Answer Set Programming

CMPT 411/721
(based on slides by
Torsten Schaub)

Introduction:

Model-Based Problem Solving

Goal: Declarative problem solving

In declarative problem solving:

- Instead of asking: "How can the problem be solved?"
- Ask:
"How can the problem be described?"
Then use a domain-independent solver to compute a solution

Goal: Declarative problem solving

In declarative problem solving:

- Instead of asking: "How can the problem be solved?"
- Ask:
"How can the problem be described?"
Then use a domain-independent solver to compute a solution
General KR Methodology:

Answer set programming (ASP)

- Has its roots in
- Knowledge representation and reasoning ne In particular nonmonotonic reasoning
- Deductive databases (particularly Datalog)
- Constraint solving (in particular, SAT solving)
- Logic programming (with negation)

Answer set programming (ASP)

- Has its roots in
- Knowledge representation and reasoning昭 In particular nonmonotonic reasoning
- Deductive databases (particularly Datalog)
- Constraint solving (in particular, SAT solving)
- Logic programming (with negation)
- Allows for solving all search problems within NP (and NPNP) (over finite domains).

Answer set programming (ASP)

- Has its roots in
- Knowledge representation and reasoning昭 In particular nonmonotonic reasoning
- Deductive databases (particularly Datalog)
- Constraint solving (in particular, SAT solving)
- Logic programming (with negation)
- Allows for solving all search problems within NP (and NPNP) (over finite domains).
- Allows for using powerful off-the-shelf systems (nowadays capable of dealing with millions of variables)

Example: 3-colourability of graphs

C(I)	$\operatorname{vertex}(1)$ \leftarrow $\operatorname{vertex}(2)$ \leftarrow $\operatorname{vertex}(3)$ \leftarrow	edge(1,2) \leftarrow edge(2,3) \leftarrow edge(3,1) \leftarrow
C(P)	coloured(V,r) coloured (V,b) coloured (V,g)	
Answer set	\{ coloured(1,r)	oured (2,b), coloured ($3, \mathrm{~g}$), ...\}

Goal: Find a minimal set of literals that satisfies the rules.
Such a set of literals is called an answer set

Model-Based Problem Solving

Compare:
I Inference-based approach
(1) Provide a specification of the problem.
(2) A solution is given by a derivation of an appropriate query.

- E.g. resolution in logic, top-down rule-based reasoning, Prolog

Model-Based Problem Solving

Compare:
I Inference-based approach
(1) Provide a specification of the problem.
(2) A solution is given by a derivation of an appropriate query.

- E.g. resolution in logic, top-down rule-based reasoning, Prolog

II Model-based approach
(1) Provide a specification of the problem.
(2) A solution is given by a model of the specification.

- E.g. ASP, also SAT

Model-Based Problem Solving

Compare:
I Inference-based approach
(1) Provide a specification of the problem.
(2) A solution is given by a derivation of an appropriate query.

- E.g. resolution in logic, top-down rule-based reasoning, Prolog

II Model-based approach
(1) Provide a specification of the problem.
(2) A solution is given by a model of the specification.

- E.g. ASP, also SAT

Key Idea: Rules represent constraints on the problem.

Applications of ASP

- Combinatorial search problems:
- auctions, bio-informatics, computer-aided verification, configuration, constraint satisfaction, diagnosis, information integration, planning and scheduling, security analysis, semantic web, wire-routing, zoology and linguistics, ...
- ASP has also been used as a target language into which a high level language can be compiled.
- E.g.: Action language \Rightarrow ASP

Introduction to ASP

ASP: Idea

- A (normal) rule, r, is of the form
$A_{0} \leftarrow A_{1}, \ldots, A_{m}$, not A_{m+1}, \ldots, not A_{n},
- not can be read as negation as failure.
- Variables are treated as standing for all possible instances.

ASP: Idea

- A (normal) rule, r, is of the form
$A_{0} \leftarrow A_{1}, \ldots, A_{m}, \operatorname{not} A_{m+1}, \ldots, \operatorname{not} A_{n}$,
- not can be read as negation as failure.
- Variables are treated as standing for all possible instances.
- Want to determine answer sets of a set of rules, or program.
- An answer set is a minimal set of atoms satisfying the rules.
- I.e. for rule r above, if X is an answer set, then if A_{1}, \ldots, A_{m} are in X and no A_{m+1}, \ldots, A_{n} is in X then A_{0} is in X.

