problem instance
A directed graph (V ,E ) and a starting vertex v ∈ V .

Problem class
Find a path in (V ,E ) starting at v and visiting all
other vertices in V exactly once.

• Predicates: vertex/1, arc/2, start/1



Strategy

• Generate candidate paths

• Eliminate candidates having vertices visited more than once

• Eliminate candidates having vertices never visited



Generator (for candidate paths)

inPath(X ,Y ) ← arc(X ,Y ), not outPath(X ,Y )

outPath(X ,Y ) ← arc(X ,Y ), not inPath(X ,Y )



Tester (to eliminate invalid paths)

• Eliminate candidates having vertices visited more than once

← inPath(X ,Y ), inPath(X ,Z ), Y 6= Z

← inPath(X ,Y ), inPath(Z ,Y ), X 6= Z

• Eliminate candidates having vertices never visited

reached(X ) ← start(X )

reached(X ) ← reached(Y ), inPath(Y ,X )

← vertex(X ), not reached(X )



Tester (to eliminate invalid paths)

• Eliminate candidates having vertices visited more than once

← inPath(X ,Y ), inPath(X ,Z ), Y 6= Z

← inPath(X ,Y ), inPath(Z ,Y ), X 6= Z

• Eliminate candidates having vertices never visited

reached(X ) ← start(X )

reached(X ) ← reached(Y ), inPath(Y ,X )

← vertex(X ), not reached(X )



Classical Negation: Syntax

Normal logic programs

• In logic programs not (or ∼) denotes default negation.

• Default negation refers to the absence of information

Generalization
• We allow classical negation for atoms (only!).

• “classical” negation stipulates the presence of the negated
information

• Given an alphabet A of atoms, let
A = {¬A | A ∈ A} (and so A ∩A = ∅)

• The atoms A and ¬A are complementary.

+ ¬A is the classical negation of A, and vice versa.
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Syntax (ctd)

• Given set X , the difference between not a and ¬a amounts to:

a 6∈ X versus ¬a ∈ X

• Example:

a← not b a← ¬ b
X = {a} X = ∅

• Again:
• default negation refers to the absence of information
• “classical” negation is the presence of the negated information
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Semantics

• A set X of atoms is an answer set of a logic program Π over
A ∪A if X is an answer set of Π ∪ Π′ where

Π′ = {← A,¬A | A ∈ A}

+ The text has a more general definition, which we won’t
bother with

• We’ve already seen “encoded” classical negation used in
earlier examples
• E.g.

• in satisfiability: a vs. a′, and
• in n-queens: q(X,Y) vs. negq(X,Y)

• Here the definition is given by adding, for every A ∈ A:

A← not ¬A and ¬A← not A



To cross or not to cross. . . ?

• Π1 = {cross ← not train}

• Answer set: {cross}

• Π2 = {cross ← ¬train}

• Answer set: ∅

• Π3 = {cross ← ¬train, ¬train←}

• Answer set: {cross,¬train}

• Π4 = {cross ← ¬train, ¬train←, ¬cross ←}

• No answer set

• Π5 = {cross ← ¬train, not ¬cross, ¬train←, ¬cross ←}

• Answer set: {¬cross,¬train}
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Planning

• The following is included as an example, but isn’t covered in
class.

• It uses an advanced construct, called a choice construct,
which we won’t be going over

• The statement:

{ move(B,L,T) : block(B) : location(L) } grippers :-

time(T), T<lasttime.

says that for a time point T , one can make as many moves as
there are grippers.
• More precisely:

• “grippers” is a constant, here 2
• For a given value of T,
{ move(B,L,T) : block(B) : location(L) }

stands for 0, 1, or 2 distinct instances of move(B,L,T)



Planning
in the Blocks World
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Initial Situation

const grippers=2.

const lasttime=3.

block(1..6).

% DEFINE

on(1,2,0). % block 1 is on 2 in time 0

on(2,table,0).

on(3,4,0).

on(4,table,0).

on(5,6,0).

on(6,table,0).



Goal Situation

% TEST

:- not on(3,2,lasttime).

:- not on(2,1,lasttime).

:- not on(1,table,lasttime).

:- not on(6,5,lasttime).

:- not on(5,4,lasttime).

:- not on(4,table,lasttime).

+ I.e. exclude answer sets where the goal conditions do not hold.



Planning in the Blocks World I
GENERATE

time(0..lasttime).

% Possible locations are on top of blocks or on the table.

location(B) :- block(B).

location(table).

% GENERATE (using a choice rule)

{ move(B,L,T) : block(B) : location(L) } grippers :-

time(T), T<lasttime.

• The above uses is choice construct, which we won’t cover

• Idea: for a time point T , can make as many moves as there
are grippers.



Planning in the Blocks World II
DEFINE

% effect of moving a block

on(B,L,T+1) :- move(B,L,T),

block(B), location(L),

time(T), T<lasttime.

% inertia

on(B,L,T+1) :- on(B,L,T), not neg_on(B,L,T+1),

location(L), block(B),

time(T), T<lasttime.

% uniqueness of location

neg_on(B,L1,T) :- on(B,L,T), L!=L1,

block(B), location(L), location(L1),

time(T).



Planning in the Blocks World III
TEST

% neg_on is the negation of on

:- on(B,L,T), neg_on(B,L,T),

block(B), location(L), time(T).

% two blocks cannot be on top of the same block

:- on(B1,B,T), on(B2,B,T),

block(B1), block(B2), time(T), B1!=B2.

% a block can’t be moved unless it is clear

:- move(B,L,T), on(B1,B,T),

block(B), block(B1), location(L), time(T), T<lasttime.

% a block can’t be moved onto a block that is being moved also

:- move(B,B1,T), move(B1,L,T),

block(B), block(B1), location(L), time(T), T<lasttime.



The Plan

> lparse blocks.lp | smodels

smodels version 2.25. Reading...done

Answer: 1

Stable Model: move(1,table,0) move(3,table,0)

move(2,1,1) move(5,4,1)

move(3,2,2) move(6,5,2)

Duration: 0.050

Number of choice points: 0

Number of wrong choices: 0

Number of atoms: 507

Number of rules: 3026

Number of picked atoms: 24

Number of forced atoms: 13

Number of truth assignments: 944

Size of searchspace (removed): 0 (0)
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