Modelling Problems in ASP

Modeling and Interpreting

Recall:
Problem Solution(s)
Modeling Interpretation
Logic Program Answer sets

Computation

Problem —— Logic Program

General Approach

For solving a problem instance | in problem class P, encode
1. the problem instance | as a set of facts C(I) and
2. the problem class P as a set of rules C(P),

such that the solutions to P for | can be extracted from the
answer sets of C(P) U C(I).

Example: n-colorability of Graphs

Problem instance
A graph (V,E).

Problem class
Assign each vertex in V one of n colors such that no
two vertices in V' connected by an edge in E have
the same color.

3—colorability of graphs

c(l) vertex(l) <« edge(1,2) <
vertex(2) edge(2,3) <«
vertex(3) <« edge(3,1) <«
C(P) colored(V,r) + not colored(V,b), not colored(V,g),
vertex(V)

colored(V,b) «
colored(V,g)

%

not colored(V,r), not colored(V,g),
vertex(V)

not colored(V,r), not colored(V,b),
vertex(V)

edge(V,U), colored(V,C), colored(U,C),
color(C)

Answer set | { colored(1,r), colored(2,b), colored(3,g), ...}

Aside: The answer sets will also contain extraneous information

such as vertex(1), etc.

n-colorability of graphs with n =3

c(1) vertex(1) <« edge(1,2) <+
vertex(2) <« edge(2,3) <«
vertex(3) <« edge(3,1) <«
C(P) color(r) «+ color(b) « color(g) <
colored(V,C) < not othercolor(V,C), vertex(V), color(C)
othercolor(V,C) <+ colored(V,C"), C£C,
vertex(V), color(C), color(C")
+ edge(V,U), colored(V,C), colored(U,C),
color(C)
Answer set | { colored(1,r), colored(2,b), colored(3,g), ...}

1= Mnemonically, hasothercolour may be better than othercolour.

n-colorability of graphs with n =3

vertex(1). vertex(2). vertex(3).
edge(1,2). edge(2,3). edge(3,1).

color(r). color(b). color(g).
colored(V,C) :- not othercolor(V,C),
vertex(V),color(C).
othercolor(V,C) :- colored(V,Cl), C !'= Ci,
vertex (V) ,color(C),color(Cl).
:— edge(V,U),color(C),
colored(V,C),colored(U,C).

Running the program

> lparse 3color.lp | smodels O

smodels version 2.25. Reading...done

Answer: 1

Stable Model: colored(3,g) othercolor(2,g) othercolor(l,g)
othercolor(3,b) colored(2,b) othercolor(l,b) othercolor(3,r)
othercolor(2,r) colored(l,r) color(g) color(b) color(r)
edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2) vertex(l)

And the rest!

Answer: 2

Stable Model: colored(3,g) othercolor(2,g) othercolor(1l,g) othercolor(3,b)
othercolor(2,b) colored(1l,b) othercolor(3,r) colored(2,r) othercolor(l,r)
color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)
vertex (1)

Answer: 3

Stable Model: othercolor(3,g) colored(2,g) othercolor(l,g) colored(3,b)
othercolor(2,b) othercolor(1,b) othercolor(3,r) othercolor(2,r) colored(l,r)
color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)
vertex (1)

Answer: 4

Stable Model: othercolor(3,g) othercolor(2,g) colored(l,g) colored(3,b)
othercolor(2,b) othercolor(1l,b) othercolor(3,r) colored(2,r) othercolor(l,r)
color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)
vertex (1)

Answer: 5

Stable Model: othercolor(3,g) colored(2,g) othercolor(1l,g) othercolor(3,b)
othercolor(2,b) colored(1l,b) colored(3,r) othercolor(2,r) othercolor(l,r)
color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)
vertex (1)

Answer: 6

Stable Model: othercolor(3,g) othercolor(2,g) colored(l,g) othercolor(3,b)
colored(2,b) othercolor(1l,b) colored(3,r) othercolor(2,r) othercolor(l,r)
color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)
vertex (1)

False

Basic Methodology

Generate and Test (or: Guess and Check) approach:

Generator: Generate potential candidates answer sets
® Typically using non-deterministic constructs
Tester: Eliminate non-valid candidates

® Typically via integrity constraints

As a slogan:
Logic program = Data + Generator + Tester

Basic Methodology: Graph Colourability

Recall we had the description:
Problem instance
A graph (V, E).
Problem class
Assign each vertex in V one of n colors such that no

two vertices in V' connected by an edge in E have
the same color.