ASP: Idea

- A (normal) rule, r, is of the form

$$
A_{0} \leftarrow A_{1}, \ldots, A_{m}, \text { not } A_{m+1}, \ldots, \text { not } A_{n},
$$

- not can be read as negation as failure.
- Variables are treated as standing for all possible instances.
- Want to determine answer sets of a set of rules, or program.
- An answer set is a minimal set of atoms satisfying the rules.
- I.e. for rule r above, if X is an answer set, then if A_{1}, \ldots, A_{m} are in X and no A_{m+1}, \ldots, A_{n} is in X then A_{0} is in X.
- E.g. $\{a \leftarrow b$, not $c ., b$. $\}$ has answer set $\{a, b\}$.

ASP: Idea

- A (normal) rule, r, is of the form

$$
A_{0} \leftarrow A_{1}, \ldots, A_{m}, \text { not } A_{m+1}, \ldots, \text { not } A_{n},
$$

- not can be read as negation as failure.
- Variables are treated as standing for all possible instances.
- Want to determine answer sets of a set of rules, or program.
- An answer set is a minimal set of atoms satisfying the rules.
- I.e. for rule r above, if X is an answer set, then if A_{1}, \ldots, A_{m} are in X and no A_{m+1}, \ldots, A_{n} is in X then A_{0} is in X.
- E.g. $\{a \leftarrow b$, not $c ., b$.$\} has answer set \{a, b\}$. $\{a \leftarrow$ not $b ., b \leftarrow$ not a.$\} has answer sets \{a\}$ and $\{b\}$.

ASP: Atoms and Terms

Atoms

- An atom is the elementary construct for representing knowledge
- An atom in general represents a relation between objects
- Examples: answer(42), coloured(1, red), hot
- An atom can be either true or false

Terms

- Terms are the subatomic components of atoms
- Terms represent objects
- Examples: 42, red, joe
- Variables are also terms, but are removed from a program by grounding the program

Normal logic programs

- A (normal) logic program is a finite set of rules.

Normal logic programs

- A (normal) logic program is a finite set of rules.
- A (normal) rule, r, is of the form
$A_{0} \leftarrow A_{1}, \ldots, A_{m}, \operatorname{not} A_{m+1}, \ldots$, not A_{n},
where $n, m \geq 0$, and each A_{i} is an atom.

Normal logic programs

- A (normal) logic program is a finite set of rules.
- A (normal) rule, r, is of the form

$$
A_{0} \leftarrow A_{1}, \ldots, A_{m}, \operatorname{not} A_{m+1}, \ldots, \operatorname{not} A_{n},
$$

where $n, m \geq 0$, and each A_{i} is an atom.

- Notation

$$
\begin{aligned}
\operatorname{head}(r) & =A_{0} \\
\operatorname{body}(r) & =\left\{A_{1}, \ldots, A_{m}, \text { not } A_{m+1}, \ldots, \text { not } A_{n}\right\} \\
\operatorname{body}^{+}(r) & =\left\{A_{1}, \ldots, A_{m}\right\} \\
\text { body }^{-}(r) & =\left\{A_{m+1}, \ldots, A_{n}\right\}
\end{aligned}
$$

Normal logic programs

- A (normal) logic program is a finite set of rules.
- A (normal) rule, r, is of the form

$$
A_{0} \leftarrow A_{1}, \ldots, A_{m}, \operatorname{not} A_{m+1}, \ldots, \operatorname{not} A_{n},
$$

where $n, m \geq 0$, and each A_{i} is an atom.

- Notation

$$
\begin{aligned}
\operatorname{head}(r) & =A_{0} \\
\operatorname{body}(r) & =\left\{A_{1}, \ldots, A_{m}, \text { not } A_{m+1}, \ldots, \text { not } A_{n}\right\} \\
\operatorname{body}^{+}(r) & =\left\{A_{1}, \ldots, A_{m}\right\} \\
\text { body }^{-}(r) & =\left\{A_{m+1}, \ldots, A_{n}\right\}
\end{aligned}
$$

- A program is called positive if $\operatorname{body}^{-}(r)=\emptyset$ for all its rules.
(tot set of Horn clauses

Examples of Rules

Examples

- a :- b, not c.
- a :- not c, b.
- a.
- a :- b.
- a :- not c.
- ugrad(joe) :- student(joe), not $\operatorname{grad}(j o e)$.
- $\operatorname{ugrad}(X)$:- student (X), not $\operatorname{grad}(X)$.

