Matrix-Chain Multiplication

Given: "chain" of matrices $(A_1, A_2, ..., A_n)$, with A_i having dimension $(p_{i-1} \times p_i)$.

Goal: compute product $A_1 \cdot A_2 \cdots A_n$ as quickly as possible

Multiplication of $(p \times q)$ and $(q \times r)$ matrices takes pqr steps

Hence, time to multiply two matrices depends on dimensions!

Example:: n = 4. Possible orders:

 $(A_{1}(A_{2}(A_{3}A_{4})))$ $(A_{1}((A_{2}A_{3})A_{4}))$ $((A_{1}A_{2})(A_{3}A_{4}))$ $((A_{1}(A_{2}A_{3}))A_{4})$ $(((A_{1}A_{2})A_{3})A_{4})$

Suppose A_1 is 10×100 , A_2 is 100×5 , A_3 is 5×50 , and A_4 is 50×10

Order 2:

```
100 \cdot 5 \cdot 50 + 100 \cdot 50 \cdot 10 + 10 \cdot 100 \cdot 10 = 85,000
```

Order 5:

```
10 \cdot 100 \cdot 5 + 10 \cdot 5 \cdot 50 + 10 \cdot 50 \cdot 10 = 12,500
```

But: the number of possible orders is exponential!

We want to find **Dynamic programming** approach to **optimally** solve this problem

The four basic steps when designing DP algorithm:

- 1. Characterize structure of optimal solution
- 2. Recursively **define value** of an optimal solution
- 3. Compute value of optimal solution in bottom-up fashion
- 4. Construct optimal solution from computed information

1. Characterizing structure

Let $A_{i,j} = A_i \cdots A_j$ for $i \leq j$.

If i < j, then any solution of $A_{i,j}$ must split product at some k, $i \le k < j$, i.e., compute $A_{i,k}$, $A_{k+1,j}$, and then $A_{i,k} \cdot A_{k+1,j}$.

Hence, for some k, cost is

- cost of computing $A_{i,k}$ plus
- cost of computing $A_{k+1,j}$ plus
- cost of multiplying $A_{i,k}$ and $A_{k+1,j}$.

Optimal (sub)structure:

- Suppose that optimal parenthesization of ${\cal A}_{i,j}$ splits between ${\cal A}_k$ and ${\cal A}_{k+1}.$
- Then, parenthesizations of $A_{i,k}$ and $A_{k+1,j}$ must be optimal, too (otherwise, enhance overall solution subproblems are independent!).

• Construct optimal solution:

- 1. split into subproblems (using optimal split!),
- 2. parenthesize them optimally,
- 3. combine optimal subproblem solutions.

2. Recursively def. value of opt. solution

Let m[i, j] denote **minimum number of scalar multiplications** needed to compute $A_{i,j} = A_i \cdot A_{i+1} \cdots A_j$ (full problem: m[1, n]).

Recursive definition of m[i, j]:

• if i = j, then

$$m[i,j] = m[i,i] = 0$$

 $(A_{i,i} = A_i, \text{ no mult. needed}).$

• if i < j, assume optimal split at k, $i \leq k < j$. $A_{i,k}$ is $p_{i-1} \times p_k$ and $A_{k+1,j}$ is $p_k \times p_j$, hence

$$m[i,j] = m[i,k] + m[k+1,j] + p_{i-1} \cdot p_k \cdot p_j.$$

• We do not know optimal value of k, hence

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] & \text{if } i < j \\ +p_{i-1} \cdot p_k \cdot p_j \} \end{cases}$$

We also keep track of optimal splits:

$$s[i,j] = k \Leftrightarrow m[i,j] = m[i,k] + m[k+1,j] + p_{i-1} \cdot p_k \cdot p_j$$

3. Computing optimal cost

Want to compute m[1, n], minimum cost for multiplying $A_1 \cdot A_2 \cdots A_n$.

Recursively, according to equation on last slide, would take $\Omega(2^n)$ (subproblems are computed over and over again).

However, if we compute in bottom-up fashion, we can reduce running time to poly(n).

Equation shows that m[i, j] depends only on smaller subproblems: for $k = 1, \ldots, j - 1$,

- $A_{i,k}$ is product of k i + 1 < j i + 1 matrices,
- $A_{k+1,j}$ is product of j k < j i + 1 matrices.

Algorithm should fill table m using increasing lengths of chains.

