
Approximation algorithms

Some optimisation problems are “hard”, little chance of finding poly-time algorithm
that computes optimal solution

• largest clique
• smallest vertex cover
• largest independent set

But: We can calculate a sub-optimal solution in poly time.

• pretty large clique
• pretty small vertex cover
• pretty large independent set

Approximation algorithms compute near-optimal solutions.

Known for thousands of years. For instance, approximations of value of ⇡; some
engineers still use 4 these days :-)

Approximation algorithms 1

Consider optimisation problem.

Each potential solution has positive cost, we want near-optimal solution.

Depending on problem, optimal solution may be one with

• maximum possible cost (maximisation problem), like maximum clique,

• or one with minimum possible cost (minimisation problem), like minimum
vertex cover.

Algorithm has approximation ratio of ⇢(n), if for any input of size n, the cost C
of its solution is within factor ⇢(n) of cost of optimal solution C⇤, i.e.

max

C

C⇤
,
C⇤

C

!

 ⇢(n)

Approximation algorithms 2

Maximisation problems:

• 0 < C  C⇤,

• C⇤/C gives factor by which optimal solution is better than approximate solu-
tion (note: C⇤/C � 1 and C/C⇤  1).

Minimisation problems:

• 0 < C⇤  C,

• C/C⇤ gives factor by which optimal solution is better than approximate solu-
tion (note C/C⇤ � 1 and C⇤/C  1).

Approximation ratio is never less than one:

C

C⇤
< 1)

C⇤

C
> 1

Approximation algorithms 3

Approximation Algorithm

An algorithm with guaranteed approximation ration of ⇢(n) is called a ⇢(n)-
approximation algorithm.

A 1-approximation algorithm is optimal, and the larger the ratio, the worse the
solution.

• For many NP-complete problems, constant-factor approximations exist
(i.e. computed clique is always at least half the size of maximum-size clique),

• sometimes in best known approx ratio grows with n,

• and sometimes even proven lower bounds on ratio (for every approximation

alg, the ratio is at least this and that, unless P = NP).

Approximation algorithms 4

Approximation Scheme

Sometimes the approximation ratio improves when spending more computation
time.

An approximation scheme for an optimisation problem is an approximation al-
gorithm that takes as input an instance plus a parameter ✏ > 0 s.t. for any fixed
✏, the scheme is a (1 + ✏)-approximation (trade-off).

Approximation algorithms 5

PTAS and FPTAS

A scheme is a poly-time approximation scheme (PTAS) if for any fixed ✏ > 0, it
runs in time polynomial in input size.

Runtime can increase dramatically with decreasing ✏, consider T (n) = n2/✏.

✏ 2 1 1/2 1/4 1/100
n T (n) n n2 n4 n8 n200

10

1

10

1

10

2

10

4

10

8

10

200

10

2

10

2

10

4

10

8

10

16

10

400

10

3

10

3

10

6

10

12

10

24

10

600

10

4

10

4

10

8

10

16

10

32

10

800

We want: if ✏ decreases by constant factor, then running time increases by at
most some other constant factor, i.e., running time is polynomial in n and 1/✏.
Example: T (n) = (2/✏) · n2, T (n) = (1/✏)2 · n3.

Such a scheme is called a fully polynomial-time approximation scheme (FPAS).

Approximation algorithms 6

Example 1: Vertex cover

Problem: given graph G = (V,E), find smallest V 0 ✓ V s.t. if (u, v) 2 E, then
u 2 V 0 or v 2 V 0 or both.

Decision problem is NP-complete, optimisation problem is at least as hard.

Trivial 2-approximation algorithm.

APPROX-VERTEX-COVER

1: C ;
2: E0 E
3: while E0 6= ; do
4: let (u, v) be an arbitrary edge of E0

5: C C [{(u, v)}
6: remove from E0 all edges incident on either u or v
7: end while

Claim: after termination, C is a vertex cover of size at most twice the size of an
optimal (smallest) one.