Notational Conventions

The following notation is used interchangeably in order to stress a particular view:

				negation	classical
	if	and	or	as failure	negation
logic program	\leftarrow	,	$;$	$n o t / \sim$	\neg
formula	\rightarrow	\wedge	\vee		\neg
source code	$:-$,		not	-

Answer Set: Intuitions

- An answer set for a program P is a minimal set of atoms X such that, for every rule:

$$
A_{0} \leftarrow A_{1}, \ldots, A_{m}, \text { not } A_{m+1}, \ldots, \text { not } A_{n},
$$

```
if
    {\mp@subsup{A}{1}{},\ldots,\mp@subsup{A}{m}{}}\subseteqX
and
\[
\left\{A_{m+1}, \ldots, A_{n}\right\} \cap X=\emptyset
\]
then
\[
A_{0} \in X
\]
```

- This is a nonconstructive specification.
- Think of rules as specifying constraints on an answer set.

Answer sets and models

Classical Logic

- A model in classical logic can be written as a set of atoms X where
- atoms in X are true and
- atoms not in X are false.
- The formula $\neg b \rightarrow a$ has models $\{a\},\{b\}$, and $\{a, b\}$,

Answer sets and models

Classical Logic

- A model in classical logic can be written as a set of atoms X where
- atoms in X are true and
- atoms not in X are false.
- The formula $\neg b \rightarrow a$ has models $\{a\},\{b\}$, and $\{a, b\}$,

ASP

- An answer set X can be regarded as a model where
- atoms in X are true and
- atoms not in X are false.
- Program $\{a \leftarrow$ not $b\}$ has answer set $\{a\}$.

The negation-as-failure operator not makes a difference!

Answer sets: Basic idea

Consider the set of formulas: $\quad\{q,(q \wedge \neg r) \rightarrow p\}$

Answer sets: Basic idea

Consider the set of formulas: $\quad\{q,(q \wedge \neg r) \rightarrow p\}$
This set has three (classical) models: $\{p, q\},\{q, r\},\{p, q, r\}$.

Answer sets: Basic idea

Consider the set of formulas: $\quad\{q,(q \wedge \neg r) \rightarrow p\}$
This set has three (classical) models: $\{p, q\},\{q, r\},\{p, q, r\}$.
The corresponding logic program is:

$$
\begin{aligned}
& q \leftarrow \\
& p \leftarrow q, \text { not } r
\end{aligned}
$$

Answer sets: Basic idea

Consider the set of formulas: $\quad\{q,(q \wedge \neg r) \rightarrow p\}$
This set has three (classical) models: $\{p, q\},\{q, r\},\{p, q, r\}$.
The corresponding logic program is:

$$
\begin{aligned}
& q \leftarrow \\
& p \leftarrow q, \text { not } r
\end{aligned}
$$

This logic program has one answer set: $\{p, q\}$

Answer sets: Basic idea

Consider the set of formulas: $\quad\{q,(q \wedge \neg r) \rightarrow p\}$
This set has three (classical) models: $\{p, q\},\{q, r\},\{p, q, r\}$.
The corresponding logic program is:

$$
\begin{aligned}
& q \leftarrow \\
& p \leftarrow q, \text { not } r
\end{aligned}
$$

This logic program has one answer set: $\{p, q\}$
Roughly, a set of atoms X is an answer set of a logic program Π if

- X is a (classical) model of Π and
- all atoms in X are justified by some rule in Π

Each atom in X is a fact or is the head of a satisfied rule.

Answer Set: Formal Definition
 Positive programs

- A set of atoms X is closed under a positive program Π iff for any $r \in \Pi$: if body $^{+}(r) \subseteq X$ then head $(r) \in X$.
X corresponds to a model of Π (seen as a formula).

Answer Set: Formal Definition
 Positive programs

- A set of atoms X is closed under a positive program Π iff for any $r \in \Pi$: if $\operatorname{body}^{+}(r) \subseteq X$ then head $(r) \in X$.
X corresponds to a model of Π (seen as a formula).
- The smallest set of atoms which is closed under a positive program Π is denoted by $C n(\Pi)$.
- $C n(\Pi)$ corresponds to the \subseteq-smallest model of Π
- This is the set of consequences obtained by forward chaining.

Answer Set: Formal Definition
 Positive programs

- A set of atoms X is closed under a positive program Π iff for any $r \in \Pi$: if $\operatorname{body}^{+}(r) \subseteq X$ then head $(r) \in X$.
X corresponds to a model of Π (seen as a formula).
- The smallest set of atoms which is closed under a positive program Π is denoted by $\mathrm{Cn}(\Pi)$.
- $C n(\Pi)$ corresponds to the \subseteq-smallest model of Π
- This is the set of consequences obtained by forward chaining.
- The set $C n(\Pi)$ is an answer set of a positive program Π.

