Approximation algorithms

Some optimisation problems are “hard”, little chance of finding poly-time algorithm
that computes optimal solution

e largest clique
e smallest vertex cover
e largest independent set

But: We can calculate a sub-optimal solution in poly time.

e pretty large clique
e pretty small vertex cover
e pretty large independent set

Approximation algorithms compute near-optimal solutions.

Known for thousands of years. For instance, approximations of value of ; some
engineers still use 4 these days : -)
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Consider optimisation problem.
Each potential solution has positive cost, we want near-optimal solution.

Depending on problem, optimal solution may be one with

e maximum possible cost (maximisation problem), like maximum clique,

e or one with minimum possible cost (minimisation problem), like minimum
vertex cover.

Algorithm has approximation ratio of p(n), if for any input of size n, the cost C
of its solution is within factor p(n) of cost of optimal solution C*, i.e.
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Maximisation problems:

o O < C <O,

e C*/C gives factor by which optimal solution is better than approximate solu-
tion (note: C*/C' > 1 and C/C* < 1).

Minimisation problems:

e O<(C*<L(C,

e C/C* gives factor by which optimal solution is better than approximate solu-
tion (note C'/C* > 1 and C*/C < 1).

Approximation ratio is never less than one:

C O
— <1 == —>1
C* C
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Approximation Algorithm

An algorithm with guaranteed approximation ration of p(n) is called a p(n)-
approximation algorithm.

A 1-approximation algorithm is optimal, and the larger the ratio, the worse the
solution.

e For many N'P-complete problems, constant-factor approximations exist
(i.e. computed cligue is always at least half the size of maximum-size clique),

e sometimes in best known approx ratio grows with n,

e and sometimes even proven lower bounds on ratio (for every approximation
alg, the ratio is at least this and that, unless P = N'P).
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Approximation Scheme

Sometimes the approximation ratio improves when spending more computation
time.

An approximation scheme for an optimisation problem is an approximation al-
gorithm that takes as input an instance plus a parameter ¢ > 0 s.t. for any fixed
e, the scheme is a (1 + ¢)-approximation (trade-off).
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PTAS and FPTAS

A scheme is a poly-time approximation scheme (PTAS) if for any fixed € > 0O, it
runs in time polynomial in input size.

Runtime can increase dramatically with decreasing e, consider T'(n) = n2/c.

e 2 1 1/2 1/4 1/100
3

n |[T(n) n n? n* n n200

101 10t 102 10%* 108 1029
102 102 10* 108 1016 10490
103 103 10° 1012 1024 10990
10% 10* 10% 1016 1032 10890

We want: if ¢ decreases by constant factor, then running time increases by at
most some other constant factor, i.e., running time is polynomial in n and 1 /e.
Example: T(n) = (2/¢) - n?, T(n) = (1/€)? - n3.

Such a scheme is called a fully polynomial-time approximation scheme (FPAS).
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Example 1: Vertex cover

Problem: given graph G = (V, E), find smallest V! C V s.t. if (u,v) € E, then
u € V' orv € V/ or both.

Decision problem is N'P-complete, optimisation problem is at least as hard.
Trivial 2-approximation algorithm.

APPROX-VERTEX-COVER

1: C 0

2. B/ +— FE

3: while £ = ( do

4:  let (u,v) be an arbitrary edge of £’

5 C + CU{(u,v)}
6 remove from E’ all edges incident on either « or v
7: end while

Claim: after termination, C is a vertex cover of size at most twice the size of an
optimal (smallest) one.
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Step 3: choose edge (a,b) Result, size 6

Optimal result, size 4
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Theorem. APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof. The running time is trivially bounded by O(V E) (at most | E| iterations,
each of complexity at most O(V")). However, O(V + E) can easily be shown.

Correctness: (' clearly is a vertex cover.
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Size of the cover: let A denote set of edges that are picked ({(c, e), (d, g), (a,b)}
in example).

e |n order to cover edges in A, any vertex cover, in particular an optimal cover
C™*, must include at least one endpoint of each edge in A.

e By construction of the algorithm, no two edges in A share an endpoint (once
edge is picked, all edges incident on either endpoint are removed).

e Therefore, no two edges in A are covered by the same vertex in C*, and

[C7] = |Al.

e When an edge is picked, neither endpoint is already in (', thus

IC|=2-|A]|.
Combining (1) and (2) yields

Cl=2-|A] <2 |C7
(g.e.d.)
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Interesting observation: we could prove that size of VC returned by alg is at
most twice the size of optimal cover, without knowing the latter.

