Modelling Problems in ASP

Modeling and Interpreting

Recall:

Problem \longmapsto Logic Program

General Approach

For solving a problem instance I in problem class P, encode

1. the problem instance I as a set of facts $C(I)$ and
2. the problem class P as a set of rules $C(P)$,
such that the solutions to P for I can be extracted from the answer sets of $C(P) \cup C(I)$.

Example: n-colorability of Graphs

Problem instance

$$
\text { A graph }(V, E)
$$

Problem class
Assign each vertex in V one of n colors such that no two vertices in V connected by an edge in E have the same color.

3-colorability of graphs

C(I)	$\operatorname{vertex}(1)$ \leftarrow $\operatorname{vertex}(2)$ \leftarrow $\operatorname{vertex}(3)$ \leftarrow	edge $(1,2)$ \leftarrow edge(2,3) \leftarrow edge(3,1) \leftarrow
C(P)	colored(V,r) colored (V,b) colored (V, g)	
Answer set	\{ colored(1,r), co	red (2,b), colored (3,g), ...\}

Aside: The answer sets will also contain extraneous information such as vertex (1), etc.

n-colorability of graphs with $n=3$

C(I)	vertex(1) \leftarrow vertex(2) \leftarrow $\operatorname{vertex}(3)$ \leftarrow	$\begin{array}{lc} \text { edge(1,2) } & \leftarrow \\ \text { edge(2,3) } & \leftarrow \\ \text { edge(} 3,1) & \leftarrow \end{array}$
C(P)	color $(r) \leftarrow$ colored(V,C) othercolor(V,C)	
Answer set	\{ colored(1,r), col	ored(2,b), colored(3,g), ...\}

Mnemonically, hasothercolour may be better than othercolour.

n-colorability of graphs with $n=3$

$C(I)$ vertex (1). vertex (2). vertex (3). edge $(1,2)$. edge $(2,3)$. edge $(3,1)$.
$C(P)$ color(r). color(b). color(g). colored(V,C) :- not othercolor(V,C), vertex(V), color (C).
othercolor(V,C) :- colored(V,C1), C != C1, vertex(V), color(C), color(C1).
:- edge(V,U),color(C), colored (V, C), colored (U, C).

Running the program

> lparse 3color.lp | smodels 0
smodels version 2.25. Reading...done
Answer: 1
Stable Model: colored (3,g) othercolor (2,g) othercolor (1,g) othercolor(3,b) colored (2,b) othercolor(1,b) othercolor(3,r)
othercolor(2,r) colored(1,r) color(g) color(b) color(r) edge $(3,1)$ edge $(2,3)$ edge(1,2) vertex(3) vertex(2) vertex(1)

And the rest!

```
Answer: 2
Stable Model: colored(3,g) othercolor(2,g) othercolor(1,g) othercolor(3,b)
othercolor(2,b) colored(1,b) othercolor(3,r) colored(2,r) othercolor(1,r)
color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)
vertex(1)
Answer: 3
Stable Model: othercolor(3,g) colored(2,g) othercolor(1,g) colored(3,b)
othercolor(2,b) othercolor(1,b) othercolor(3,r) othercolor(2,r) colored(1,r)
color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)
vertex(1)
Answer: 4
Stable Model: othercolor(3,g) othercolor(2,g) colored(1,g) colored(3,b)
othercolor(2,b) othercolor(1,b) othercolor(3,r) colored(2,r) othercolor(1,r)
color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)
vertex(1)
Answer: 5
Stable Model: othercolor(3,g) colored(2,g) othercolor(1,g) othercolor(3,b)
othercolor(2,b) colored(1,b) colored(3,r) othercolor(2,r) othercolor(1,r)
color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)
vertex(1)
Answer: 6
Stable Model: othercolor(3,g) othercolor(2,g) colored(1,g) othercolor(3,b)
colored(2,b) othercolor(1,b) colored(3,r) othercolor(2,r) othercolor(1,r)
color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)
vertex(1)
False
```


Basic Methodology

Generate and Test (or: Guess and Check) approach:
Generator: Generate potential candidates answer sets

- Typically using non-deterministic constructs

Tester: Eliminate non-valid candidates

- Typically via integrity constraints

As a slogan:
Logic program $=$ Data + Generator + Tester

Basic Methodology: Graph Colourability

Recall we had the description:
Problem instance
A graph (V, E).
Problem class
Assign each vertex in V one of n colors such that no two vertices in V connected by an edge in E have the same color.