Approximation algorithms 7

Example

Step 3: choose edge (a,b)

Step 2: choose edge (d,g)

Result, size 6

Optimal result, size 4

a

b c d

e f g

Input graph

Step 1: choose edge (c,e)

a

b c d

e f g

a

b c d

e f g

a

b c d

e f g

a

b c d

e f g

a

b c d

e f g

Approximation algorithms 8

Theorem. APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof. The running time is trivially bounded by O(V E) (at most |E| iterations,
each of complexity at most O(V)). However, O(V + E) can easily be shown.

Correctness: C clearly is a vertex cover.

Approximation algorithms 9

Size of the cover: let A denote set of edges that are picked ({(c, e), (d, g), (a, b)}
in example).

• In order to cover edges in A, any vertex cover, in particular an optimal cover
C⇤, must include at least one endpoint of each edge in A.

• By construction of the algorithm, no two edges in A share an endpoint (once
edge is picked, all edges incident on either endpoint are removed).

• Therefore, no two edges in A are covered by the same vertex in C⇤, and

|C⇤| � |A|.

• When an edge is picked, neither endpoint is already in C, thus

|C| = 2 · |A|.
Combining (1) and (2) yields

|C| = 2 · |A|  2 · |C⇤|

(q.e.d.)

Approximation algorithms 10

Interesting observation: we could prove that size of VC returned by alg is at
most twice the size of optimal cover, without knowing the latter.

How? We lower-bounded size of optimal cover (|C⇤| � |A|).

One can show that A is in fact a maximal matching in G.

• The size of any maximal matching is always a lower bound on the size of an
optimal vertex cover (each edge has to be covered).

• The alg returns VC whose size is twice the size of the maximal matching A.

Approximation algorithms 11

Example 2: The travelling-salesman problem

Problem: given complete, undirected graph G = (V,E) with non-negative inte-
ger cost c(u, v) for each edge, find cheapest hamiltonian cycle of G.

Consider two cases: with and without triangle inequality.

c satisfies triangle inequality, if it is always cheapest to go directly from some u to
some w; going by way of intermediate vertices can’t be less expensive.

Related decision problem is NP-complete in both cases.

Approximation algorithms 12

TSP with triangle inequality

We use function MST-PRIM(G, c, r), which computes an MST for G and weight
function c, given some arbitrary root r.

Input: G = (V,E), c : E ! IR

APPROX-TSP-TOUR

1: Select arbitrary v 2 V to be “root”
2: Compute MST T for G and c from root r using

MST-PRIM(G, c, r)

3: Let L be list of vertices visited in pre-order tree walk of T
4: Return the hamiltonian cycle that vistis the vertices in the order L

Approximation algorithms 13

a a

a a

a

Set of points, lie in grid MST, root a

Pre−order walk Resulting tour, cost ca. 19.1

Optimal tour, cost ca. 14.7

a

b

c

d

e

f g

h

a

b

c

d

e

f g

h

a

b

c

d

e

f g

h

a

b

c

d

e

f g

h

a

b

c

d

e

f g

h

Approximation algorithms 14

Theorem. APPROX-TSP-TOUR is a poly-time 2-approximation algorithm for the
TSP problem with triangle inequality.

Proof.

Polynomial running time obvious, simple MST-PRIM takes ⇥(V 2

), computing
preorder walk takes no longer.

Correctness obvious, preorder walk is always a tour.

Approximation ratio: Let H⇤ denote an optimal tour for given set of vertices.

Deleting any edge from H⇤ gives a spanning tree.

Thus, weight of minimum spanning tree is lower bound on cost of optimal tour:

c(T)  c(H⇤)

Approximation algorithms 15

A full walk of T lists vertices when they are first visited, and also when they are
returned to, after visiting a subtree.

Ex: a,b,c,b,h,b,a,d,e,f,e,g,e,d,a

Full walk W traverses every edge exactly twice (although some vertex perhaps
way more often), thus

c(W) = 2c(T)

Together with c(T)  c(H⇤), this gives c(W) = 2c(T)  2c(H⇤)

Approximation algorithms 16

Problem: W is in general not a proper tour, since vertices may be visited more
than once. . .

