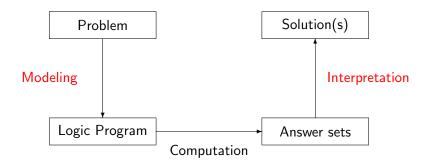
Modelling Problems in ASP

(ロ)、(型)、(E)、(E)、 E) の(()

Modeling and Interpreting

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Recall:



$\mathsf{Problem} \longmapsto \mathsf{Logic} \ \mathsf{Program}$

General Approach

For solving a problem instance I in problem class P, encode

- 1. the problem instance I as a set of facts C(I) and
- 2. the problem class P as a set of rules C(P),

such that the solutions to P for I can be extracted from the answer sets of $\mathsf{C}(\mathsf{P})\cup\mathsf{C}(\mathsf{I}).$

Example: n-colorability of Graphs

Problem instance

A graph (V, E).

Problem class

Assign each vertex in V one of n colors such that no two vertices in V connected by an edge in E have the same color.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

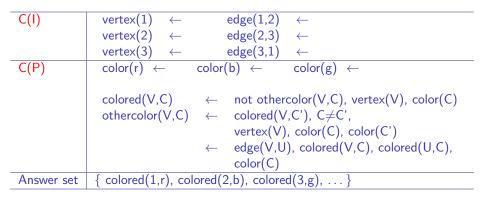
3-colorability of graphs

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

C(I)	vertex(1) \leftarrow	$edge(1,2) \leftarrow$
	vertex(2) \leftarrow	$edge(2,3) \leftarrow$
	vertex(3) \leftarrow	$edge(3,1) \leftarrow$
C(P)	$colored(V,r) \leftarrow$	not colored(V,b), not colored(V,g),
		vertex(V)
	$colored(V,b) \leftarrow$	not colored(V,r), not colored(V,g),
		vertex(V)
	$colored(V,g) \leftarrow$	not colored(V,r), not colored(V,b),
		vertex(V)
	\leftarrow	edge(V,U), colored(V,C), colored(U,C),
		color(C)
Answer set	$\{ colored(1,r), colored(2,b), colored(3,g), \}$	

Aside: The answer sets will also contain extraneous information such as vertex(1), etc.

n-colorability of graphs with n = 3



Mnemonically, *hasothercolour* may be better than *othercolour*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

n-colorability of graphs with n = 3

Running the program

```
> lparse 3color.lp | smodels 0
```

```
smodels version 2.25. Reading...done
Answer: 1
Stable Model: colored(3,g) othercolor(2,g) othercolor(1,g)
othercolor(3,b) colored(2,b) othercolor(1,b) othercolor(3,r)
othercolor(2,r) colored(1,r) color(g) color(b) color(r)
edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2) vertex(1)
```

And the rest!

```
Answer: 2
Stable Model: colored(3,g) othercolor(2,g) othercolor(1,g) othercolor(3,b)
othercolor(2,b) colored(1,b) othercolor(3,r) colored(2,r) othercolor(1,r)
color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)
vertex(1)
Answer: 3
Stable Model: othercolor(3,g) colored(2,g) othercolor(1,g) colored(3,b)
othercolor(2,b) othercolor(1,b) othercolor(3,r) othercolor(2,r) colored(1,r)
color(g) color(b) color(r) edge(3.1) edge(2.3) edge(1.2) vertex(3) vertex(2)
vertex(1)
Answer: 4
Stable Model: othercolor(3,g) othercolor(2,g) colored(1,g) colored(3,b)
othercolor(2,b) othercolor(1,b) othercolor(3,r) colored(2,r) othercolor(1,r)
color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)
vertex(1)
Answer: 5
Stable Model: othercolor(3,g) colored(2,g) othercolor(1,g) othercolor(3,b)
othercolor(2,b) colored(1,b) colored(3,r) othercolor(2,r) othercolor(1,r)
color(g) color(b) color(r) edge(3.1) edge(2.3) edge(1.2) vertex(3) vertex(2)
vertex(1)
Answer: 6
Stable Model: othercolor(3,g) othercolor(2,g) colored(1,g) othercolor(3,b)
colored(2,b) othercolor(1,b) colored(3,r) othercolor(2,r) othercolor(1,r)
color(g) color(b) color(r) edge(3,1) edge(2,3) edge(1,2) vertex(3) vertex(2)
vertex(1)
False
```

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ()~

Basic Methodology

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Generate and Test (or: Guess and Check) approach:

Generator: Generate potential candidates answer sets

- Typically using non-deterministic constructs
- Tester: Eliminate non-valid candidates
 - Typically via integrity constraints

As a slogan:

 ${\sf Logic \ program} \quad = \quad {\sf Data} + {\sf Generator} + {\sf Tester}$

Basic Methodology: Graph Colourability

Recall we had the description:

Problem instance

A graph (V, E).