Note the structure of the problem class:
Generate: Assign each vertex in V one of n colors ...
Test: ...such that no two vertices in V connected by an edge in E have the same color.

Satisfiability

Problem instance
A propositional formula ϕ.
Problem class
Is there an assignment of propositional variables to true and false such that a given formula ϕ is true?

Satisfiability

Consider the formula $(a \vee \neg b) \wedge(\neg a \vee b)$.

Satisfiability

Consider the formula $(a \vee \neg b) \wedge(\neg a \vee b)$.
Generator
Tester
Answer set

Satisfiability

Consider the formula $(a \vee \neg b) \wedge(\neg a \vee b)$.

Generator		Tester	Answer set
a \leftarrow not a^{\prime} a^{\prime} \leftarrow not a b \leftarrow not b^{\prime} b^{\prime} \leftarrow not b			

Satisfiability

Consider the formula $(a \vee \neg b) \wedge(\neg a \vee b)$.

| Generator | | Tester |
| :--- | :--- | :--- |\quad Answer set

Satisfiability

Consider the formula $(a \vee \neg b) \wedge(\neg a \vee b)$.

Generator		Tester		Answer set	
a not a^{\prime}	\leftarrow not a, b	$\mathrm{A}_{1}=\{\mathrm{a}, \mathrm{b}\}$			
$\mathrm{a}^{\prime} \leftarrow$ not a	$\leftarrow \mathrm{a}$, not b	$\mathrm{A}_{2}=\left\{\mathrm{a}^{\prime}, \mathrm{b}^{\prime}\right\}$			
$\mathrm{b} \leftarrow$ not b^{\prime}					

n-Queens Problem

A solution to $n=4$:

n-Queens in ASP

- $\quad q(X, Y)$ gives the legal position of a queen
- $n e g q(X, Y)$ is an independent auxiliary atom

n-Queens in ASP

- $\quad q(X, Y)$ gives the legal position of a queen
- $n e g q(X, Y)$ is an independent auxiliary atom

$$
\left.\begin{array}{rl}
q(X, Y) & \leftarrow \text { not negq }(X, Y) \\
\operatorname{negq}(X, Y) & \leftarrow
\end{array}\right) \text { not } \quad q(X, Y)
$$

n-Queens in ASP

- $\quad q(X, Y)$ gives the legal position of a queen
- $\operatorname{negq}(X, Y)$ is an independent auxiliary atom

$$
\begin{aligned}
q(X, Y) & \leftarrow \operatorname{not} \operatorname{neg} q(X, Y) \\
\operatorname{neg} q(X, Y) & \leftarrow \operatorname{not} \quad q(X, Y) \\
& \leftarrow q(X, Y), q\left(X^{\prime}, Y\right), X \neq X^{\prime} \\
& \leftarrow q(X, Y), q\left(X, Y^{\prime}\right), Y \neq Y^{\prime} \\
& \leftarrow q(X, Y), q\left(X^{\prime}, Y^{\prime}\right),\left|X-X^{\prime}\right|=\left|Y-Y^{\prime}\right| \\
& X \neq X^{\prime}, Y \neq Y^{\prime}
\end{aligned}
$$

n-Queens in ASP

- $\quad q(X, Y)$ gives the legal position of a queen
- $\operatorname{negq}(X, Y)$ is an independent auxiliary atom

$$
\begin{aligned}
q(X, Y) & \leftarrow \operatorname{not} \operatorname{neg} q(X, Y) \\
\operatorname{negq}(X, Y) & \leftarrow \operatorname{not} \quad q(X, Y) \\
& \leftarrow q(X, Y), q\left(X^{\prime}, Y\right), X \neq X^{\prime} \\
& \leftarrow q(X, Y), q\left(X, Y^{\prime}\right), Y \neq Y^{\prime} \\
& \leftarrow q(X, Y), q\left(X^{\prime}, Y^{\prime}\right),\left|X-X^{\prime}\right|=\left|Y-Y^{\prime}\right| \\
& X \neq X^{\prime}, Y \neq Y^{\prime} \\
& \leftarrow \operatorname{not} \operatorname{hasq}(X) \\
\operatorname{hasq}(X) & \leftarrow q(X, Y)
\end{aligned}
$$