Note the structure of the problem class:

Generate: Assign each vertex in V' one of n colors . ..

Test: ...such that no two vertices in V' connected by an
edge in E have the same color.

Satisfiability

Problem instance
A propositional formula ¢.

Problem class
Is there an assignment of propositional variables to
true and false such that a given formula ¢ is true?

Satisfiability

Consider the formula (aV =b) A (-a V b).

Satisfiability

Consider the formula (aV =b) A (-a V b).

Generator Tester Answer set

Consider the formula (aV =b) A (-a V b).

Generator
a
a’ «
b «+
b «

not a’
not a

not b’
not b

Tester

Satisfiability

Answer set

Consider the formula (aV =b) A (-a V b).

Generator
a
a’ «
b «+
b «

not a’
not a

not b’
not b

Tester
%
<_

not a, b
a, notb

Satisfiability

Answer set

Consider the formula (aV =b) A (-a V b).

Generator Tester
a <« notad «— nota, b
a’ < nota +— a,notb
b <« notb
b’ « notb

Satisfiability

Answer set

A1
A,

{a,b}
{a".b"}

n-Queens Problem

A solutionto n=4:

n-Queens in ASP

° q(X,Y) gives the legal position of a queen

® negq(X,Y) is an independent auxiliary atom

n-Queens in ASP

° q(X,Y) gives the legal position of a queen

® negq(X,Y) is an independent auxiliary atom

q(X,Y) < not negq(X,Y)
negq(X,Y) < not q(X,Y)

n-Queens in ASP

° q(X,Y) gives the legal position of a queen

® negq(X,Y) is an independent auxiliary atom

q(X,Y)
negq(X,Y)

<
<

T

not negq(X,Y)
not q(X,Y)

a(X, ¥),q(X, Y),. X # X'

a(X, ¥),q(X, Y)Y £ V'

a(X, ¥),q(X', V') X = X[=Y = Y,
XAX,Y#Y

n-Queens in ASP

° q(X,Y) gives the legal position of a queen

® negq(X,Y) is an independent auxiliary atom

q(X,Y)
negq(X,Y)

hasq(X)

<
<

T

4

not negq(X,Y)
not q(X,Y)

a(X, ¥),q(X, Y),. X # X'

a(X, ¥),q(X, Y)Y £ V'

a(X, ¥),q(X', V') X = X[=Y = Y,
XAX,Y#Y

not hasq(X)
q(X,Y)

n-Queens (in the smodels language)

d(1..queens).

q(X,Y) :- d(X), d(Y), not negq(X,Y).
negq(X,Y) :- d(X), d(Y), not q(X,Y).

dX), d), dX1), qX,Y), qX1,Y), X1 != X.
dX), 4, 4y, qX,V), qX,Y1), Y1 !'=Y.
dX), dy), dX1), d(y1), qX,Y), q(X1,Y1),
X !1=X1, Y !=Y1, abs(X - X1) == abs(Y - Y1).

:= d(X), not hasq(X).
hasq(X) :- dX), 4(Y), qi,V).

Hamiltonian Path

Problem instance
A directed graph (V, E) and a starting vertex v € V.
Problem class
Find a path in (V, E) starting at v and visiting all
other vertices in V' exactly once.

