Matrix-Chain Multiplication

Given: ‘“‘chain” of matrices (A1, Ao, ... Ay), with A; having dimension
(Pi—1 X p;).

Goal: compute product A7 - A>--- Ay, as quickly as possible

Dynamic Programming 1

Multiplication of (p x ¢) and (g x r) matrices takes pgr steps
Hence, time to multiply two matrices depends on dimensions!

Example:: n = 4. Possible orders:

(A1(A2(A344)))
(A1((A2A3)A4))
((A1A2)(A344))
((A1(A2A43))As)
(((A1A42)A3)Ay)

Suppose A7 is 10 x 100, A, is 100 x5, A3z is 5 x 50, and A4 is 50 x 10

Order 2:

100-5-504+100-50-10410-100-10 = 85,000
Order 5:

10-100-5+10-5-504+10-50-10 = 12,500

But: the number of possible orders is exponential!

Dynamic Programming 2

We want to find Dynamic programming approach to optimally solve
this problem

The four basic steps when designing DP algorithm:

1. Characterize structure of optimal solution
2. Recursively define value of an optimal solution
3. Compute value of optimal solution in bottom-up fashion

4. Construct optimal solution from computed information

Dynamic Programming 3

1. Characterizing structure

Let Az’]ZAZA] for 1+ < 5.

If+ < j, then any solution of A; ; must split product at some k, « < k < j,

i.e., compute Ai,kv Ak—l—l,j1 and then Ai,k . Ak—l—l,j'

Hence, for some k, cost is

e Cost of computing A@k plus
e Cost of computing Ak_|_1,j plus

e cost of multiplying A; . and Agyq ;.

Optimal (sub)structure:

e Suppose that optimal parenthesization of A;; splits between A
and Ak—l—l'

e Then, parenthesizations of A;; and A1 ; must be optimal, too
(otherwise, enhance overall solution — subproblems are indepen-
dent!).

e Construct optimal solution:

1. split into subproblems (using optimal split!),
2. parenthesize them optimally,

3. combine optimal subproblem solutions.

Dynamic Programming 5

2. Recursively def. value of opt. solution

Let m[i, j] denote minimum number of scalar multiplications needed
to compute A; ; = A; - A;41--- A (full problem: m[1,n]).
Recursive definition of m]i, j]:
e if 2 =7, then
mli, j] = ml[i,iq] =0
(4;; = A;, no mult. needed).

e if © <j, assume optimal split at k, « <k <j. A; IS p;—1 X p and
Ak—|—1,j IS Pk X Pj, hence

m[i, j] = mli, k] + ml[k + 1, 5] + pi—1 - pi - D;-

e \We do not know optimal value of k, hence
0 if 1=
mli, j] = ¢ min;<pi{mli, k] +m[k + 1,5] ifi<j
+pi—1 - Pk - Pj}

Dynamic Programming 6

We also keep track of optimal splits:

Dynamic Programming

3. Computing optimal cost
Want to compute m[1,n], minimum cost for multiplying A1 -As--- Ajp.

Recursively, according to equation on last slide, would take Q(27)
(subproblems are computed over and over again).

However, if we compute in bottom-up fashion, we can reduce run-
ning time to poly(n).

Equation shows that m[i, j] depends only on smaller subproblems:
fork=1,...,7—1,

e A; is product of k—i+4+ 1 <j—1i+ 1 matrices,

e Ajyq s product of j —k <j—i+ 1 matrices.

Algorithm should fill table m using increasing lengths of chains.

Dynamic Programming 8

The Algorithim

1: n <+ length[p] — 1

2: for 1+ 1 ton do

3: mli,i] < O

4: end for

5. for / +— 2 to n do

6: for i1+~ 1ton—-/¢41do
7: j4+1+/4-—-1

8: mli, j] < oo

9: for k+—i:to j—1do
10: q < m[i, k] +m[k + 1,5] +pi—1 - Pk - P;
11: iIf ¢ < mli,j] then
12: mli, j] < q

13: sli, 4] < k

14: end if

15: end for

16: end for
17: end for

Dynamic Programming

Example

A1 (30 x 35), As (35 x 15), Az (15 x 5), A4 (5 x 10), As (10 x 20),
Ag (20 x 25)

Recall: multiplying A (p x g) and B (g x r) takes p-q-r scalar multi-
plications.

Dynamic Programming 10

Example

A1 (30 x 35), As (35 x 15), Az (15 x 5), A4 (5 x 10), As (10 x 20),

Ag (20 x 25)

Recall: multiplying A (p x g) and B (g x r) takes p-q-r scalar multi-

plications.

1 2 3 4 5
6 | 15,125 | 10,500 | 5,375 | 3,500 | 5,000
5 | 11,875 | 7,125 | 2,500 | 1,000 0
4| 9375 | 4375 750 0
) 3 | 7,875 | 2,625 0
2 | 15,750 0
1 0

Dynamic Programming

11

4. Constructing optimal solution

Simple with array s[i, j], gives us optimal split points.

Complexity

We have three nested loops:
1. 4, length, O(n) iterations
2. i, start, O(n) iterations

3. k, split point, O(n) iterations

Body of loops: constant complexity.

Total complexity: O(n3)

Dynamic Programming

12

All-pairs-shortest-paths

e Directed graph G = (V, E), weight function
w:E—->R,|V]=n

e Weight of path p = (v1,v2,...,v) is w(p) =

e Assume G contains no negative-weight cycles

k—1
1=1

’LU(’UZ', Ui—|—l)

e Goal: create nxn matrix of shortest path distances é(u,v), u,v € V

e 1st idea: use single-source-shortest-path alg (i.e., Bellman-Ford);

but it's too slow, O(n*) on dense graph

Dynamic Programming

13

Adjacency-matrix representation of graph:

e n X n adjacency matrix W = (w;;) of edge weights

e assume
0 if 1=

w;; = weight of (i,5) ifi#jand (i,j) € E

00 if i =4 and (i,j) € E

In the following, we only want to compute lengths of shortest paths,
not construct the paths.

Dynamic Programming 14

Dynamic programming approach, four steps:

1. Structure of a shortest path: Subpaths of shortest paths are
shortest paths.

Lemma. Let p = (vq,vp,...,v;) be a shortest path from v to vy, let
pij = (vi, Vi41,...,v5) for 1 <i < j <k be subpath from v; to v;. Then,
p;; is shortest path from v; to v;.

Proof. Decompose p into

P1g Dij Pjk
’Ul ~~> U?:’\f)’vj ~> ’Uk,

Then, w(p) = w(py;) + w(pi;) + w(pjr). Assume there is cheaper p;j
from v; to v; with w(pgj) < w(p;;). Then

!/
p1; Pij Pjk
V1 ™~ Uy ™~ ’Uj ~ VUl

is path from vy to v, whose weight w(pli)—l—w(p;j)—l—w(pjk) is less than
w(p), a contradiction.

Dynamic Programming 15

2. Recursive solution and 3. Compute opt. value (bottom-up)

Let dg.”) = weight of shortest path from ¢ to 5 that uses at most m
edges.

40 _ {O if i = j
i

oo ifi#7
: —1
dz(]m) = mklﬂ {dz(]:n) —+ wkj}
at most m—1 edges K’s

at most m—1 edges

We're looking for 6(i,j) = d,g”_l) = dg”) = dg""l) — ...

Dynamic Programming 16

Alg. is straightforward, running time is O(n*) (n — 1 passes, each
computing n? d's in ©(n) time)

Unfortunately, no better than before. ..

Approach is similar to matrix multiplication:
C = A- B, n xn matrices, c¢;; = > i a; - b, O(n3) operations

Replacing “4+" with “min’ and “."" with *“4"" gives

Cij = mkin{aik + b}
very similar to

m : m—1

Hence D(M) = p(m—=1) w1y

Dynamic Programming 17

Floyd-Warshall algorithm
Also DP, but faster (factor logn)

Define c,g”) = weight of a shortest path from : to 3 with intermediate

vertices in {1,2,...,m}.

Then 6(i,§) = ¢

Dynamic Programming 18

Compute cg?) in terms of smaller ones, c§].<”):

(0) g
Cij Wi
(m) _ i (m—1) (m—1) (m—1)
Cij = min{c;; , Cim —I—ij
(m—1) (m-1)
¢ im @ ij
(i))

(m-1)
C..

intermediate vertices in {1.....m—1}

Dynamic Programming

Difference from previous algorithm: needn’t check all possible in-
termediate vertices. Shortest path simply either includes m or doesn't.

Pseudocode:

for m<+ 1 to n do
for 1 +— 1 to n do
for j «— 1 ton do
if Cij > Cim + Crmj then
Cij <= Cim T Cmj
end if
end for
end for
end for

_ (m-1)

Superscripts dropped, start loop with ¢;; = ¢;; — ()

Time: ©(n3), simple code

Dynamic Programming 20

Best algorithm to date is O(VZ2logV + VE)

Note: for dense graphs (|E| ~ |V|?) can get APSP (with Floyd-
Warshall) for same cost as getting SSSP (with Bellman-Ford)! (©(VE) =
O (n?))

Dynamic Programming 21