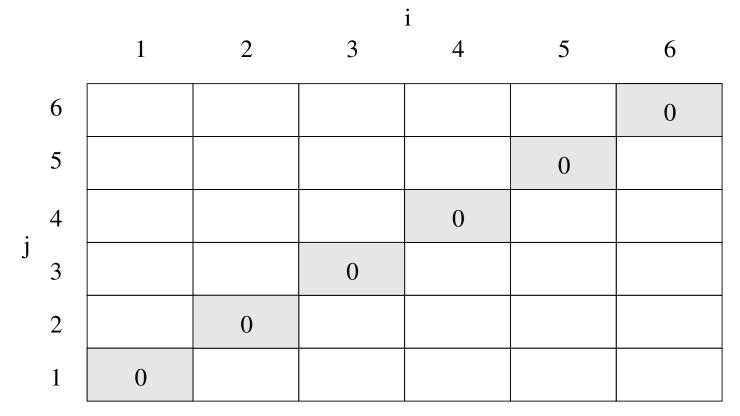
The Algorithm

1:	$n \leftarrow length[p] - 1$
2:	for $i \leftarrow 1$ to n do
3:	$m[i,i] \leftarrow O$
4:	end for
5:	for $\ell \leftarrow 2$ to n do
6:	for $i \leftarrow 1$ to $n - \ell + 1$ do
7:	$j \leftarrow i + \ell - 1$
8:	$m[i,j] \leftarrow \infty$
9:	for $k \leftarrow i$ to $j-1$ do
10:	$q \leftarrow m[i,k] + m[k+1,j] + p_{i-1} \cdot p_k \cdot p_j$
11:	if $q < m[i, j]$ then
12:	$m[i,j] \leftarrow q$
13:	$s[i,j] \leftarrow k$
14:	end if
15:	end for
16:	end for
17:	end for

Example

 A_1 (30 × 35), A_2 (35 × 15), A_3 (15 × 5), A_4 (5 × 10), A_5 (10 × 20), A_6 (20 × 25)

Recall: multiplying A ($p \times q$) and B ($q \times r$) takes $p \cdot q \cdot r$ scalar multiplications.



Example

 A_1 (30 × 35), A_2 (35 × 15), A_3 (15 × 5), A_4 (5 × 10), A_5 (10 × 20), A_6 (20 × 25)

Recall: multiplying A $(p \times q)$ and B $(q \times r)$ takes $p \cdot q \cdot r$ scalar multiplications.

		i						
		1	2	3	4	5	6	
j	6	15,125	10,500	5,375	3,500	5,000	0	
	5	11,875	7,125	2,500	1,000	0		
	4	9,375	4,375	750	0			
	3	7,875	2,625	0				
	2	15,750	0					
	1	0						

4. Constructing optimal solution

Simple with array s[i, j], gives us optimal split points.

Complexity

We have three nested loops:

- 1. ℓ , length, O(n) iterations
- 2. *i*, start, O(n) iterations
- 3. k, split point, O(n) iterations

Body of loops: constant complexity.

Total complexity: $O(n^3)$

All-pairs-shortest-paths

- Directed graph G = (V, E), weight function $w : E \to \mathbb{R}, |V| = n$
- Weight of path $p = (v_1, v_2, ..., v_k)$ is $w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1})$
- Assume G contains no negative-weight cycles
- Goal: create $n \times n$ matrix of shortest path distances $\delta(u, v)$, $u, v \in V$
- 1st idea: use single-source-shortest-path alg (i.e., Bellman-Ford); but it's too slow, $O(n^4)$ on dense graph

Adjacency-matrix representation of graph:

• $n \times n$ adjacency matrix $W = (w_{ij})$ of edge weights

• assume

$$w_{ij} = \begin{cases} 0 & \text{if } i = j \\ \text{weight of } (i,j) & \text{if } i \neq j \text{ and } (i,j) \in E \\ \infty & \text{if } i \neq j \text{ and } (i,j) \notin E \end{cases}$$

In the following, we only want to compute lengths of shortest paths, not construct the paths.

Dynamic programming approach, four steps:

1. Structure of a shortest path: Subpaths of shortest paths are shortest paths.

Lemma. Let $p = (v_1, v_2, ..., v_k)$ be a shortest path from v_1 to v_k , let $p_{ij} = (v_i, v_{i+1}, ..., v_j)$ for $1 \le i \le j \le k$ be subpath from v_i to v_j . Then, p_{ij} is shortest path from v_i to v_j .