How? We lower-bounded size of optimal cover (|C*| > | Al).

One can show that A is in fact a maximal matching in G.

e The size of any maximal matching is always a lower bound on the size of an
optimal vertex cover (each edge has to be covered).

e The alg returns VC whose size is twice the size of the maximal matching A.
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Example 2: The travelling-salesman problem

Problem: given complete, undirected graph G = (V, E) with non-negative inte-
ger cost c(u, v) for each edge, find cheapest hamiltonian cycle of G.

Consider two cases: with and without triangle inequality.

c satisfies triangle inequality, if it is always cheapest to go directly from some u to
some w; going by way of intermediate vertices can’t be less expensive.

Related decision problem is N'P-complete in both cases.

Approximation algorithms 12



TSP with triangle inequality

We use function MST-PRIM(G, ¢, r), which computes an MST for G and weight
function ¢, given some arbitrary root r.

Input: G = (V,E),c: E — R

APPROX-TSP-TOUR

1: Select arbitrary v € V' to be “root”
2: Compute MST T for G and ¢ from root r using
MST-PRIM(G, c, 1)
3: Let L be list of vertices visited in pre-order tree walk of T°
4: Return the hamiltonian cycle that vistis the vertices in the order L
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Theorem. APPROX-TSP-TOUR is a poly-time 2-approximation algorithm for the
TSP problem with triangle inequality.

Proof.

Polynomial running time obvious, simple MST-PRiM takes ©(V2), computing
preorder walk takes no longer.

Correctness obvious, preorder walk is always a tour.
Approximation ratio: Let H* denote an optimal tour for given set of vertices.
Deleting any edge from H* gives a spanning tree.

Thus, weight of minimum spanning tree is lower bound on cost of optimal tour:

o(T) < c(H™)
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A full walk of T lists vertices when they are first visited, and also when they are
returned to, after visiting a subtree.

Ex: a,b,c,b,h,b,a,d,e,fe,g,e,d,a

Full walk W traverses every edge exactly twice (although some vertex perhaps
way more often), thus

c(W) = 2¢(T)

Together with ¢(T") < ¢(H™), this gives c(W) = 2¢(T) < 2¢(H™)
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Problem: W is in general not a proper tour, since vertices may be visited more
than once. ..

But: by our friend, the triangle inequality, we can delete a visit to any vertex
from WW and cost does not increase.

Deleting a vertex v from walk W between visits to © and w means going from
directly to w, without visiting v.

This way, we can consecutively remove all multiple visits to any vertex.

Ex: full walk a,b,c,b,h,b,a,d,e,fe,g,e,d,a becomes a,b,c,h,d,e,f,g.
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This ordering (with multiple visits deleted) is identical to that obtained by preorder
walk of T" (with each vertex visited only once).

It certainly is a Hamiltonian cycle. Let’s call it H.
H is just what is computed by APPROX-TSP-TOUR.
H is obtained by deleting vertices from W, thus

c(H) < (W)

Conclusion:
c(H) < c(W) <2c(H")
(g.e.d.)

Although factor 2 looks nice, there are better algorithms.
There’s a 3/2 approximation algorithm by Christofedes (with triangle inequality).

Arora and Mitchell have shown that there is a PAS if the points are in the Euclidean
plane (meaning the triangle inequality holds).
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The general TSP

Now c does no longer satisfy triangle inequality.

Theorem. If P = NP, then for any constant p > 1, there is no poly-time p-
approximation algorithm for the general TSP.

Proof. By contradiction. Suppose there is a poly-time p-approximation algorithm
A, p > 1 integer. We use A to solve HAMILTON-CYCLE in poly time (this implies
P = NP).

Let G = (V, E) be instance of HAMILTON-CYCLE. Let G’ = (V, E") the com-
plete graph on V.

E' = {(u,v) : u,v €V Au% v}

We assign costs to edges in E':

(u,v) = 1 if (u,v) € E
ALY =Y 5oV 41 otherwise

Creating G’ and c from G certainly possible in poly time.
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Consider TSP instance (G/, c).

If original graph G has a Hamiltonian cycle H, then c assigns cost of one to reach
edge of H, and G’ contains tour of cost |V|.