But: by our friend, the triangle inequality, we can delete a visit to any vertex
from W and cost does not increase.

Deleting a vertex v from walk W between visits to u and w means going from u

directly to w, without visiting v.

This way, we can consecutively remove all multiple visits to any vertex.

Ex: full walk a,b,c,b,h,b,a,d,e,f,e,g,e,d,a becomes a,b,c,h,d,e,f,g.

Approximation algorithms 17

This ordering (with multiple visits deleted) is identical to that obtained by preorder
walk of T (with each vertex visited only once).

It certainly is a Hamiltonian cycle. Let’s call it H.

H is just what is computed by APPROX-TSP-TOUR.

H is obtained by deleting vertices from W , thus

c(H)  c(W)

Conclusion:

c(H)  c(W)  2c(H⇤)

(q.e.d.)

Although factor 2 looks nice, there are better algorithms.

There’s a 3/2 approximation algorithm by Christofedes (with triangle inequality).

Arora and Mitchell have shown that there is a PAS if the points are in the Euclidean
plane (meaning the triangle inequality holds).

Approximation algorithms 18

The general TSP

Now c does no longer satisfy triangle inequality.

Theorem. If P 6= NP , then for any constant ⇢ � 1, there is no poly-time ⇢-
approximation algorithm for the general TSP.

Proof. By contradiction. Suppose there is a poly-time ⇢-approximation algorithm
A, ⇢ � 1 integer. We use A to solve HAMILTON-CYCLE in poly time (this implies
P = NP).

Let G = (V,E) be instance of HAMILTON-CYCLE. Let G0 = (V,E0) the com-
plete graph on V :

E0 = {(u, v) : u, v 2 V ^ u 6= v}

We assign costs to edges in E0:

c(u, v) =

(
1 if (u, v) 2 E
⇢ · |V |+1 otherwise

Creating G0 and c from G certainly possible in poly time.

Approximation algorithms 19

Consider TSP instance hG0, ci.

If original graph G has a Hamiltonian cycle H, then c assigns cost of one to reach
edge of H, and G0 contains tour of cost |V |.

Otherwise, any tour of G0 must contain some edge not in E, thus have cost at
least

(⇢ · |V |+1)| {z }
62E

+(|V |� 1)| {z }
2E

= ⇢ · |V |+ |V | � (⇢+1) · |V |

There is a gap of � ⇢ · |V | between cost of tour that is Hamiltonian cycle in G
(= |V |) and cost of any other tour.

Apply A to hG0, ci.

By assumption, A returns tour of cost at most ⇢ times the cost of optimal tour.
Thus, if G contains Hamiltonian cycle, A must return it.

If G is not Hamiltonian, A returns tour of cost > ⇢ · |V |.

We can use A to decide HAMILTON-CYCLE. (q.e.d.)

Approximation algorithms 20

The proof was example of general technique for proving that a problem cannot
be approximated well.

Suppose given NP-hard problem X, produce minimisation problem Y s.t.

• “yes” instances of X correspond to instances of Y with value at most some
k,

• “no” instances of X correspond to instances of Y with value greater than ⇢k

Then there is no ⇢-approximation algorithm for Y unless P = NP .

Approximation algorithms 21

Set-Covering Problem

Input: A finite set X and a family F of subsets over X. Every x 2 X belongs to
at least one F 2 F .

Output: A minimum S ⇢ F such that

X =

[

F2S
F.

We say that such S covers X and x 2 X is covered by S0 ⇢ F if there exists a
set Si 2 S0 that contains x.

The problem is a generalisation of the vertex cover problem.

It has many applications (cover a set of skills with workers,...)

Approximation algorithms 22

We use a simple greedy algorithm to solve approximate the problem.

The idea is to add in every round a set S to the solution that covers the largest
number of uncovered elements.

APPROX-SET-COVER

1: U X

2: S ;
3: while U 6= ; do
4: Select an Si 2 F that maximzes |Si

T
U |

5: U U � Si

6: S S [Si

7: end while

The algorithm returns S.

Approximation algorithms 23

Theorem. APPROX-SET-COVER is a poly-time logn-approximation algorithm
where n = {max |F | : F 2 F}.

Proof. The running time is clearly polynomially in |X| and |F|.

Correctness: S clearly is a set cover.

Remains to show: S is a logn approximation

We will use harmonic numbers:

H(d) =

dX

i=1

1

d
.

H(0) = 0 and H(d) = O(log d).

Approximation algorithms 24

Analysis

• Let Si be the ith subset selected by APPROX-SET-COVER

• We assign a one to each set Si selected by the algorithm.

• We will distribute the cost evenly over all elements that are covered for the
first time.

• Let cx be the cost assigned to x 2 X. Then

cx =

1

|Si � (S
1

[S
2

[· · · [Si�1)|
.

• Let C be the cost of APPROX-SET-COVER. Then

C =

X

x2X
cx.

Approximation algorithms 25

Analysis II

• Since each x 2 X is in at least one set S0 2 S⇤ we have

X

S02S⇤

X

x2S0
cx �

X

x2X
cx := C

• Hence,

C 
X

S02S⇤

X

x2S0
cx.

Lemma. For any set F 2 F we have
X

x2F
cx  H(|F |).

Using the lemma we get

C 
X

S02S⇤

X

x2S0
cx 

X

S02S⇤
H(S0)  C⇤ ·H(max{|F | : F 2 F}).

Approximation algorithms 26

Lemma. For any set F 2 F we have
X

x2F
cx  H(|F |).

Proof. Consider any set F 2 F and i = 1,2, . . . C and let

ui = |F � (S
1

[S
2

[· · · [Si�1)|.

ui is the number of elements in F that are not covered by S
1

, S
2

, . . . Si.

We also define u
0

= |F |.

Now let k be the smallest index such that uk = 0.

Then ui�1 � ui and ui�1 � ui elements of F are covered for the first time by Si

(for i = 1, . . . k).

Approximation algorithms 27

We have

X

x2F
cx =

kX

i=1

(ui�1 � ui) ·
1

|Si � (S
1

[S
2

[· · · [Si�1)|

Observe that

|Si � (S
1

[S
2

[· · · [Si�1)| � |F � (S
1

[S
2

[· · · [Si�1)| = ui.

(the alg. chooses Si such that the number of newly covered elements is max.).

Hence

X

x2F
cx 

kX

i=1

(ui�1 � ui) ·
1

ui�1

Approximation algorithms 28

X

x2F
cx 

kX

i=1

(ui�1 � ui) ·
1

ui�1

=

kX

i=1

ui�1X

j=ui+1

1

ui�1


kX

i=1

ui�1X

j=ui+1

1

j

=

kX

i=1

0

@
ui�1X

j=1

1

j
�

uiX

j=1

1

j

1

A

=

kX

i=1

�
H(ui�1)�H(ui)

�

= H(u
0

)�H(uk) = H(u
0

)�H(0)

= H(u
0

) = H(|F |))

Approximation algorithms 29

Randomised approximation

A randomised algorithm has an approximation ratio of ⇢(n) if, for any input of
size n, the expected cost C is within a factor of ⇢(n) of cost C⇤ of optimal solu-
tion.

max

C

C⇤
,
C⇤

C

!

 ⇢(n)

So, just like with “standard” algorithm, except the approximation ratio is for the
expected cost.

Consider 3-CNF-SAT, problem of deciding whether or not a given formula in 3CNF
is satisfiable.

3-CNF-SAT is NP-complete.

Q: What could be a related optimisation problem?

Approximation algorithms 30

A: MAX-3-CNF

Even if some formula is perhaps not satisfiable, we might be interested in satisfy-
ing as many clauses as possible.

Assumption: each clause consists of exactly three distinct literals, and does not
contain both a variable and its negation (so, we can not have x_x_y or x_x_y).

Randomised algorithm:

Independently, set each variable to 1 with probability 1/2, and to 0 with probability
1/2.

Theorem. Given an instance of MAX-3-CNF with n variables x
1

, x
2

, . . . , xn and
m clauses, the described randomised algorithm is a randomised 8/7-approximation
algorithm.

Proof. Define indicator variables Y
1

, Y
2

, . . . , Ym with

Yi =

(
1 clause i is satisfied by the alg’s assignment
0 otherwise

Approximation algorithms 31

This means Yi = 1 if at least one of the three literals in clause i has been set to
1.

By assumption, settings of all three literals are independent.

A clause is not satisfied iff all three literals are set to 0, thus

P
[

Yi = 0

]

=

✓
1

2

◆
3

=

1

8

and therefore

P
[

Yi = 1

]

= 1�
✓
1

2

◆
3

=

7

8

and

E
[

Yi] = 0 · P
[

Yi = 0

]

+ 1 · P
[

Yi = 1

]

= P
[

Yi = 1

]

=

7

8

Approximation algorithms 32

Let Y be number of satisfied clauses, i.e. Y = Y
1

+ · · ·+ Ym.

By linearity of expectation,

E
[

Y
]

= E

2

4
mX

i=1

Yi

3

5
=

mX

i=1

E
[

Yi] =
mX

i=1

7

8

=

7

8

·m

m is upper bound on number of satisfied clauses, thus approximation ratio is at
most

m
7

8

·m
=

8

7

(q.e.d.)

Approximation algorithms 33

An approximation scheme

An instance of the SUBSET-SUM problem is a pair hS, tiwith S = {x
1

, x
2

, . . . , xn}
a set of positive integers, and t a positive integer.

The decision problem asks whether there is a subset of S that adds up to t.

SUBSET-SUM is NP-complete.

In the optimisation problem we wish to find a subset of S whose sum is as large
as possible but not larger than t.

An exponential-time algorithm

Just enumerate all subsets of S and pick the one with largest sum that does not
exceed t.

There are 2

n possible subsets (an item is “in” or “out”), so this takes time O(2

n
).

Approximation algorithms 34

Implementation could look as follows.

In iteration i, the alg computes sums of all subsets of
{x

1

, x
2

, . . . , xi}.

As starting point, it uses all sums of subsets of
{x

1

, x
2

, . . . , xi�1}.

Once a particular subset S0 has sum exceeding t, no reason to maintain it: no
superset of S0 can possibly be a solution.

Iteratively compute Li, list of sums of all subsets of
{x

1

, x
2

, . . . , xi} that do not exceed t.

Return the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then L + x
denotes list derived from L with each element of L increased by x.

Ex: L = h4,3,2,4,6,7i, L+3 = h7,6,5,7,9,10i

We also use this notation for sets: S + x = {s+ x : s 2 S}.

Approximation algorithms 35

Let MERGE-LIST(L,L0) return sorted list that is merge of sorted L and L0 with
duplicates removed. Running time is O(|L|+ |L0|).

EXACT-SUBSET-SUM(S = {x
1

, x
2

, . . . , xn}, t)
1: L

0

 h0i
2: for i 1 to n do
3: Li MERGE-LIST(Li�1, Li�1 + xi)
4: remove from Li every element that is greater than t
5: end for
6: return the largest element in Ln

How does it work?
Let Pi denote set of all values that can be obtained by selecting a (possibly empty)
subset of {x

1

, x
2

, . . . , xi} and summing its members.

Ex: S = {1,4,5}, then

P
1

= {0,1}
P
2

= {0,1,4,5}
P
3

= {0,1,4,5,6,9,10}

Approximation algorithms 36

Clearly,

Pi = Pi�1 [(Pi�1 + xi)

Can prove by induction on i that Li is a sorted list containing every element of Pi

with value at most t.

Length of Li can be 2

i, thus EXACT-SUBSET-SUM is an exponential time algorithm
in general.

However, in special cases it is poly-time if t is polynomial in |S|, or if all xi are
polynomial in |S|.

Approximation algorithms 37

A fully-polynomial approximation scheme

Recall: running time must be polynomial in both 1/✏ and n.

Basic idea: modify exact exponential time algorithm by trimming each list Li after
creation:

If two values are “close”, then we don’t maintain both of them (will give similar
approximations).

Precisely: given “trimming parameter” � with 0 < � < 1, then from a given list L
we remove as many elements as possible, such that if L0 is the result, for every
element y that is removed, there is an element z still in L0 that “aproximates” y:

y

1+ �
 z  y

Note: “one-sided error”

We say z represents y in L0.

Each removed y is represented by some z satisfying the condition from above.

Approximation algorithms 38

Example:
� = 0.1, L = h10,11,12,15,20,21,22,23,24,29i
We can trim L to L0 = h10,12,15,20,23,29i
11 is represented by 10

21,22 are represented by 20

24 is represented by 23

Given list L = hy
1

, y
2

, . . . , ymi with y
1

 y
2

 · · ·  ym, the following function
trims L in time ⇥(m).

TRIM(L, �)

1: L0 = hy
1

i
2: last= y

1

3: for i 2 to m do
4: if yi > last · (1 + �) then
5: /* yi �last because L is sorted */

6: append yi onto end of L0

7: last yi
8: end if
9: end for

Approximation algorithms 39

Now we can construct our approximation scheme. Input is S = {x
1

, x
2

, . . . , xn},
xi integer, target integer t, and “approximation parameter” ✏ with 0 < ✏ < 1.

It will return value z whose value is within 1+ ✏ factor of optimal solution.

APPROX-SUBSET-SUM(S = {x
1

, x
2

, . . . , xn}, t, ✏)
1: L

0

 h0i
2: for i 1 to n do
3: Li MERGE-LIST(Li�1, Li�1 + xi)

4: Li TRIM(Li, ✏/2n)

5: remove from Li every element that is greater than t

6: end for
7: return z⇤, the largest element in Ln

Approximation algorithms 40

Example
S = {104,102,201,101}, t = 308, ✏ = 0.4
� = ✏/2n = 0.4/8 = 0.05

line
1 L

0

= h0i
3 L

1

= h0,104i
4 L

1

= h0,104i
5 L

1

= h0,104i
3 L

2

= h0,102,104,206i
4 L

2

= h0,102,206i
5 L

2

= h0,102,206i
3 L

3

= h0,102,201,206,303,407i
4 L

3

= h0,102,201,303,407i
5 L

3

= h0,102,201,303i
3 L

4

= h0,101,102,201,203,302,303,404i
4 L

4

= h0,101,201,302,404i
5 L

4

= h0,101,201,302i

Alg returns z⇤ = 302, well within ✏ = 40% of optimal answer 307 = 104 +

102+ 101 (in fact, within 2%).

Approximation algorithms 41

Theorem. APPROX-SUBSET-SUM is fully polynomial approximation scheme for
the subset-sum problem.

Proof. Trimming Li and removing from Li every element that is greater than t

maintain property that every element of Li is member of Pi. Thus, z⇤ is sum of
some subset of S.

Let y⇤ 2 Pn denote an optimal solution.

Clearly, z⇤  y⇤ (have removed elements that are too large).

Need to show y⇤/z⇤  1+ ✏ and that running time is polynomial in n and 1/✏.

Can be shown (by induction) that 8y 2 Pi with y  t there is some z 2 Ln with
y

(1 + ✏/2n)i
 z  y

Approximation algorithms 42

This also holds for y⇤ 2 Pn, thus there is some z 2 Ln with

y⇤

(1 + ✏/2n)n
 z  y⇤

and therefore
y⇤

z

✓
1+

✏

2n

◆n

z⇤ is largest value in Ln, thus

y⇤

z⇤

✓
1+

✏

2n

◆n

Remains to show that y⇤/z⇤  1+ ✏.