Proof. Decompose *p* into

$$v_1 \stackrel{p_{1i}}{\leadsto} v_i \stackrel{p_{ij}}{\leadsto} v_j \stackrel{p_{jk}}{\leadsto} v_k.$$

Then, $w(p) = w(p_{1i}) + w(p_{ij}) + w(p_{jk})$. Assume there is cheaper p'_{ij} from v_i to v_j with $w(p'_{ij}) < w(p_{ij})$. Then

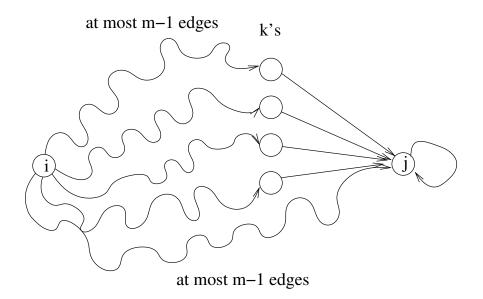
$$v_1 \stackrel{p_{1i}}{\leadsto} v_i \stackrel{p'_{ij}}{\leadsto} v_j \stackrel{p_{jk}}{\leadsto} v_k$$

is path from v_1 to v_k whose weight $w(p_{1i}) + w(p'_{ij}) + w(p_{jk})$ is less than w(p), a contradiction.

2. Recursive solution and 3. Compute opt. value (bottom-up)

Let $d_{ij}^{(m)}$ = weight of shortest path from *i* to *j* that uses at most *m* edges.

$$d_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}$$
$$d_{ij}^{(m)} = \min_{k} \left\{ d_{ik}^{(m-1)} + w_{kj} \right\}$$



We're looking for $\delta(i, j) = d_{ij}^{(n-1)} = d_{ij}^{(n)} = d_{ij}^{(n+1)} = \cdots$

Alg. is straightforward, running time is $O(n^4)$ (n - 1) passes, each computing $n^2 d$'s in $\Theta(n)$ time)

Unfortunately, no better than before...

Approach is similar to **matrix multiplication**:

$$C = A \cdot B$$
, $n \times n$ matrices, $c_{ij} = \sum_k a_{ik} \cdot b_{kj}$, $O(n^3)$ operations

Replacing "+" with "min" and " \cdot " with "+" gives

$$c_{ij} = \min_k \{a_{ik} + b_{kj}\},$$

very similar to

$$d_{ij}^{(m)} = \min_{k} \{ d_{ik}^{(m-1)} + w_{kj} \}$$

Hence $D^{(m)} = D^{(m-1)} " \times " W$.

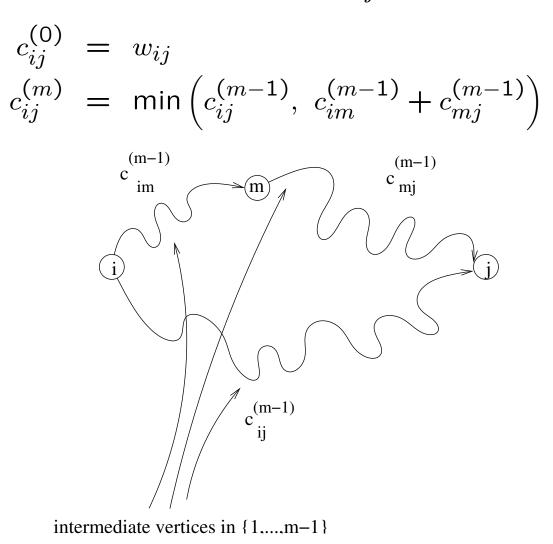
Floyd-Warshall algorithm

Also DP, but faster (factor $\log n$)

Define $c_{ij}^{(m)}$ = weight of a shortest path from *i* to *j* with **intermediate vertices** in $\{1, 2, ..., m\}$.

Then $\delta(i,j) = c_{ij}^{(n)}$

Compute $c_{ij}^{(n)}$ in terms of smaller ones, $c_{ij}^{(<n)}$:



Difference from previous algorithm: needn't check *all* possible intermediate vertices. Shortest path simply either includes *m* or doesn't.

Pseudocode:

```
for m \leftarrow 1 to n do
for i \leftarrow 1 to n do
for j \leftarrow 1 to n do
if c_{ij} > c_{im} + c_{mj} then
c_{ij} \leftarrow c_{im} + c_{mj}
end if
end for
end for
end for
```

Superscripts dropped, start loop with $c_{ij} = c_{ij}^{(m-1)}$, end with $c_{ij} = c_{ij}^{(m)}$

Time: $\Theta(n^3)$, simple code

Best algorithm to date is $O(V^2 \log V + VE)$

Note: for dense graphs ($|E| \approx |V|^2$) can get APSP (with Floyd-Warshall) for same cost as getting SSSP (with Bellman-Ford)! ($\Theta(VE) = \Theta(n^3)$)