Otherwise, any tour of G’ must contain some edge not in E, thus have cost at
least

- WVI+D+AVI=-D=p-[V[+ V= (p+1)-|V]
ZE cE

There is a gap of > p - |V| between cost of tour that is Hamiltonian cycle in G
(= |V|) and cost of any other tour.

Apply Ato (G’ c).

By assumption, A returns tour of cost at most p times the cost of optimal tour.
Thus, if G contains Hamiltonian cycle, A must return it.

If G is not Hamiltonian, A returns tour of cost > p - |V]|.

We can use A to decide HAMILTON-CYCLE. (g.e.d.)
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The proof was example of general technique for proving that a problem cannot
be approximated well.

Suppose given N'P-hard problem X, produce minimisation problem Y s.t.

e “yes’ instances of X correspond to instances of Y with value at most some
k,

e “no’ instances of X correspond to instances of Y with value greater than pk

Then there is ho p-approximation algorithm for Y unless P = NP.
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Set-Covering Problem

Input: A finite set X and a family F of subsets over X. Every x € X belongs to
at least one F' € F.

Output: A minimum S C F such that

X=|J F
We say that such S covers X and x € X is covered by S’ C F if there exists a
set S; € S’ that contains .
The problem is a generalisation of the vertex cover problem.

It has many applications (cover a set of skills with workers,...)
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We use a simple greedy algorithm to solve approximate the problem.

The idea is to add in every round a set S to the solution that covers the largest
number of uncovered elements.

APPROX-SET-COVER
1: U<+ X
2: S+ ()
3: while U = () do
4.  Select an S; € F that maximzes |S; N U]|
5 U<+U-—-S5;
6 S+ SUS;
7: end while

The algorithm returns S.
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Theorem. APPROX-SET-COVER is a poly-time log n-approximation algorithm
where n = {max |F|: F € F}.

Proof. The running time is clearly polynomially in | X| and |F|.
Correctness: S clearly is a set cover.

Remains to show: S is a logn approximation

We will use harmonic nhumbers:

1

&.I

d
H(d)= ),
i=1

H(0) =0and H(d) = O(logd).
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Analysis

e Let S; be the ith subset selected by APPROX-SET-COVER
e We assign a one to each set S; selected by the algorithm.

e We will distribute the cost evenly over all elements that are covered for the
first time.

e Let ¢, be the cost assigned to x € X. Then

1
S, = (S1USyU---US; )|

Cx

e Let C be the cost of APPROX-SET-COVER. Then

C = an;.

reX
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Analysis Il

e Since each x € X isin at least one set S’ € S* we have

Z Zcxz ZchZC

S'eS* xeS'’ reX
e Hence,
C < Z Z Cx.
S'eS* xeSs’
Lemma. For any set F' € F we have
S o < H(|F)).

xEF

Using the lemma we get

C< > Y < ) H(@S)<C" -H(max{|F|: F e F}).
S'eS* xeS’ S'eS*
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Lemma. For any set F' € F we have

> e < H(|F)).

xeF

Proof. Considerany set FF € Fand: = 1,2,...C and let

u; = |F—(S1USyU---US;_1)|

u; is the number of elements in F' that are not covered by S, So,...S;.
We also define ug = |F|.
Now let k be the smallest index such that u;, = O.

Then u;_1 > u; and u;_1 — u; elements of F' are covered for the first time by S;
(fori =1,...k).
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We have

1

cz = ) (uj—1—
%;:x Z =17 ) 1S, = (S1US>U -+ US;_1)]

Observe that

[S; — (S1USU---US; 1) > |F—-(S1USU---US; 1) = ;.

(the alg. chooses S; such that the number of newly covered elements is max.).

Hence

Approximation algorithms
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Randomised approximation

A randomised algorithm has an approximation ratio of p(n) if, for any input of
size n, the expected cost C is within a factor of p(n) of cost C* of optimal solu-
tion.

C C*

Mmax <§7 6) < p(n)

So, just like with “standard” algorithm, except the approximation ratio is for the
expected cost.

Consider 3-CNF-SAT, problem of deciding whether or not a given formula in 3SCNF
is satisfiable.

3-CNF-SAT is N'P-complete.

Q: What could be a related optimisation problem?
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A: MAX-3-CNF

Even if some formula is perhaps not satisfiable, we might be interested in satisfy-
ing as many clauses as possible.

Assumption: each clause consists of exactly three distinct literals, and does not
contain both a variable and its negation (so, we can not have xtVZVy or zVzVy).