n-Queens (in the smodels language)

```
d(1..queens).
q(X,Y) :- d(X), d(Y), not negq(X,Y).
negq(X,Y) :- d(X), d(Y), not q(X,Y).
:- d(X), d(Y), d(X1), q(X,Y), q(X1,Y), X1 != X.
:- d(X), d(Y), d(Y1), q(X,Y), q(X,Y1), Y1 != Y.
:- d(X), d(Y), d(X1), d(Y1), q(X,Y), q(X1,Y1),
    X != X1, Y != Y1, abs(X - X1) == abs(Y - Y1).
:- d(X), not hasq(X).
hasq(X) :- d(X), d(Y), q(X,Y).
```


Hamiltonian Path

Problem instance
A directed graph (V, E) and a starting vertex $v \in V$.
Problem class
Find a path in (V, E) starting at v and visiting all other vertices in V exactly once.

- Predicates: vertex/1, arc/2, start/1

Strategy

- Generate candidate paths
- Eliminate candidates having vertices visited more than once
- Eliminate candidates having vertices never visited

Generator (for candidate paths)

$$
\begin{aligned}
\operatorname{inPath}(X, Y) & \leftarrow \operatorname{arc}(X, Y), \text { not outPath }(X, Y) \\
\operatorname{outPath}(X, Y) & \leftarrow \operatorname{arc}(X, Y), \text { not inPath }(X, Y)
\end{aligned}
$$

Tester (to eliminate invalid paths)

- Eliminate candidates having vertices visited more than once

$$
\begin{aligned}
& \leftarrow \operatorname{inPath}(X, Y), \text { inPath }(X, Z), \quad Y \neq Z \\
& \leftarrow \quad \operatorname{inPath}(X, Y), \text { inPath }(Z, Y), \quad X \neq Z
\end{aligned}
$$

Tester (to eliminate invalid paths)

- Eliminate candidates having vertices visited more than once

$$
\begin{aligned}
& \leftarrow \quad \operatorname{inPath}(X, Y), \text { inPath }(X, Z), \quad Y \neq Z \\
& \leftarrow \quad \operatorname{inPath}(X, Y), \text { inPath }(Z, Y), \quad X \neq Z
\end{aligned}
$$

- Eliminate candidates having vertices never visited

$$
\begin{aligned}
\operatorname{reached}(X) & \leftarrow \operatorname{start}(X) \\
\operatorname{reached}(X) & \leftarrow \operatorname{reached}(Y), \operatorname{inPath}(Y, X) \\
& \leftarrow \operatorname{vertex}(X), \text { not } \operatorname{reached}(X)
\end{aligned}
$$

Classical Negation: Syntax

Normal logic programs

- In logic programs not (or \sim) denotes default negation.
- Default negation refers to the absence of information

Classical Negation: Syntax

Normal logic programs

- In logic programs not (or \sim) denotes default negation.
- Default negation refers to the absence of information

Generalization

- We allow classical negation for atoms (only!).
- "classical" negation stipulates the presence of the negated information

Classical Negation: Syntax

Normal logic programs

- In logic programs not (or \sim) denotes default negation.
- Default negation refers to the absence of information

Generalization

- We allow classical negation for atoms (only!).
- "classical" negation stipulates the presence of the negated information
- Given an alphabet \mathcal{A} of atoms, let

$$
\overline{\mathcal{A}}=\{\neg A \mid A \in \mathcal{A}\} \quad \text { (and so } \mathcal{A} \cap \overline{\mathcal{A}}=\emptyset)
$$

- The atoms A and $\neg A$ are complementary.
$\neg A$ is the classical negation of A, and vice versa.

Syntax (ctd)

- Given set X, the difference between not a and $\neg a$ amounts to:

$$
a \notin X \quad \text { versus } \quad \neg a \in X
$$

Syntax (ctd)

- Given set X, the difference between not a and $\neg a$ amounts to:

$$
a \notin X \quad \text { versus } \quad \neg a \in X
$$

- Example:

$$
a \leftarrow \operatorname{not} b \quad a \leftarrow \neg b
$$

Syntax (ctd)

- Given set X, the difference between not a and $\neg a$ amounts to:

$$
a \notin X \quad \text { versus } \quad \neg a \in X
$$

- Example:

$$
\begin{array}{ll}
a \leftarrow \operatorname{not} b & a \leftarrow \neg b \\
X=\{a\} & X=\emptyset
\end{array}
$$

Syntax (ctd)

- Given set X, the difference between not a and $\neg a$ amounts to:

$$
a \notin X \quad \text { versus } \quad \neg a \in X
$$

- Example:

$$
\begin{array}{ll}
a \leftarrow \text { not } b & a \leftarrow \neg b \\
X=\{a\} & X=\emptyset
\end{array}
$$

- Again:
- default negation refers to the absence of information
- "classical" negation is the presence of the negated information

Semantics

- A set X of atoms is an answer set of a logic program Π over $\mathcal{A} \cup \overline{\mathcal{A}}$ if X is an answer set of $\Pi \cup \Pi^{\prime}$ where

$$
\Pi^{\prime}=\{\leftarrow A, \neg A \mid A \in \mathcal{A}\}
$$

The text has a more general definition, which we won't bother with

- We've already seen "encoded" classical negation used in earlier examples
- E.g.
- in satisfiability: a vs. a^{\prime}, and
- in n-queens: $q(X, Y)$ vs. negq(X,Y)
- Here the definition is given by adding, for every $A \in \mathcal{A}$:

$$
A \leftarrow \operatorname{not} \neg A \quad \text { and } \quad \neg A \leftarrow \operatorname{not} A
$$

To cross or not to cross. . . ?

- $\Pi_{1}=\{$ cross \leftarrow not train $\}$
- $\Pi_{2}=\{$ cross $\leftarrow \neg$ train $\}$
- $\Pi_{3}=\{$ cross $\leftarrow \neg$ train, \neg train $\leftarrow\}$
- $\Pi_{4}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow, \neg cross $\leftarrow\}$
- $\Pi_{5}=\{$ cross $\leftarrow \neg$ train, not \neg cross, \neg train \leftarrow, \neg cross $\leftarrow\}$

To cross or not to cross. . . ?

- $\Pi_{1}=\{$ cross \leftarrow not train $\}$
- Answer set: \{cross\}
- $\Pi_{2}=\{$ cross $\leftarrow \neg$ train $\}$
- $\Pi_{3}=\{$ cross $\leftarrow \neg$ train, \neg train $\leftarrow\}$
- $\Pi_{4}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow, \neg cross $\leftarrow\}$
- $\Pi_{5}=\{$ cross $\leftarrow \neg$ train, not \neg cross, \neg train \leftarrow, \neg cross $\leftarrow\}$

To cross or not to cross. . . ?

- $\Pi_{1}=\{$ cross \leftarrow not train $\}$
- Answer set: \{cross\}
- $\Pi_{2}=\{$ cross $\leftarrow \neg$ train $\}$
- Answer set: \emptyset
- $\Pi_{3}=\{$ cross $\leftarrow \neg$ train, \neg train $\leftarrow\}$
- $\Pi_{4}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow, \neg cross $\leftarrow\}$
- $\Pi_{5}=\{$ cross $\leftarrow \neg$ train, not \neg cross, \neg train \leftarrow, \neg cross $\leftarrow\}$

To cross or not to cross. . . ?

- $\Pi_{1}=\{$ cross \leftarrow not train $\}$
- Answer set: \{cross\}
- $\Pi_{2}=\{$ cross $\leftarrow \neg$ train $\}$
- Answer set: \emptyset
- $\Pi_{3}=\{$ cross $\leftarrow \neg$ train, \neg train $\leftarrow\}$
- Answer set: $\{$ cross, \neg train $\}$
- $\Pi_{4}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow, \neg cross $\leftarrow\}$
- $\Pi_{5}=\{$ cross $\leftarrow \neg$ train, not \neg cross, \neg train \leftarrow, \neg cross $\leftarrow\}$

To cross or not to cross. . . ?

- $\Pi_{1}=\{$ cross \leftarrow not train $\}$
- Answer set: \{cross\}
- $\Pi_{2}=\{$ cross $\leftarrow \neg$ train $\}$
- Answer set: \emptyset
- $\Pi_{3}=\{$ cross $\leftarrow \neg$ train, \neg train $\leftarrow\}$
- Answer set: $\{$ cross, \neg train $\}$
- $\Pi_{4}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow, \neg cross $\leftarrow\}$
- No answer set
- $\Pi_{5}=\{$ cross $\leftarrow \neg$ train, not \neg cross, \neg train \leftarrow, \neg cross $\leftarrow\}$

To cross or not to cross. . . ?

- $\Pi_{1}=\{$ cross \leftarrow not train $\}$
- Answer set: \{cross\}
- $\Pi_{2}=\{$ cross $\leftarrow \neg$ train $\}$
- Answer set: \emptyset
- $\Pi_{3}=\{$ cross $\leftarrow \neg$ train, \neg train $\leftarrow\}$
- Answer set: $\{$ cross, \neg train $\}$
- $\Pi_{4}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow, \neg cross $\leftarrow\}$
- No answer set
- $\Pi_{5}=\{$ cross $\leftarrow \neg$ train, not \neg cross, \neg train \leftarrow, \neg cross $\leftarrow\}$
- Answer set: $\{\neg$ cross, \neg train $\}$

Planning

- The following is included as an example, but isn't covered in class.
- It uses an advanced construct, called a choice construct, which we won't be going over
- The statement:

$$
\begin{aligned}
& \{\text { move(B,L,T) : block(B) : location(L) \} grippers :- } \\
& \text { time(T), T<lasttime. }
\end{aligned}
$$

says that for a time point T, one can make as many moves as there are grippers.

- More precisely:
- "grippers" is a constant, here 2
- For a given value of T,
\{ move(B,L,T) : block(B) : location(L) \}
stands for 0,1 , or 2 distinct instances of move(B,L,T)

Planning

 in the Blocks WorldInitial situation

Goal situation

Initial Situation

const grippers=2.
const lasttime=3.
block(1..6).
\% DEFINE
on $(1,2,0)$. $\%$ block 1 is on 2 in time 0
on (2, table, 0).
on (3, 4, 0).
on (4, table, 0).
on $(5,6,0)$.
on (6, table, 0).

Goal Situation

\% TEST

:- not on(3,2,lasttime).
:- not on(2,1,lasttime).
:- not on(1,table,lasttime).
:- not on(6,5,lasttime).
:- not on(5,4,lasttime).
:- not on(4,table,lasttime).
I.e. exclude answer sets where the goal conditions do not hold.

Planning in the Blocks World I

GENERATE

time(0..lasttime).
\% Possible locations are on top of blocks or on the table.
location(B) :- block(B).
location(table).
\% GENERATE (using a choice rule)
\{ move(B,L,T) : block(B) : location(L) \} grippers :time(T), T<lasttime.

- The above uses is choice construct, which we won't cover
- Idea: for a time point T, can make as many moves as there are grippers.

Planning in the Blocks World II
 DEFINE

```
% effect of moving a block
on(B,L,T+1) :- move(B,L,T),
    block(B), location(L),
    time(T), T<lasttime.
```

\% inertia

```
on(B,L,T+1) :- on(B,L,T), not neg_on(B,L,T+1),
    location(L), block(B),
    time(T), T<lasttime.
```

\% uniqueness of location
neg_on(B,L1,T) :- on(B,L,T), L!=L1, block(B), location(L), location(L1), time(T).

Planning in the Blocks World III

TEST
\% neg_on is the negation of on
:- on(B,L,T), neg_on(B,L,T), block(B), location(L), time(T).
\% two blocks cannot be on top of the same block
:- on (B1,B,T), on(B2,B,T),
block(B1), block(B2), time(T), B1!=B2.
\% a block can't be moved unless it is clear
:- move(B,L,T), on(B1,B,T),
block(B), block(B1), location(L), time(T), T<lasttime.
\% a block can't be moved onto a block that is being moved also
:- move(B,B1,T), move(B1,L,T),
block(B), block(B1), location(L), time(T), T<lasttime.

The Plan

> lparse blocks.lp | smodels
smodels version 2.25. Reading...done
Answer: 1
Stable Model: move(1,table,0) move(3,table,0)

$\operatorname{move}(2,1,1)$	$\operatorname{move}(5,4,1)$
move $(3,2,2)$	$\operatorname{move}(6,5,2)$

Duration: 0.050
Number of choice points: 0
Number of wrong choices: 0
Number of atoms: 507
Number of rules: 3026
Number of picked atoms: 24
Number of forced atoms: 13
Number of truth assignments: 944
Size of searchspace (removed): 0 (0)