Answer Set: Formal Definition

Positive programs

- A set of atoms X is closed under a positive program Π iff for any $r \in \Pi$: if body $^{+}(r) \subseteq X$ then head $(r) \in X$.
X corresponds to a model of Π (seen as a formula).
- The smallest set of atoms which is closed under a positive program Π is denoted by $\mathrm{Cn}(\Pi)$.
- $C n(\Pi)$ corresponds to the \subseteq-smallest model of Π
- This is the set of consequences obtained by forward chaining.
- The set $C n(\Pi)$ is an answer set of a positive program Π.

Example

$$
\{p \leftarrow, \quad q \leftarrow p, \quad r \leftarrow p, q, \quad t \leftarrow s\}
$$

has answer set $\{p, q, r\}$.

Answer set: Formal Definition
 Normal programs

Answer set: Formal Definition
 Normal programs

- Given a program Π and a set of atoms X, the reduct, Π^{X}, of Π relative to X is defined by

$$
\begin{aligned}
\Pi^{X}=\{\text { head }(r) & \leftarrow \operatorname{body}^{+}(r) \mid \\
& \left.r \in \Pi \text { and } \text { body }^{-}(r) \cap X=\emptyset\right\} .
\end{aligned}
$$

- Think of X as being a "guess" of an answer set.
- The reduct "compiles out" negation as failure, given X.

Answer set: Formal Definition
 Normal programs

- Given a program Π and a set of atoms X, the reduct, Π^{X}, of Π relative to X is defined by

$$
\begin{aligned}
\Pi^{X}=\{\text { head }(r) & \leftarrow \operatorname{body}^{+}(r) \mid \\
& \left.r \in \Pi \text { and } \text { body }^{-}(r) \cap X=\emptyset\right\} .
\end{aligned}
$$

- Think of X as being a "guess" of an answer set.
- The reduct "compiles out" negation as failure, given X.
- A set X of atoms is an answer set of a program Π if $C n\left(\Pi^{X}\right)=X$.

Answer set: Formal Definition
 Normal programs

- Given a program Π and a set of atoms X, the reduct, Π^{X}, of Π relative to X is defined by

$$
\begin{aligned}
\Pi^{X}=\{\text { head }(r) & \leftarrow \operatorname{body}^{+}(r) \mid \\
& \left.r \in \Pi \text { and } \text { body }^{-}(r) \cap X=\emptyset\right\} .
\end{aligned}
$$

- Think of X as being a "guess" of an answer set.
- The reduct "compiles out" negation as failure, given X.
- A set X of atoms is an answer set of a program Π if $C n\left(\Pi^{X}\right)=X$.

Recall: $\operatorname{Cn}\left(\Pi^{X}\right)$ is the \subseteq-smallest (classical) model of Π^{X}.

Answer set: Formal Definition
 Normal programs

- Given a program Π and a set of atoms X, the reduct, Π^{X}, of Π relative to X is defined by

$$
\begin{aligned}
\Pi^{X}=\{\text { head }(r) & \leftarrow \operatorname{body}^{+}(r) \mid \\
& \left.r \in \Pi \text { and } \text { body }^{-}(r) \cap X=\emptyset\right\} .
\end{aligned}
$$

- Think of X as being a "guess" of an answer set.
- The reduct "compiles out" negation as failure, given X.
- A set X of atoms is an answer set of a program Π if $C n\left(\Pi^{X}\right)=X$.
Recall: $C n\left(\Pi^{X}\right)$ is the \subseteq-smallest (classical) model of Π^{X}.
Intuition: Every atom in X is justified by an "applying rule" from Π

A Closer Look at Π^{X}

Given a set of atoms X from Π, Π^{X} is obtained from Π by
(1) deleting each rule having a not A in its body with $A \in X$ and then
(2) deleting all negative atoms of the form not A in the bodies of the remaining rules.

- $\operatorname{Thus} \Pi^{X}$ is Π, but where negative atoms are taken into account.
- Then X is an answer set of Π just if Π^{X} "generates" X, i.e. $C n\left(\Pi^{X}\right)=X$.

A first example

$$
\Pi=\{p \leftarrow p, \quad q \leftarrow \operatorname{not} p\}
$$

A first example

$$
\Pi=\{p \leftarrow p, \quad q \leftarrow \operatorname{not} p\}
$$

X	Π^{X}	$\operatorname{Cn}\left(\Pi^{X}\right)$
\emptyset	$p<p$	$\{q\}$
	$q \leftarrow \sim$	
$\{p\}$	$p \leftarrow p$	\emptyset
		$\leftarrow q\}$
	$p<p$	$\{q\}$
q	\leftarrow	
$\{p, q\}$	$p<p$	\emptyset

A first example

$$
\Pi=\{p \leftarrow p, \quad q \leftarrow \operatorname{not} p\}
$$

X	Π^{X}	$C n\left(\Pi^{X}\right)$
\emptyset	$\begin{aligned} & p \leftarrow p \\ & q \leftarrow \end{aligned}$	\{q\} X
\{p\}	$p \leftarrow p$	\emptyset
\{q\}	$\begin{aligned} & p \leftarrow p \\ & q \leftarrow \end{aligned}$	$\{q\}$
\{p,q\}	$p \leftarrow p$	\emptyset

A first example

$$
\Pi=\{p \leftarrow p, \quad q \leftarrow \operatorname{not} p\}
$$

A first example

$$
\Pi=\{p \leftarrow p, \quad q \leftarrow \operatorname{not} p\}
$$

A first example

$$
\Pi=\{p \leftarrow p, \quad q \leftarrow \operatorname{not} p\}
$$

X	Π^{X}	$\operatorname{Cn}\left(\Pi^{X}\right)$		
\emptyset	$p<p$	$\{q\}$	\mathbf{x}	
	$q \leftarrow$			
$\{p\}$	$p<p$	\emptyset	\mathbf{x}	
$\{q\}$	$p<p$	$\{q\}$	\vee	
	$q<$	\leftarrow		
$\{p, q\}$	$p<p$	\emptyset	\mathbf{x}	

A second example

$$
\Pi=\{p \leftarrow \operatorname{not} q, \quad q \leftarrow \operatorname{not} p\}
$$

A second example

$$
\Pi=\{p \leftarrow \operatorname{not} q, \quad q \leftarrow \operatorname{not} p\}
$$

X	Π^{X}	$C n\left(\Pi^{X}\right)$
\emptyset	$p \leftarrow$	$\{p, q\}$
	$q \leftarrow$	
$\{p\}$	$p \leftarrow$	$\{p\}$
$\{q\}$	$q \leftarrow$	$\{q\}$
$\{p, q\}$		\emptyset

A second example

$$
\Pi=\{p \leftarrow \operatorname{not} q, \quad q \leftarrow \operatorname{not} p\}
$$

X	Π^{X}	$\operatorname{Cn}\left(\Pi^{X}\right)$	
\emptyset	$p \leftarrow$	$\{p, q\}$	X
	$q \leftarrow$		
$\{p\}$	$p \leftarrow$	$\{p\}$	
$\{q\}$			
	$q \leftarrow$	$\{q\}$	
$\{p, q\}$		\emptyset	

A second example

$$
\Pi=\{p \leftarrow \operatorname{not} q, \quad q \leftarrow \operatorname{not} p\}
$$

X	Π^{X}	$\operatorname{Cn}\left(\Pi^{X}\right)$	
\emptyset	$p r$	$\{p, q\}$	X
	$q \leftarrow$		
$\{p\}$	$p \leftarrow$	$\{p\}$	\checkmark
$\{q\}$	$q \leftarrow$	$\{q\}$	
$\{p, q\}$		\emptyset	

A second example

$$
\Pi=\{p \leftarrow \operatorname{not} q, \quad q \leftarrow \operatorname{not} p\}
$$

X	Π^{X}	$\operatorname{Cn}\left(\Pi^{X}\right)$	
\emptyset	$p r$	$\{p, q\}$	X
	$q \leftarrow$		
$\{p\}$	$p \leftarrow$	$\{p\}$	\vee
			$\{q\}$
$\{q\}$	$q \leftarrow$		
$\{p, q\}$		\emptyset	

A second example

$$
\Pi=\{p \leftarrow \operatorname{not} q, \quad q \leftarrow \operatorname{not} p\}
$$

X	Π^{X}	$\operatorname{Cn}\left(\Pi^{X}\right)$	
\emptyset	$p r$	$\{p, q\}$	X
	$q \leftarrow$		
$\{p\}$	$p \leftarrow$	$\{p\}$	\vee
			$\{q\}$
$\{q\}$	$q \leftarrow$		
	$q \leftarrow$		\emptyset
$X p, q\}$			

A third example

$$
\Pi=\{p \leftarrow \operatorname{not} p\}
$$

A third example

$$
\Pi=\{p \leftarrow \operatorname{not} p\}
$$

X	Π^{X}	$C n\left(\Pi^{X}\right)$
\emptyset	$p \leftarrow$	$\{p\}$
$\{p\}$		\emptyset

A third example

$$
\Pi=\{p \leftarrow \operatorname{not} p\}
$$

X	Π^{X}	$\operatorname{Cn}\left(\Pi^{X}\right)$
\emptyset	$p \leftarrow$	$\{p\}$
$\{p\}$		\emptyset

A third example

$$
\Pi=\{p \leftarrow \operatorname{not} p\}
$$

x	Π^{X}	$C n\left(\Pi^{X}\right)$	
\emptyset	$p \leftarrow$	$\{p\}$	\mathbf{x}
$\{p\}$		\emptyset	\mathbf{x}

A final example

$$
\Pi=\{a \leftarrow, \quad c \leftarrow \text { not } b, \text { not } d, \quad d \leftarrow a, \text { not } c,\}
$$

A final example

$$
\Pi=\{a \leftarrow, \quad c \leftarrow \operatorname{not} b, \text { not } d, \quad d \leftarrow a, \text { not } c,\}
$$

This program has two answer sets, $\{a, c\}$ and $\{a, d\}$.

A final example

$$
\Pi=\{a \leftarrow, \quad c \leftarrow \text { not } b, \text { not } d, \quad d \leftarrow a, \text { not } c,\}
$$

This program has two answer sets, $\{a, c\}$ and $\{a, d\}$. Here are 3 possibilities for X :

X	Π^{X}	$\operatorname{Cn}\left(\Pi^{X}\right)$
\emptyset	$a \leftarrow$	$\{a, c, d\}$
	$c \leftarrow$	
	$d \leftarrow a$	
$\{a, c\}$	$a \leftarrow$	$\{a, c\}$
	$c \leftarrow$	
$\{a, b, c, d\}$	$a \leftarrow$	$\{a\}$

A final example

$$
\Pi=\{a \leftarrow, \quad c \leftarrow \operatorname{not} b, \text { not } d, \quad d \leftarrow a, \text { not } c,\}
$$

This program has two answer sets, $\{a, c\}$ and $\{a, d\}$. Here are 3 possibilities for X :

| X | Π^{X} | $\operatorname{Cn}\left(\Pi^{X}\right)$ | |
| :--- | :---: | :--- | :--- | :--- |
| \emptyset | $a \leftarrow$ | $\{a, c, d\}$ | X |
| | $c \leftarrow$ | | |
| | $d \leftarrow a$ | | |
| $\{a, c\}$ | $a \leftarrow$ | $\{a, c\}$ | |
| | $c \leftarrow$ | | |
| $\{a, b, c, d\}$ | $a \leftarrow$ | $\{a\}$ | |

A final example

$$
\Pi=\{a \leftarrow, \quad c \leftarrow \operatorname{not} b, \text { not } d, \quad d \leftarrow a, \text { not } c,\}
$$

This program has two answer sets, $\{a, c\}$ and $\{a, d\}$. Here are 3 possibilities for X :

X	Π^{X}	$\operatorname{Cn}\left(\Pi^{X}\right)$		
\emptyset	a	\leftarrow	$\{a, c, d\}$	X
	c	\leftarrow		
	d	$\leftarrow a$		
$\{a, c\}$	a		$\{a, c\}$	\checkmark
	$c \leftarrow$			
$\{a, b, c, d\}$	a	\leftarrow	$\{a\}$	

A final example

$$
\Pi=\{a \leftarrow, \quad c \leftarrow \text { not } b, \text { not } d, \quad d \leftarrow a, \text { not } c,\}
$$

This program has two answer sets, $\{a, c\}$ and $\{a, d\}$. Here are 3 possibilities for X :

X	Π^{X}	$\operatorname{Cn}\left(\Pi^{X}\right)$		
\emptyset	a	\leftarrow	$\{a, c, d\}$	X
	c	\leftarrow		
	$d \quad \leftarrow a$			
$\{a, c\}$	a	\leftarrow	$\{a, c\}$	\vee
	$c \leftarrow$			
$\{a, b, c, d\}$	a	\leftarrow	$\{a\}$	X

Answer sets: Some properties

- A program may have zero, one, or multiple answer sets.
- If X is an answer set of a logic program Π, then X is a model of Π (seen as formulas of classical logic).
- If X and Y are answer sets of a logic program Π, then $X \not \subset Y$.