Randomised algorithm:

Independently, set each variable to 1 with probability 1 /2, and to O with probability
1/2.

Theorem. Given an instance of MAX-3-CNF with n variables x1, x>, ...,z and
m clauses, the described randomised algorithm is a randomised 8 /7-approximation
algorithm.

Proof. Define indicator variables Y7, Y5, ..., Y}, with

1 clause i is satisfied by the alg’s assignment
Y; = -
O otherwise

Approximation algorithms 31



This means Y; = 1 if at least one of the three literals in clause i has been set to
1.

By assumption, settings of all three literals are independent.

A clause is not satisfied iff all three literals are set to 0, thus

o= () -

and therefore
1 3

and

E[Y%]=0'P[Y%=O]—I—1-P[Y;;=1]=P[§fi:1]:g

Approximation algorithms 32



Let Y be number of satisfied clauses, i.e.Y =Y; 4+ --- 4+ Y.

By linearity of expectation,

m
2 Y

=1

-

E[Y]=E _
8

=) E[V]=)
=1 i=1

1=

Q0 |

m is upper bound on number of satisfied clauses, thus approximation ratio is at

most
m

S
-m 4

oI~

(g.e.d.)
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An approximation scheme

An instance of the SUBSET-SUM problem is a pair (S, t) with S = {z1, x>, ..., zn}
a set of positive integers, and ¢ a positive integer.

The decision problem asks whether there is a subset of S that adds up to ¢.
SUBSET-SUM is N'P-complete.

In the optimisation problem we wish to find a subset of S whose sum is as large
as possible but not larger than ¢.

An exponential-time algorithm

Just enumerate all subsets of S and pick the one with largest sum that does not
exceed t.

There are 2™ possible subsets (an item is “in” or “out”), so this takes time O(2").
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Implementation could look as follows.

In iteration ¢, the alg computes sums of all subsets of
{x1,x0,...,%;}

As starting point, it uses all sums of subsets of
{CU]_, L2y 7332'—1}'

Once a particular subset S’ has sum exceeding ¢, no reason to maintain it: no
superset of S’ can possibly be a solution.

lteratively compute L;, list of sums of all subsets of
{x1,x2,...,x;} that do not exceed t¢.

Return the maximum value in L,.

If L is a list of positive integers and x= is another positive integer, then L + x
denotes list derived from L with each element of L increased by x.

Ex: L = (4,3,2,4,6,7), L+ 3= (7,6,5,7,9,10)

We also use this notation forsets: S +z = {s+x: s € S}.
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Let MERGE-LIST(L, L") return sorted list that is merge of sorted L and L’ with
duplicates removed. Running time is O(|L| + |L/]).

EXACT-SUBSET-SUM(S = {z1,xp,...,xn},t)

1: Lo < (0)

2: fori+— 1tondo

3 L; < MERGE-LIST(L;_1,L;— 1+ ;)

4:  remove from L; every element that is greater than ¢
5: end for

6: return the largest element in Ly,

How does it work?
Let P; denote set of all values that can be obtained by selecting a (possibly empty)
subset of {x1, x>, ..., z;} and summing its members.

Ex: S = {1,4,5}, then

P, = {0,1}
P, = {0,1,4,5}
pP; = {0,1,4,5,6,9,10}
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Clearly,
P;=PF;_1U(P_1+ z;)

Can prove by induction on 7 that L; is a sorted list containing every element of P,
with value at most ¢.

Length of L; can be 2¢, thus EXACT-SUBSET-SUM is an exponential time algorithm
in general.

However, in special cases it is poly-time if ¢ is polynomial in | S|, or if all z; are
polynomial in |S]|.
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A fully-polynomial approximation scheme
Recall: running time must be polynomial in both 1 /e and n.

Basic idea: modify exact exponential time algorithm by frimming each list L; after
creation:

If two values are “close”, then we don’t maintain both of them (will give similar
approximations).

Precisely: given “trimming parameter” § with O < § < 1, then from a given list L
we remove as many elements as possible, such that if L’ is the result, for every
element y that is removed, there is an element z still in L’ that “aproximates” y:

L<z§y

1+06 —
Note: “one-sided error”
We say z represents y in L'.

Each removed y is represented by some =z satisfying the condition from above.
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Example:
§=0.1, L =(10,11,12,15,20,21, 22,23, 24, 29)
We can trim L to L' = (10,12, 15, 20, 23, 29)

11 is represented by 10

21,22 are represented by 20

24 is represented by 23

Given list L = (y1,y2,...,ym) With y1 < yp < --- < ym, the following function

trims L in time ©(m).