Problem class

Assign each vertex in V one of n colors such that no two vertices in V connected by an edge in E have the same color.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Note the structure of the problem class:

Generate: Assign each vertex in V one of n colors ...

Test: ... such that no two vertices in V connected by an edge in E have the same color.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Problem instance

A propositional formula ϕ .

Problem class

Is there an assignment of propositional variables to *true* and *false* such that a given formula ϕ is true?

(ロ)、(型)、(E)、(E)、 E) の(()

Consider the formula $(a \lor \neg b) \land (\neg a \lor b)$.

Consider the formula $(a \lor \neg b) \land (\neg a \lor b)$.

Generator

<u>Tester</u>

Answer set

(ロ)、(型)、(E)、(E)、 E) の(()

Consider the formula $(a \lor \neg b) \land (\neg a \lor b)$.

Gene	erator		Tester	Answer set
а	\leftarrow	not a'		
a'	\leftarrow	not a		
b	\leftarrow	not b'		
b′	\leftarrow	not b		

Consider the formula $(a \lor \neg b) \land (\neg a \lor b)$.

Generator

Tester

Answer set

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- $a \leftarrow not a'$ $a' \leftarrow not a$
- $b \ \leftarrow \ not \ b'$
- $b' \ \leftarrow \ not \ b$

 $\begin{array}{ll} \leftarrow & \mathsf{not} \ \mathsf{a}, \ \mathsf{b} \\ \leftarrow & \mathsf{a}, \ \mathsf{not} \ \mathsf{b} \end{array}$

Consider the formula $(a \lor \neg b) \land (\neg a \lor b)$.

Generator

Tester

- $a \leftarrow not a' a' \leftarrow not a$
- $b \ \leftarrow \ not \ b'$
- $b' \ \leftarrow \ not \ b$

 $\begin{array}{ll} \leftarrow & \mathsf{not} \mathsf{a}, \mathsf{b} \\ \leftarrow & \mathsf{a}, \mathsf{not} \mathsf{b} \end{array}$

Answer set

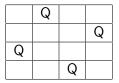
A_1	=	a,b
A_2	=	a',b'

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

n-Queens Problem

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A solution to n = 4:



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- q(X, Y) gives the legal position of a queen
- negq(X, Y) is an independent auxiliary atom

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- q(X, Y) gives the legal position of a queen
- negq(X, Y) is an independent auxiliary atom

 $q(X, Y) \leftarrow not negq(X, Y)$ $negq(X, Y) \leftarrow not q(X, Y)$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

- q(X, Y) gives the legal position of a queen
- negq(X, Y) is an independent auxiliary atom

$$\begin{array}{rcl} q(X,Y) & \leftarrow & \textit{not } \textit{negq}(X,Y) \\ \textit{negq}(X,Y) & \leftarrow & \textit{not} & q(X,Y) \\ & \leftarrow & q(X,Y), q(X',Y), X \neq X' \\ & \leftarrow & q(X,Y), q(X,Y'), Y \neq Y' \\ & \leftarrow & q(X,Y), q(X',Y'), |X - X'| = |Y - Y'|, \\ & & X \neq X', Y \neq Y' \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- q(X, Y) gives the legal position of a queen
- negq(X, Y) is an independent auxiliary atom

$$\begin{array}{rcl} q(X,Y) &\leftarrow & \textit{not } \textit{negq}(X,Y) \\ \textit{negq}(X,Y) &\leftarrow & \textit{not} & q(X,Y) \\ &\leftarrow & q(X,Y), q(X',Y), X \neq X' \\ &\leftarrow & q(X,Y), q(X,Y'), Y \neq Y' \\ &\leftarrow & q(X,Y), q(X',Y'), |X-X'| = |Y-Y'|, \\ &\quad & X \neq X', Y \neq Y' \end{array}$$

$$\leftarrow$$
 not hasq(X)
hasq(X) \leftarrow q(X,Y)

n-Queens (in the smodels language)

```
d(1..queens).
q(X,Y) := d(X), d(Y), not negq(X,Y).
negq(X,Y) := d(X), d(Y), not q(X,Y).
:= d(X), d(Y), d(X1), q(X,Y), q(X1,Y), X1 != X.
:= d(X), d(Y), d(Y1), q(X,Y), q(X,Y1), Y1 != Y.
:= d(X), d(Y), d(X1), d(Y1), q(X,Y), q(X1,Y1),
        X = X1, Y = Y1, abs(X - X1) = abs(Y - Y1).
:- d(X), not hasq(X).
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

hasq(X) := d(X), d(Y), q(X,Y).

Hamiltonian Path

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Problem instance

