
Matrix-Chain Multiplication

Given: “chain” of matrices (A1, A2, . . . An), with Ai having dimension
(pi−1 × pi).

Goal: compute product A1 ·A2 · · ·An as quickly as possible

Dynamic Programming 1

Multiplication of (p× q) and (q × r) matrices takes pqr steps

Hence, time to multiply two matrices depends on dimensions!

Example:: n = 4. Possible orders:

(A1(A2(A3A4)))

(A1((A2A3)A4))

((A1A2)(A3A4))

((A1(A2A3))A4)

(((A1A2)A3)A4)

Suppose A1 is 10× 100, A2 is 100× 5, A3 is 5× 50, and A4 is 50× 10

Order 2:

100 · 5 · 50 + 100 · 50 · 10 + 10 · 100 · 10 = 85,000

Order 5:

10 · 100 · 5 + 10 · 5 · 50 + 10 · 50 · 10 = 12,500

But: the number of possible orders is exponential!

Dynamic Programming 2

We want to find Dynamic programming approach to optimally solve
this problem

The four basic steps when designing DP algorithm:

1. Characterize structure of optimal solution

2. Recursively define value of an optimal solution

3. Compute value of optimal solution in bottom-up fashion

4. Construct optimal solution from computed information

Dynamic Programming 3

1. Characterizing structure

Let Ai,j = Ai · · ·Aj for i ≤ j.

If i < j, then any solution of Ai,j must split product at some k, i ≤ k < j,
i.e., compute Ai,k, Ak+1,j, and then Ai,k ·Ak+1,j.

Hence, for some k, cost is

• cost of computing Ai,k plus

• cost of computing Ak+1,j plus

• cost of multiplying Ai,k and Ak+1,j.

Optimal (sub)structure:

• Suppose that optimal parenthesization of Ai,j splits between Ak
and Ak+1.

• Then, parenthesizations of Ai,k and Ak+1,j must be optimal, too
(otherwise, enhance overall solution — subproblems are indepen-
dent!).

• Construct optimal solution:

1. split into subproblems (using optimal split!),

2. parenthesize them optimally,

3. combine optimal subproblem solutions.

Dynamic Programming 5

2. Recursively def. value of opt. solution

Letm[i, j] denoteminimum number of scalar multiplications needed
to compute Ai,j = Ai ·Ai+1 · · ·Aj (full problem: m[1, n]).

Recursive definition of m[i, j]:

• if i = j, then

m[i, j] = m[i, i] = 0

(Ai,i = Ai, no mult. needed).

• if i < j, assume optimal split at k, i ≤ k < j. Ai,k is pi−1 × pk and
Ak+1,j is pk × pj, hence

m[i, j] = m[i, k] +m[k + 1, j] + pi−1 · pk · pj.

• We do not know optimal value of k, hence

m[i, j] =

0 if i = j
mini≤k<j{m[i, k] +m[k + 1, j] if i < j

+pi−1 · pk · pj}

Dynamic Programming 6

We also keep track of optimal splits:

s[i, j] = k ⇔ m[i, j] = m[i, k] +m[k + 1, j] + pi−1 · pk · pj

Dynamic Programming 7

3. Computing optimal cost

Want to compute m[1, n], minimum cost for multiplying A1 ·A2 · · ·An.

Recursively, according to equation on last slide, would take Ω(2n)

(subproblems are computed over and over again).

However, if we compute in bottom-up fashion, we can reduce run-
ning time to poly(n).

Equation shows that m[i, j] depends only on smaller subproblems:
for k = 1, . . . , j − 1,

• Ai,k is product of k − i+ 1 < j − i+ 1 matrices,

• Ak+1,j is product of j − k < j − i+ 1 matrices.

Algorithm should fill table m using increasing lengths of chains.

Dynamic Programming 8

The Algorithm
1: n← length[p]− 1

2: for i← 1 to n do
3: m[i, i]← 0

4: end for
5: for `← 2 to n do
6: for i← 1 to n− `+ 1 do
7: j ← i+ `− 1

8: m[i, j]←∞
9: for k ← i to j − 1 do
10: q ← m[i, k] +m[k + 1, j] + pi−1 · pk · pj
11: if q < m[i, j] then
12: m[i, j]← q

13: s[i, j]← k

14: end if
15: end for
16: end for
17: end for

Dynamic Programming 9

Example

A1 (30 × 35), A2 (35 × 15), A3 (15 × 5), A4 (5 × 10), A5 (10 × 20),
A6 (20× 25)

Recall: multiplying A (p × q) and B (q × r) takes p · q · r scalar multi-
plications.

i

j

1 2 3 4 5 6

6

2

3

4

5

1 0

0

0

0

0

0

Dynamic Programming 10

Example

A1 (30 × 35), A2 (35 × 15), A3 (15 × 5), A4 (5 × 10), A5 (10 × 20),
A6 (20× 25)

Recall: multiplying A (p × q) and B (q × r) takes p · q · r scalar multi-
plications.

i

j

1 2 3 4 5 6

6

2

3

4

5

1

15,750

2,625

750

1,000

5,000

7,875

4,375

2,500

3,500

9,375

7,125

5,375

11,875

10,50015,125

0

0

0

0

0

0

Dynamic Programming 11

4. Constructing optimal solution

Simple with array s[i, j], gives us optimal split points.

Complexity

We have three nested loops:

1. `, length, O(n) iterations

2. i, start, O(n) iterations

3. k, split point, O(n) iterations

Body of loops: constant complexity.

Total complexity: O(n3)

Dynamic Programming 12

All-pairs-shortest-paths

• Directed graph G = (V,E), weight function
w : E → IR, |V | = n

• Weight of path p = (v1, v2, . . . , vk) is w(p) =
∑k−1
i=1 w(vi, vi+1)

• Assume G contains no negative-weight cycles

• Goal: create n×n matrix of shortest path distances δ(u, v), u, v ∈ V

• 1st idea: use single-source-shortest-path alg (i.e., Bellman-Ford);
but it’s too slow, O(n4) on dense graph

Dynamic Programming 13

Adjacency-matrix representation of graph:

• n× n adjacency matrix W = (wij) of edge weights

• assume

wij =

0 if i = j
weight of (i, j) if i 6= j and (i, j) ∈ E
∞ if i 6= j and (i, j) 6∈ E

In the following, we only want to compute lengths of shortest paths,
not construct the paths.

Dynamic Programming 14

Dynamic programming approach, four steps:

1. Structure of a shortest path: Subpaths of shortest paths are
shortest paths.

Lemma. Let p = (v1, v2, . . . , vk) be a shortest path from v1 to vk, let
pij = (vi, vi+1, . . . , vj) for 1 ≤ i ≤ j ≤ k be subpath from vi to vj. Then,
pij is shortest path from vi to vj.

Proof. Decompose p into

v1
p1i
; vi

pij
; vj

pjk
; vk.

Then, w(p) = w(p1i) + w(pij) + w(pjk). Assume there is cheaper p′ij
from vi to vj with w(p′ij) < w(pij). Then

v1
p1i
; vi

p′ij
; vj

pjk
; vk

is path from v1 to vk whose weight w(p1i)+w(p′ij)+w(pjk) is less than
w(p), a contradiction.

Dynamic Programming 15

2. Recursive solution and 3. Compute opt. value (bottom-up)

Let d(m)
ij = weight of shortest path from i to j that uses at most m

edges.

d
(0)
ij =

{
0 if i = j
∞ if i 6= j

d
(m)
ij = min

k

{
d

(m−1)
ik + wkj

}

i j

k’sat most m−1 edges

at most m−1 edges

We’re looking for δ(i, j) = d
(n−1)
ij = d

(n)
ij = d

(n+1)
ij = · · ·

Dynamic Programming 16

Alg. is straightforward, running time is O(n4) (n − 1 passes, each
computing n2 d’s in Θ(n) time)

Unfortunately, no better than before. . .

Approach is similar to matrix multiplication:

C = A ·B, n× n matrices, cij =
∑
k aik · bkj, O(n3) operations

Replacing “+” with “min” and “ ·” with “+” gives

cij = min
k
{aik + bkj},

very similar to

d
(m)
ij = min

k
{d(m−1)
ik + wkj}

Hence D(m) = D(m−1) “×” W.

Dynamic Programming 17

Floyd-Warshall algorithm

Also DP, but faster (factor logn)

Define c(m)
ij = weight of a shortest path from i to j with intermediate

vertices in {1,2, . . . ,m}.

Then δ(i, j) = c
(n)
ij

Dynamic Programming 18

Compute c(n)
ij in terms of smaller ones, c(<n)

ij :

c
(0)
ij = wij

c
(m)
ij = min

(
c
(m−1)
ij , c

(m−1)
im + c

(m−1)
mj

)

i j

intermediate vertices in {1,...,m−1}

m
c c

c

(m−1) (m−1)

(m−1)

im mj

ij

Dynamic Programming 19

Difference from previous algorithm: needn’t check all possible in-
termediate vertices. Shortest path simply either includes m or doesn’t.

Pseudocode:

for m← 1 to n do
for i← 1 to n do
for j ← 1 to n do
if cij > cim + cmj then
cij ← cim + cmj

end if
end for

end for
end for

Superscripts dropped, start loop with cij = c
(m−1)
ij , end with cij = c

(m)
ij

Time: Θ(n3), simple code

Dynamic Programming 20

Best algorithm to date is O(V 2 logV + V E)

Note: for dense graphs (|E| ≈ |V |2) can get APSP (with Floyd-
Warshall) for same cost as getting SSSP (with Bellman-Ford)! (Θ(V E) =

Θ(n3))

Dynamic Programming 21