TRIM(L,6)

1 L= (y1)

2: last= y;

3. fori < 2tom do

4. ify; > last- (1 + 6) then

5 /*vy; >last because L is sorted */
6 append y; onto end of L’

7 last«— y;

8 end if

9: end for

Approximation algorithms
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Now we can construct our approximation scheme. Inputis S = {z1,z>,...,xn},
x; integer, target integer t, and “approximation parameter’ e with 0 < € < 1.

It will return value z whose value is within 1 4 € factor of optimal solution.

APPROX-SUBSET-SUM(S = {x1,z2,...,zn},t,€)
1: Lg < (0)
2: for: + 1tondo
3 L; < MERGE-LIST(L;_1,L;—1 + x;)
4:  L; < TRIM(L;,e/2n)
5 remove from L; every element that is greater than ¢
6: end for
7: return z*, the largest element in L,
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Example
S = {104,102,201,101},t =308,¢e = 0.4
0 =¢€¢/2n =0.4/8 = 0.05

line

1 Lo = (0)

3 |L; = (0,104)

4 | Ly = (0,104)

5 |L; = (0,104)

3 |L, = (0,102,104,206)

4 | L, = (0,102,206)

5 | L, = (0,102,206)

3 |Ls = (0,102,201,206,303,407)
4 | Ly = (0,102,201,303,407)

5 | Ly = (0,102,201,303)

3 |[L, = (0,101,102,201,203,302,303,404)
4 | L, = (0,101,201,302,404)

5 | L, = (0,101,201,302)

Alg returns z* = 302, well within e = 40% of optimal answer 307 = 104 +
102 + 101 (in fact, within 2%),).
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Theorem. APPROX-SUBSET-SUM is fully polynomial approximation scheme for
the subset-sum problem.

Proof. Trimming L; and removing from L; every element that is greater than ¢
maintain property that every element of L; is member of P;. Thus, z* is sum of
some subset of S.

Let y* € P, denote an optimal solution.
Clearly, z* < y* (have removed elements that are too large).
Need to show y*/z* < 1 + e and that running time is polynomial in n and 1 /e.

Can be shown (by induction) that Vy € P; with y < t there is some z € L, with

I <
(14+¢/2n)* —

2 <y
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This also holds for y* € Py, thus there is some z € L,, with

*

Y %
<z <
1+ e/2n)n ==Y
and therefore
Ce(i+g)
<14+ =
z T 2n
z* is largest value in L, thus
Y

*

)

Remains to show that y*/2* < 1 4 e.
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We know (1 4+ a/n)™ < e%, and therefore

(o) = O
((+2)7)
((+5)")

(66)1/2
_ e6/2

IA

This, together with
e/2 <14 ¢/24(e/2)2 <1+

gives

* €

§(1+%)n§1+e

l\z*‘@
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Approximation ratio OK, but what with running time?

We derive bound on |L;|, Running time of APPROX-SUBSET-SUM is polynomial in
lengths of L.

After trimming, successive elements z and 2’ of L; fulfill z’/z > 1 + ¢/2n.

Thus, each list contains 0, possibly 1, and at most
[1091 4 /2, t] additional values. We have

ILi| < (log14e/opt) + 2

Int
In(14¢€/2n) +2

2n(l +¢/2n)Int

VAN

+ 2

€
/*because of x /(1 +x) <In(14+=x) <x
4fn,|nt_|_2

€
/*because of 0 < e <1 %

A

This is polynomial in size of input (logt bits for ¢, plus bits for x1, x>, ..., xn).
Thus, it's polynomial in n and 1 /e.
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Bin Packing

We are given n items with sizes a1, ao, ... an wWith a; € (0, 1].

The goal is to pack the items into m bins with capacity 1 each, and, thereby, to
minimise the number of used bins.

Approximation is clear: find a value that is as close as possible to the optimal
value for m.
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Very easy: 2-approximation

This can be done using the First Fit algorithm:

e consider the items in an arbitrary order

e try to fit item into one of the existing bins, if not possible use a new bin for the
item.

Easy to see that it calculates a two-approximation:

If the algorithm uses m bins then at least m — 1 of them are more than half full.