```
A directed graph (V, E) and a starting vertex v \in V.
```

Problem class

Find a path in (V, E) starting at v and visiting all other vertices in V exactly once.

• Predicates: vertex/1, arc/2, start/1

Strategy

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Generate candidate paths
- Eliminate candidates having vertices visited more than once
- Eliminate candidates having vertices never visited

Generator (for candidate paths)

 $inPath(X, Y) \leftarrow arc(X, Y), not outPath(X, Y)$ $outPath(X, Y) \leftarrow arc(X, Y), not inPath(X, Y)$

Tester (to eliminate invalid paths)

- Eliminate candidates having vertices visited more than once
 - $\leftarrow inPath(X, Y), inPath(X, Z), Y \neq Z$
 - $\leftarrow inPath(X, Y), inPath(Z, Y), X \neq Z$

Tester (to eliminate invalid paths)

Eliminate candidates having vertices visited more than once

 $\leftarrow inPath(X, Y), inPath(X, Z), Y \neq Z$

 $\leftarrow inPath(X, Y), inPath(Z, Y), X \neq Z$

Eliminate candidates having vertices never visited

 $\begin{array}{rcl} \mathit{reached}(X) & \leftarrow & \mathit{start}(X) \\ \mathit{reached}(X) & \leftarrow & \mathit{reached}(Y), \ \mathit{inPath}(Y,X) \\ & \leftarrow & \mathit{vertex}(X), \ \mathit{not} \ \mathit{reached}(X) \end{array}$

Classical Negation: Syntax

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Normal logic programs

- In logic programs not (or \sim) denotes default negation.
- Default negation refers to the *absence of information*

Classical Negation: Syntax

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Normal logic programs

- In logic programs not (or \sim) denotes default negation.
- Default negation refers to the *absence of information*

Generalization

- We allow classical negation for atoms (only!).
- "classical" negation stipulates the *presence of the negated information*

Classical Negation: Syntax

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Normal logic programs

- In logic programs not (or \sim) denotes default negation.
- Default negation refers to the *absence of information*

Generalization

- We allow classical negation for atoms (only!).
- "classical" negation stipulates the *presence of the negated information*
- Given an alphabet \mathcal{A} of atoms, let $\overline{\mathcal{A}} = \{\neg A \mid A \in \mathcal{A}\}$ (and so $\mathcal{A} \cap \overline{\mathcal{A}} = \emptyset$)
- The atoms A and $\neg A$ are complementary.

 \square $\neg A$ is the classical negation of A, and vice versa.

• Given set X, the difference between *not* a and $\neg a$ amounts to: $a \notin X$ versus $\neg a \in X$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Given set X, the difference between *not* a and $\neg a$ amounts to: $a \notin X$ versus $\neg a \in X$
- Example:

$$a \leftarrow not b$$
 $a \leftarrow \neg b$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Given set X, the difference between *not* a and $\neg a$ amounts to: $a \notin X$ versus $\neg a \in X$
- Example:

$$a \leftarrow not b$$
 $a \leftarrow \neg b$ $X = \{a\}$ $X = \emptyset$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Given set X, the difference between *not* a and $\neg a$ amounts to:

 $a \notin X$ versus $\neg a \in X$

• Example:

$a \leftarrow not b$	$a \leftarrow \neg b$
$X = \{a\}$	$X = \emptyset$

- Again:
 - default negation refers to the absence of information
 - "classical" negation is the presence of the negated information

Semantics

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• A set X of atoms is an answer set of a logic program Π over $\mathcal{A} \cup \overline{\mathcal{A}}$ if X is an answer set of $\Pi \cup \Pi'$ where

$$\Pi' = \{ \leftarrow A, \neg A \mid A \in \mathcal{A} \}$$

- The text has a more general definition, which we won't bother with
- We've already seen "encoded" classical negation used in earlier examples
 - E.g.
 - in satisfiability: *a* vs. *a*', and
 - in n-queens: q(X,Y) vs. negq(X,Y)
 - Here the definition is given by adding, for every $A \in \mathcal{A}$:

 $A \leftarrow not \neg A$ and $\neg A \leftarrow not A$

•
$$\Pi_1 = \{ \textit{cross} \leftarrow \textit{not train} \}$$

•
$$\Pi_2 = \{ cross \leftarrow \neg train \}$$

•
$$\Pi_3 = \{ cross \leftarrow \neg train, \neg train \leftarrow \}$$

•
$$\Pi_4 = \{ cross \leftarrow \neg train, \neg train \leftarrow, \neg cross \leftarrow \}$$

•
$$\Pi_5 = \{ cross \leftarrow \neg train, not \neg cross, \neg train \leftarrow, \neg cross \leftarrow \}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

•
$$\Pi_3 = \{ cross \leftarrow \neg train, \neg train \leftarrow \}$$

•
$$\Pi_4 = \{ cross \leftarrow \neg train, \neg train \leftarrow, \neg cross \leftarrow \}$$

•
$$\Pi_5 = \{ cross \leftarrow \neg train, not \neg cross, \neg train \leftarrow, \neg cross \leftarrow \}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

•
$$\Pi_4 = \{ cross \leftarrow \neg train, \neg train \leftarrow, \neg cross \leftarrow \}$$

• $\Pi_5 = \{ cross \leftarrow \neg train, not \neg cross, \neg train \leftarrow, \neg cross \leftarrow \}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• $\Pi_5 = \{ cross \leftarrow \neg train, not \neg cross, \neg train \leftarrow, \neg cross \leftarrow \}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

•
$$\Pi_1 = \{cross \leftarrow not \ train\}$$

• Answer set: $\{cross\}$
• $\Pi_2 = \{cross \leftarrow \neg train\}$
• Answer set: \emptyset
• $\Pi_3 = \{cross \leftarrow \neg train, \ \neg train \leftarrow\}$
• Answer set: $\{cross, \neg train\}$
• $\Pi_4 = \{cross \leftarrow \neg train, \ \neg train \leftarrow, \ \neg cross \leftarrow\}$
• No answer set
• $\Pi_5 = \{cross \leftarrow \neg train, not \ \neg cross, \ \neg train \leftarrow, \ \neg cross \leftarrow\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ●

Planning

- The following is included as an example, but isn't covered in class.
- It uses an advanced construct, called a *choice* construct, which we won't be going over
- The statement:

```
{ move(B,L,T) : block(B) : location(L) } grippers :-
time(T), T<lasttime.</pre>
```

says that for a time point T, one can make as many moves as there are grippers.

- More precisely:
 - "grippers" is a constant, here 2
 - For a given value of T,

```
{ move(B,L,T) : block(B) : location(L) }
```

```
stands for 0, 1, or 2 distinct instances of move(B,L,T)
```

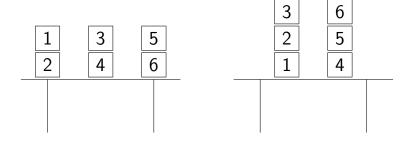
Planning

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

in the Blocks World

Initial situation

Goal situation



Initial Situation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

```
const grippers=2.
const lasttime=3.
block(1..6).
% DEFINE
on(1,2,0). % block 1 is on 2 in time 0
on(2,table,0).
on(3,4,0).
on(4,table,0).
on(5,6,0).
on(6,table,0).
```

Goal Situation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

% TEST

- :- not on(3,2,lasttime).
- :- not on(2,1,lasttime).
- :- not on(1,table,lasttime).
- :- not on(6,5,lasttime).
- :- not on(5,4,lasttime).
- :- not on(4,table,lasttime).

I.e. exclude answer sets where the goal conditions do not hold.

Planning in the Blocks World I GENERATE

time(0..lasttime).

% Possible locations are on top of blocks or on the table.

```
location(B) :- block(B).
location(table).
% GENERATE (using a choice rule)
{ move(B,L,T) : block(B) : location(L) } grippers :-
```

```
time(T), T<lasttime.</pre>
```

- The above uses is choice construct, which we won't cover
- Idea: for a time point *T*, can make as many moves as there are grippers.

Planning in the Blocks World II DEFINE

```
% effect of moving a block
on(B,L,T+1) := move(B,L,T),
               block(B), location(L),
                time(T), T<lasttime.</pre>
% inertia
on(B,L,T+1) :- on(B,L,T), not neg_on(B,L,T+1),
               location(L), block(B),
               time(T), T<lasttime.</pre>
% uniqueness of location
neg_on(B,L1,T) :- on(B,L,T), L!=L1,
                   block(B), location(L), location(L1),
                   time(T).
```

Planning in the Blocks World III

TEST

```
% neg_on is the negation of on
:= on(B,L,T), neg_on(B,L,T),
   block(B), location(L), time(T).
% two blocks cannot be on top of the same block
:- on(B1,B,T), on(B2,B,T),
   block(B1), block(B2), time(T), B1!=B2.
% a block can't be moved unless it is clear
:= move(B,L,T), on(B1,B,T),
   block(B), block(B1), location(L), time(T), T<lasttime.</pre>
```

% a block can't be moved onto a block that is being moved also :- move(B,B1,T), move(B1,L,T), block(B), block(B1), location(L), time(T), T<lasttime.</pre>

The Plan

```
> lparse blocks.lp | smodels
```

```
smodels version 2.25. Reading...done
Answer: 1
Stable Model: move(1,table,0) move(3,table,0)
             move(2,1,1) move(5,4,1)
             move(3,2,2) move(6,5,2)
Duration: 0.050
Number of choice points: 0
Number of wrong choices: 0
Number of atoms: 507
Number of rules: 3026
Number of picked atoms: 24
Number of forced atoms: 13
Number of truth assignments: 944
Size of searchspace (removed): 0 (0)
```

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣��