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Goal: Declarative problem solving

In declarative problem solving:

• Instead of asking: “How can the problem be solved?”

• Ask: “How can the problem be described?”

+ Then use a domain-independent solver to compute a solution
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Answer set programming (ASP)

• Has its roots in
• Knowledge representation and reasoning

+ In particular nonmonotonic reasoning
• Deductive databases (particularly Datalog)
• Constraint solving (in particular, SAT solving)
• Logic programming (with negation)

• Allows for solving all search problems within NP (and NPNP)
(over finite domains).

• Allows for using powerful off-the-shelf systems
(nowadays capable of dealing with millions of variables)
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Example: 3–colourability of graphs

C(I) vertex(1) ← edge(1,2) ←
vertex(2) ← edge(2,3) ←
vertex(3) ← edge(3,1) ←

C(P) coloured(V,r) ← not coloured(V,b), not coloured(V,g),
vertex(V)

coloured(V,b) ← not coloured(V,r), not coloured(V,g),
vertex(V)

coloured(V,g) ← not coloured(V,r), not coloured(V,b),
vertex(V)

← edge(V,U), coloured(V,C), coloured(U,C),
colour(C)

Answer set { coloured(1,r), coloured(2,b), coloured(3,g), . . . }

Goal: Find a minimal set of literals that satisfies the rules.
+ Such a set of literals is called an answer set



Model-Based Problem Solving

Compare:

I Inference-based approach

1 Provide a specification of the problem.

2 A solution is given by a derivation of an appropriate query.

• E.g. resolution in logic, top-down rule-based reasoning, Prolog

II Model-based approach

1 Provide a specification of the problem.

2 A solution is given by a model of the specification.

• E.g. ASP, also SAT

Key Idea: Rules represent constraints on the problem.
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Applications of ASP

• Combinatorial search problems:
• auctions, bio-informatics, computer-aided verification,

configuration, constraint satisfaction, diagnosis, information
integration, planning and scheduling, security analysis,
semantic web, wire-routing, zoology and linguistics, . . .

• ASP has also been used as a target language into which a
high level language can be compiled.
• E.g.: Action language ⇒ ASP



Introduction to ASP



ASP: Idea

• A (normal) rule, r , is of the form

A0 ← A1, . . . ,Am, not Am+1, . . . , not An,
• not can be read as negation as failure.
• Variables are treated as standing for all possible instances.

• Want to determine answer sets of a set of rules, or program.

• An answer set is a minimal set of atoms satisfying the rules.
• I.e. for rule r above, if X is an answer set, then if A1, . . . ,Am

are in X and no Am+1, . . . ,An is in X then A0 is in X .

• E.g. {a← b, not c., b.} has answer set {a, b}.
{a← not b., b ← not a.} has answer sets {a} and {b}.
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ASP: Atoms and Terms

Atoms

• An atom is the elementary construct for representing
knowledge

• An atom in general represents a relation between objects

• Examples: answer(42), coloured(1, red), hot

• An atom can be either true or false

Terms

• Terms are the subatomic components of atoms
• Terms represent objects

• Examples: 42, red , joe

• Variables are also terms, but are removed from a program by
grounding the program



Normal logic programs

• A (normal) logic program is a finite set of rules.

• A (normal) rule, r , is of the form

A0 ← A1, . . . ,Am, not Am+1, . . . , not An,

where n,m ≥ 0, and each Ai is an atom.

• Notation

head(r) = A0

body(r) = {A1, . . . ,Am, not Am+1, . . . , not An}
body +(r) = {A1, . . . ,Am}
body−(r) = {Am+1, . . . ,An}

• A program is called positive if body−(r) = ∅ for all its rules.

+ = set of Horn clauses
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Examples of Rules

Examples

• a :- b, not c.

• a :- not c, b.

• a.

• a :- b.

• a :- not c.

• ugrad(joe) :- student(joe), not grad(joe).

• ugrad(X) :- student(X), not grad(X).



Notational Conventions

The following notation is used interchangeably in order to stress a
particular view:

negation classical
if and or as failure negation

logic program ← , ; not/∼ ¬
formula → ∧ ∨ ¬
source code :- , | not -



Answer Set: Intuitions

• An answer set for a program P is a minimal set of atoms X
such that, for every rule:

A0 ← A1, . . . ,Am, not Am+1, . . . , not An,

if
{A1, . . . ,Am} ⊆ X

and
{Am+1, . . . , An} ∩ X = ∅

then
A0 ∈ X .

• This is a nonconstructive specification.

• Think of rules as specifying constraints on an answer set.



Answer sets and models

Classical Logic

• A model in classical logic can be written as a set of atoms X
where
• atoms in X are true and
• atoms not in X are false.

• The formula ¬b → a has models {a}, {b}, and {a, b},

ASP
• An answer set X can be regarded as a model where

• atoms in X are true and
• atoms not in X are false.

• Program {a← not b} has answer set {a}.

+ The negation-as-failure operator not makes a difference!
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Answer sets: Basic idea

Consider the set of formulas: {q, (q ∧ ¬r)→ p}

This set has three (classical) models: {p, q}, {q, r}, {p, q, r}.

The corresponding logic program is:

q ←
p ← q, not r

This logic program has one answer set: {p, q}

Roughly, a set of atoms X is an answer set of a logic program Π if

• X is a (classical) model of Π and

• all atoms in X are justified by some rule in Π

+ Each atom in X is a fact or is the head of a satisfied rule.
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Answer Set: Formal Definition
Positive programs

• A set of atoms X is closed under a positive program Π iff
for any r ∈ Π: if body +(r) ⊆ X then head(r) ∈ X .

+ X corresponds to a model of Π (seen as a formula).

• The smallest set of atoms which is closed under a positive
program Π is denoted by Cn(Π).
• Cn(Π) corresponds to the ⊆-smallest model of Π
• This is the set of consequences obtained by forward chaining.

• The set Cn(Π) is an answer set of a positive program Π.

Example

{p ←, q ← p, r ← p, q, t ← s}
has answer set {p, q, r}.
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Answer set: Formal Definition
Normal programs

• Given a program Π and a set of atoms X ,
the reduct, ΠX , of Π relative to X is defined by

ΠX = {head(r)← body +(r) |
r ∈ Π and body−(r) ∩ X = ∅}.

• Think of X as being a “guess” of an answer set.
• The reduct “compiles out” negation as failure, given X .

• A set X of atoms is an answer set of a program Π if
Cn(ΠX ) = X .

Recall: Cn(ΠX ) is the ⊆–smallest (classical) model of ΠX .

Intuition: Every atom in X is justified by an “applying rule” from Π
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A Closer Look at ΠX

Given a set of atoms X from Π, ΠX is obtained from Π by

1 deleting each rule having a not A in its body with A ∈ X
and then

2 deleting all negative atoms of the form not A in the bodies of
the remaining rules.

• Thus ΠX is Π, but where negative atoms are taken into
account.

• Then X is an answer set of Π just if ΠX “generates” X , i.e.
Cn(ΠX ) = X .



A first example

Π = { p ← p, q ← not p }

X ΠX Cn(ΠX )

∅ p ← p
q ←

{q}

8

{p} p ← p ∅

8

{q} p ← p
q ←

{q}

4

{p, q} p ← p ∅

8
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Answer sets: Some properties

• A program may have zero, one, or multiple answer sets.

• If X is an answer set of a logic program Π,
then X is a model of Π (seen as formulas of classical logic).

• If X and Y are answer sets of a logic program Π,
then X 6⊂ Y .



Programs with Variables

Let Π be a logic program.

• The Herbrand Universe UΠ is the set of constants in Π

• The Herbrand Base BΠ is the set of (variable-free) atoms
constructible from UΠ

+ We usually denote this as A, and call it the alphabet.



Programs with Variables

• Ground instances of r ∈ Π:

Set of variable-free rules obtained by replacing all variables in
r by elements from UΠ:

ground(r) = {rθ | θ : var(r)→ UΠ}

where var(r) stands for the set of all variables occurring in r
and θ is a (ground) substitution.

• Ground instantiation of Π:

ground(Π) = {ground(r) | r ∈ Π}
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An Example

Π = { r(a, b)←, r(b, c)←, t(X ,Y )← r(X ,Y ) }

UΠ = {a, b, c}

BΠ =



r(a, a), r(a, b), r(a, c),
r(b, a), r(b, b), r(b, c),
r(c, a), r(c, b), r(c, c),
t(a, a), t(a, b), t(a, c),
t(b, a), t(b, b), t(b, c),
t(c, a), t(c, b), t(c, c)



ground(Π) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c, a) ← r(c, a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c, b) ← r(c, b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c, c) ← r(c, c)



• Intelligent Grounding aims to reduce the ground instantiation.
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Answer Sets of Programs with Variables

Let Π be a normal logic program with variables.

We define a set X of (ground) atoms as an answer set of Π
if Cn(ground(Π)X ) = X .



Programs with Integrity Constraints

Purpose: Integrity constraints eliminate unwanted candidate
solutions

Syntax: An integrity constraint is of the form

← A1, . . . ,Am, not Am+1, . . . , not An,

where n ≥ m ≥ 1, and each Ai (1 ≤ i ≤ n) is a atom.

Example

← Edge(X ,Y ),Col(X ,C ),Col(Y ,C )

Implementation: For a new symbol x ,

map: ← A1, . . . ,Am, not Am+1, . . . , not An

to: x ← A1, . . . ,Am, not Am+1, . . . , not An, not x
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Computation: Standard Approach

Global parameters: Logic program Π and its set of atoms A.

• X is a set of atoms known to be true;

• Y is a set of atoms known to be false.

• Initially X = Y = ∅.

answersetΠ(X ,Y ) :

1 (X ,Y )← propagationΠ(X ,Y )
2 if (X ∩ Y ) 6= ∅ then fail
3 if (X ∪ Y ) = A then return(X )
4 select A ∈ A \ (X ∪ Y )
5 answersetΠ(X ∪ {A},Y )
6 answersetΠ(X ,Y ∪ {A})
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Computation: Standard Approach

Comments:
• (X ,Y ) is supposed to be a 3-valued model such that

• X ⊆ Z and
• Y ∩ Z = ∅

for an answer set Z of Π.

• Key operations:
• propagationΠ(X ,Y ) and
• “select A ∈ A \ (X ∪ Y )”

• Worst case complexity: O(2|A|)

+ More later...
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