Therefore
m — 1

a1 +a>—+---+an >

Hence, m — 1 < 2 OPT and m < 2 OPT.
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Theorem: For any ¢ > 0, there is no bin packing algorithm having an approxima-
tion ratio of 3/2 — ¢, unless P = NP.

Proof. Assume we have such an algorithm, than we can solve the SET PARTI-
TIONING problem.

In SET PARTITIONING, we are given n non-negative numbers aq,a,...,an and
we would like to partition them into two sets having sum (a1 +ao>+---+an)/2

This is the same than asking: can | pack the elements in two bins of size (a1 +
a>~+ - +an)/2.

A (3/2 —e)-approximation algorithm has to optput 2 for an instance of BIN BACK-
ING that can be packed into two bins.



An asymptotic PTAS

Theorem: For any 0 < € < 1/2, there is an algorithm A¢ that runs in time
poly(n) and finds a packing using at most (1 4+ 2¢) OPT + 1 bins.

The proof is split in two parts:

e |t is easy to pack small items into bins. Hence, we consider the small items
In the end.

e Only the big items have to be packed well.
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Big ltems

Lemma: Consider an instance I in which all n items have a size of at least e.
Then there is a poly(n) time (1 + €)-approximation.

Proof.
e First we sort the items by increasing size.

e Then we partition the items into K = [1/€e2] groups having at most Q =
|ne?| items. (Note: two groups can have items of the same size!)

e Construct instance J by rounding up the size of each item to the size of the
largest item in the group.

e J has at most K different item sizes. Hence, there is a poly(n) time algorithm
that solves J optimally:

— The number of items per bin is bounded by M = |1/¢].
— The number of possible bin types is R = (MA”;K) (which is constant).

— Hence, the number of possible packings is at most P = (”};R) (which is
polynomial in n). We can enumerate all of them.
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e Note: the packing we get is also valid for the original instance I

e [0 show
OPT(J) < (1+4¢) - -OPT(I).
— Consider instance J’ which is defined like J but we round down instead
of rounding up. Clearly
OPT(J") < OPT(I).

— Instance J’ yields a packing for all items of J (and I) but the Q items of
the largest group of J. Hence

OPT(J) < OPT(J) +Q <OPT(I) + Q.

— The largest group is packed into at most Q = |ne?] bins.
— We also have (min. item size is ¢)

OPT(I) > ne.
— We have Q = |ne?] < e OPT and
OPT(J) < (1 + ¢) - OPT(I)
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Small Items

They can be packed using first fit, the "hole" in every bin is at most e.
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APPROX-BIN-PACKING(I = {aq,ap,...,an})
Remove items of size < ¢

Round to optain constant number of item sizes
Find optimal Packing for the rounded items
Use this packing for original item sizes

Pack items of size < e using First-Fit

g s @ bnp 2
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Back to the Proof of the Theorem.

Let I be the input instance and I’ the set of large items of I. Let M be the number
of bins used by APPROX-BIN-PACKING.

We can find a packing for I’ using at most (1 + ¢) - OPT(I”) many bins.

We pack the small items in First Fit manner into the bins opened for I’ and open
new bins if necessary.

e If no new bins are opened we have a M < (1 +¢)-OPT({I") < (1 +¢) -
OPT(1).

e If new bins are opened for the small items, all but the last bin are full to the
extend of at least 1 — e.

Hence the sum of item sizesin I'isatleast (M —1)-(1—¢) andwithe < 1/2

OPT
<

M < + 1< (1426 0PTW) + 1.

1 —¢
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The Knapsack Problem

Given: A set S = {aj,an,...an} of objects with sizes s1,s5,...s, € ZT and
profits p1, po, . .. pn € Z1 and a knapsack capacity B.

Goal: Find a subset of the objects whose total size is bounded by B and the total
profit is maximised.

First Idea: Use a simple greedy algorithm that sorts the items by decreasing ratio
of profit to size and pick objects in that order.

Homework: That algorithm can be arbitrarily bad!
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Better:

APPROX-KNAPSACK(I = {aj,as,...,an})

1: Use the greedy algorithm to find a set of items S
2: Take the best of S and the item with largest profit

Theorem APPROX-KNAPSACK calculates a 2-approximation.

Proof.

Let k£ be the index of the first item that is not picked by the greedy algorithm.

Thenpy +po+ -+ pr > OPT(I) (recall Problem Sheet 2)

Hence, either p1 + po + - - - + pi._1 Or p;. is at least %
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