® Predicates: vertex/1, arc/2, start/1

Strategy

® Generate candidate paths
® Eliminate candidates having vertices visited more than once

® Eliminate candidates having vertices never visited

Generator (for candidate paths)

inPath(X,Y) < arc(X,Y), not outPath(X,Y)
outPath(X,Y) < arc(X,Y), not inPath(X,Y)

Tester (to eliminate invalid paths)

® Eliminate candidates having vertices visited more than once
< inPath(X,Y), inPath(X,Z), Y # Z
+ inPath(X,Y), inPath(Z,Y), X # Z

Tester (to eliminate invalid paths)

® Eliminate candidates having vertices visited more than once
< inPath(X,Y), inPath(X,Z), Y # Z
+ inPath(X,Y), inPath(Z,Y), X # Z
® Eliminate candidates having vertices never visited
reached(X) <« start(X)
reached(X) < reached(Y), inPath(Y,X)
« vertex(X), not reached(X)

Classical Negation: Syntax

Normal logic programs

® In logic programs not (or ~) denotes default negation.

® Default negation refers to the absence of information

Classical Negation: Syntax

Normal logic programs

® In logic programs not (or ~) denotes default negation.

® Default negation refers to the absence of information

Generalization
¢ We allow classical negation for atoms (only!).

® ‘“classical” negation stipulates the presence of the negated
information

Classical Negation: Syntax

Normal logic programs

® In logic programs not (or ~) denotes default negation.

® Default negation refers to the absence of information

Generalization

We allow classical negation for atoms (only!).

“classical” negation stipulates the presence of the negated
information

Given an alphabet A of atoms, let
A={-A|Ac A} (andso ANA=0)
The atoms A and —A are complementary.
= —A is the classical negation of A, and vice versa.

Syntax (ctd)

® Given set X, the difference between not a and —a amounts to:
ag X versus —aeX

Syntax (ctd)

® Given set X, the difference between not a and —a amounts to:
ag X versus —aeX

® Example:

a< notb a«~ —b

Syntax (ctd)

® Given set X, the difference between not a and —a amounts to:
ag X versus —aeX

® Example:

a< notb

a+ —b
X = {a} X =

0

Syntax (ctd)

® Given set X, the difference between not a and —a amounts to:
ag X versus —aeX

® Example:
a< notb a< —b
X = {a} X=10

® Again:

® default negation refers to the absence of information
® ‘“classical” negation is the presence of the negated information

Semantics

® A set X of atoms is an answer set of a logic program [over
AU A if X is an answer set of MU’ where

N'={«A-A|Ac A

1= The text has a more general definition, which we won't
bother with

® We've already seen “encoded” classical negation used in
earlier examples
° Eg
® in satisfiability: a vs. a’, and
® in n-queens: q(X,Y) vs. negq(X,Y)
® Here the definition is given by adding, for every A € A:

A < not —A and —-A < not A

To cross or not to cross...?

My = {cross < not train}

My = {cross « —train}

M3 = {cross < —train, —train <}

M4 = {cross < —train, —train <, -—cross <}

Ms = {cross < —train, not —cross, —train <—, —cross <}

To cross or not to cross. . .7
My = {cross < not train}
® Answer set: {cross}
My = {cross « —train}
M3 = {cross < —train, —train <}

M4 = {cross < —train, —train <, -—cross <}

Ms = {cross < —train, not —cross, —train <—, —cross <}

To cross or not to cross...?

My = {cross < not train}
® Answer set: {cross}
My = {cross « —train}
® Answer set: ()
M3 = {cross < —train, —train <}

M4 = {cross < —train, —train <, -—cross <}

Ms = {cross < —train, not —cross, —train <—, —cross <}

To cross or not to cross...?

My = {cross < not train}
® Answer set: {cross}

My = {cross « —train}
® Answer set: ()

M3 = {cross < —train, —train <}
® Answer set: {cross, —train}

M4 = {cross < —train, —train <, -—cross <}

Ms = {cross < —train, not —cross, —train <—, —cross <}

To cross or not to cross...?