Programs with Variables

Let Π be a logic program.

- The Herbrand Universe U^{Π} is the set of constants in Π
- The Herbrand Base B^{Π} is the set of (variable-free) atoms constructible from U^{\square}
We usually denote this as \mathcal{A}, and call it the alphabet.

Programs with Variables

- Ground instances of $r \in \Pi$:

Set of variable-free rules obtained by replacing all variables in r by elements from U^{\square} :

$$
\operatorname{ground}(r)=\left\{r \theta \mid \theta: \operatorname{var}(r) \rightarrow U^{\Pi}\right\}
$$

where $\operatorname{var}(r)$ stands for the set of all variables occurring in r and θ is a (ground) substitution.

Programs with Variables

- Ground instances of $r \in \Pi$:

Set of variable-free rules obtained by replacing all variables in r by elements from U^{Π} :

$$
\operatorname{ground}(r)=\left\{r \theta \mid \theta: \operatorname{var}(r) \rightarrow U^{\Pi}\right\}
$$

where $\operatorname{var}(r)$ stands for the set of all variables occurring in r and θ is a (ground) substitution.

- Ground instantiation of $П$:

$$
\operatorname{ground}(\Pi)=\{\operatorname{ground}(r) \mid r \in \Pi\}
$$

An Example

$$
\Pi=\{r(a, b) \leftarrow, \quad r(b, c) \leftarrow, \quad t(X, Y) \leftarrow r(X, Y)\}
$$

An Example

$$
\begin{aligned}
\Pi & =\{r(a, b) \leftarrow, \quad r(b, c) \leftarrow, \quad t(X, Y) \leftarrow r(X, Y)\} \\
U^{\Pi} & =\{a, b, c\}
\end{aligned}
$$

An Example

$$
\begin{aligned}
\Pi & =\left\{\begin{array}{l}
r(a, b) \leftarrow, \quad r(b, c) \leftarrow, \quad t(X, Y) \leftarrow r(X, Y)\} \\
U^{\Pi}
\end{array}=\left\{\begin{array}{l}
\{a, b, c\}
\end{array}\right.\right. \\
B^{\Pi} & =\left\{\begin{array}{l}
r(a, a), r(a, b), r(a, c), \\
r(b, a), r(b, b), r(b, c), \\
r(c, a), r(c, b), r(c, c), \\
t(a, a), t(a, b), t(a, c), \\
t(b, a), t(b, b), t(b, c), \\
t(c, a), t(c, b), t(c, c)
\end{array}\right\}
\end{aligned}
$$

An Example

$$
\begin{aligned}
& \Pi=\left\{\begin{aligned}
&r(a, b) \leftarrow, \quad r(b, c) \leftarrow, \quad t(X, Y) \leftarrow r(X, Y)\} \\
& U^{\Pi}=\{a, b, c\} \\
& B^{\Pi}=\left\{\begin{array}{l}
r(a, a), r(a, b), r(a, c), \\
r(b, a), \\
r(c, a), \\
t(c, b), r(b, c), \\
t(a, a), \\
t(b, a), \\
t(a, b), \\
t(c, a, b), \\
t(c, a), \\
t(c, b), \\
\hline
\end{array}\right\}(b, c, c)
\end{aligned}\right\} \\
& \operatorname{ground}(\Pi)=\left\{\begin{array}{l}
r(a, b) \leftarrow, \\
r(b, c) \leftarrow, \\
t(a, a) \leftarrow r(a, a), t(b, a) \leftarrow r(b, a), t(c, a) \leftarrow r(c, a), \\
t(a, b) \leftarrow r(a, b), t(b, b) \leftarrow r(b, b), t(c, b) \leftarrow r(c, b), \\
t(a, c) \leftarrow r(a, c), t(b, c) \leftarrow r(b, c), t(c, c) \leftarrow r(c, c)
\end{array}\right\}
\end{aligned}
$$

An Example

$$
\begin{aligned}
& \Pi=\{r(a, b) \leftarrow, \quad r(b, c) \leftarrow, \quad t(X, Y) \leftarrow r(X, Y)\} \\
& U^{\square}=\{a, b, c\} \\
& B^{\sqcap}=\left\{\begin{array}{cc}
r(a, a), & r(a, b), r(a, c), \\
r(b, a), & r(b, b), r(b, c), \\
r(c, a), r(c, b), r(c, c), \\
t(a, a), & t(a, b), \\
t(a, c), \\
t(b, a), & t(b, b), \\
t(c, a), & t(c, b), \\
t(c, c)
\end{array}\right\} \\
& \operatorname{ground}(\Pi)= \begin{cases}r(a, b) \leftarrow, \\
r(b, c) \leftarrow, \\
t(a, b) \leftarrow, & \\
& t(b, c) \leftarrow\end{cases}
\end{aligned}
$$

- Intelligent Grounding aims to reduce the ground instantiation.

Answer Sets of Programs with Variables

Let Π be a normal logic program with variables.
We define a set X of (ground) atoms as an answer set of Π if $\operatorname{Cn}\left(\operatorname{ground}(\Pi)^{X}\right)=X$.

Programs with Integrity Constraints

Purpose: Integrity constraints eliminate unwanted candidate solutions

Programs with Integrity Constraints

Purpose: Integrity constraints eliminate unwanted candidate solutions

Syntax: An integrity constraint is of the form
$\leftarrow A_{1}, \ldots, A_{m}$, not A_{m+1}, \ldots, not A_{n},
where $n \geq m \geq 1$, and each $A_{i}(1 \leq i \leq n)$ is a atom.
Example
$\leftarrow \operatorname{Edge}(X, Y), \operatorname{Col}(X, C), \operatorname{Col}(Y, C)$

Programs with Integrity Constraints

Purpose: Integrity constraints eliminate unwanted candidate solutions

Syntax: An integrity constraint is of the form

$$
\leftarrow A_{1}, \ldots, A_{m}, \text { not } A_{m+1}, \ldots, \text { not } A_{n}
$$

where $n \geq m \geq 1$, and each $A_{i}(1 \leq i \leq n)$ is a atom.
Example

$$
\leftarrow \operatorname{Edge}(X, Y), \operatorname{Col}(X, C), \operatorname{Col}(Y, C)
$$

Implementation: For a new symbol x,

$$
\begin{aligned}
& \text { map: } \\
& \text { to: } \quad x \leftarrow A_{1}, \ldots, A_{m}, \text { not } A_{m+1}, \ldots, \text { not } A_{n} \text {, not } x \\
& \leftarrow A_{1}, \ldots, A_{m}, \text { not } A_{m+1}, \ldots, \text { not } A_{n}
\end{aligned}
$$

Computation: Standard Approach

Computation: Standard Approach

Global parameters: Logic program Π and its set of atoms \mathcal{A}.

- X is a set of atoms known to be true;
- Y is a set of atoms known to be false.
- Initially $X=Y=\emptyset$.

Computation: Standard Approach

Global parameters: Logic program Π and its set of atoms \mathcal{A}.

- X is a set of atoms known to be true;
- Y is a set of atoms known to be false.
- Initially $X=Y=\emptyset$.
answerset $_{\square}(X, Y)$:
(1) $(X, Y) \leftarrow$ propagation $_{\Pi}(X, Y)$
(2) if $(X \cap Y) \neq \emptyset$ then fail
(3) if $(X \cup Y)=\mathcal{A}$ then return (X)
(4) select $A \in \mathcal{A} \backslash(X \cup Y)$
(5) answerset ${ }_{\square}(X \cup\{A\}, Y)$
(6 answerset ${ }_{\Pi}(X, Y \cup\{A\})$

Computation: Standard Approach

Comments:

- (X, Y) is supposed to be a 3-valued model such that
- $X \subseteq Z$ and
- $Y \cap Z=\emptyset$
for an answer set Z of Π.

Computation: Standard Approach

Comments:

- (X, Y) is supposed to be a 3-valued model such that
- $X \subseteq Z$ and
- $Y \cap Z=\emptyset$
for an answer set Z of Π.
- Key operations:
- propagation (X, Y) and
- "select $A \in \mathcal{A} \backslash(X \cup Y)$ "

Computation: Standard Approach

Comments:

- (X, Y) is supposed to be a 3-valued model such that
- $X \subseteq Z$ and
- $Y \cap Z=\emptyset$
for an answer set Z of Π.
- Key operations:
- propagation (X, Y) and
- "select $A \in \mathcal{A} \backslash(X \cup Y)$ "
- Worst case complexity: $\mathcal{O}\left(2^{|\mathcal{A}|}\right)$

More later...