My = {cross < not train}
® Answer set: {cross}
My = {cross « —train}
® Answer set: ()
M3 = {cross < —train, —train <}
® Answer set: {cross, —train}
M4 = {cross < —train, —train <, -—cross <}
® No answer set

Ms = {cross < —train, not —cross, —train <—, —cross <}

To cross or not to cross...?

My = {cross < not train}
® Answer set: {cross}
My = {cross « —train}
® Answer set: ()
M3 = {cross < —train, —train <}
® Answer set: {cross, —train}
M4 = {cross < —train, —train <, -—cross <}
® No answer set
Ms = {cross < —train, not —cross, —train <—, —cross <}
® Answer set: {—cross, —train}

Planning

The following is included as an example, but isn't covered in
class.

It uses an advanced construct, called a choice construct,
which we won't be going over

The statement:

{ move(B,L,T) : block(B) : location(L) } grippers :-
time(T), T<lasttime.

says that for a time point T, one can make as many moves as
there are grippers.
More precisely:

® ‘“grippers’ is a constant, here 2
® For a given value of T,
{ move(B,L,T) : block(B) : location(L) }
stands for 0, 1, or 2 distinct instances of move(B,L,T)

Planning
in the Blocks World

Initial situation Goal situation
3 6
3 5 2 5

Initial Situation

const grippers=2.
const lasttime=3.

block(1..6).

% DEFINE

on(1,2,0). % block 1 is on 2 in time O
on(2,table,0).

on(3,4,0).

on(4,table,0).

on(5,6,0).

on(6,table,0).

Goal Situation

% TEST

:— not on(3,2,lasttime).

:- not on(2,1,lasttime).

:— not on(1l,table,lasttime).
:- not on(6,5,lasttime).

:— not on(5,4,lasttime).

:— not on(4,table,lasttime).

1 |.e. exclude answer sets where the goal conditions do not hold.

Planning in the Blocks World |
GENERATE

time (0. .lasttime) .
% Possible locations are on top of blocks or on the table.

location(B) :- block(B).
location(table).

% GENERATE (using a choice rule)
{ move(B,L,T) : block(B) : location(L) } grippers :-
time(T), T<lasttime.

® The above uses is choice construct, which we won't cover

® |dea: for a time point T, can make as many moves as there
are grippers.

Planning in the Blocks World Il
DEFINE

% effect of moving a block
on(B,L,T+1) :- move(B,L,T),
block(B), location(L),
time(T), T<lasttime.

% inertia

on(B,L,T+1) :- on(B,L,T), not neg_on(B,L,T+1),
location(L), block(B),
time(T), T<lasttime.

% uniqueness of location

neg_on(B,L1,T) :- on(B,L,T), L!=L1,
block(B), location(L), location(L1),
time(T).

Planning in the Blocks World Il
TEST

% neg_on is the negation of on
:- on(B,L,T), neg_on(B,L,T),
block(B), location(L), time(T).

% two blocks cannot be on top of the same block
:- on(B1,B,T), on(B2,B,T),
block(B1), block(B2), time(T), B1!=B2.

% a block can’t be moved unless it is clear
:- move(B,L,T), on(B1,B,T),
block(B), block(B1l), location(L), time(T), T<lasttime.

% a block can’t be moved onto a block that is being moved also
:- move(B,B1,T), move(B1,L,T),
block(B), block(B1), location(L), time(T), T<lasttime.

The Plan

> lparse blocks.lp | smodels

smodels version 2.25. Reading...done

Answer: 1

Stable Model: move(l,table,0) move(3,table,0)
move(2,1,1) move(5,4,1)
move(3,2,2) move(6,5,2)

Duration: 0.050

Number of choice points: 0

Number of wrong choices: 0

Number of atoms: 507

Number of rules: 3026

Number of picked atoms: 24

Number of forced atoms: 13

Number of truth assignments: 944
Size of searchspace (removed): 0 (0)

	Modeling
	Problems as Logic Programs
	Coloring Graphs

	Methodology
	Satisfiability
	n-Queens
	Hamiltonian Path

	Classical Negation
	Another Example: Planning
	Planning