Approximation algorithms 43

We know (1 + a/n)n  ea, and therefore
✓
1+

✏

2n

◆n
=

✓
1+

✏

2n

◆
2n·(1/2)

=

 ✓
1+

✏

2n

◆
2n
!
1/2

=

 ✓
1+

✏

2n

◆
2n
!
1/2

 (e✏)1/2

= e✏/2

This, together with

e✏/2  1+ ✏/2+ (✏/2)2  1+ ✏

gives
y⇤

z⇤

✓
1+

✏

2n

◆n
 1+ ✏

Approximation algorithms 44

Approximation ratio OK, but what with running time?

We derive bound on |Li|, Running time of APPROX-SUBSET-SUM is polynomial in
lengths of Li.

After trimming, successive elements z and z0 of Li fulfill z0/z > 1+ ✏/2n.

Thus, each list contains 0, possibly 1, and at most
blog

1+✏/2n tc additional values. We have

|Li|  (log

1+✏/2n t) + 2

=

ln t

ln(1 + ✏/2n)
+ 2


2n(1 + ✏/2n) ln t

✏
+2

/* because of x/(1 + x)  ln(1 + x)  x */


4n ln t

✏
+2

/* because of 0 < ✏ < 1 */

This is polynomial in size of input (log t bits for t, plus bits for x
1

, x
2

, . . . , xn).
Thus, it’s polynomial in n and 1/✏.

Approximation algorithms 45

Bin Packing

We are given n items with sizes a
1

, a
2

, . . . an with ai 2 (0,1].

The goal is to pack the items into m bins with capacity 1 each, and, thereby, to
minimise the number of used bins.

Approximation is clear: find a value that is as close as possible to the optimal
value for m.

Approximation algorithms 46

Very easy: 2-approximation

This can be done using the First Fit algorithm:

• consider the items in an arbitrary order

• try to fit item into one of the existing bins, if not possible use a new bin for the
item.

Easy to see that it calculates a two-approximation:

If the algorithm uses m bins then at least m � 1 of them are more than half full.
Therefore

a
1

+ a
2

+ · · ·+ an �
m� 1

2

.

Hence, m� 1 < 2 OPT and m  2 OPT.

Approximation algorithms 47

Theorem: For any ✏ > 0, there is no bin packing algorithm having an approxima-
tion ratio of 3/2� ✏, unless P = NP .

Proof. Assume we have such an algorithm, than we can solve the SET PARTI-
TIONING problem.

In SET PARTITIONING, we are given n non-negative numbers a
1

, a
2

, . . . , an and
we would like to partition them into two sets having sum (a

1

+ a
2

+ · · ·+ an)/2

This is the same than asking: can I pack the elements in two bins of size (a
1

+

a
2

+ · · ·+ an)/2 .

A (3/2�✏)-approximation algorithm has to optput 2 for an instance of BIN BACK-
ING that can be packed into two bins.

An asymptotic PTAS

Theorem: For any 0 < ✏  1/2, there is an algorithm A✏ that runs in time
poly(n) and finds a packing using at most (1 + 2✏) OPT +1 bins.

The proof is split in two parts:

• It is easy to pack small items into bins. Hence, we consider the small items
in the end.

• Only the big items have to be packed well.

Approximation algorithms 49

Big Items

Lemma: Consider an instance I in which all n items have a size of at least ✏.
Then there is a poly(n) time (1 + ✏)-approximation.

Proof.
• First we sort the items by increasing size.

• Then we partition the items into K = d1/✏2e groups having at most Q =

bn✏2c items. (Note: two groups can have items of the same size!)

• Construct instance J by rounding up the size of each item to the size of the
largest item in the group.

• J has at most K different item sizes. Hence, there is a poly(n) time algorithm
that solves J optimally:

– The number of items per bin is bounded by M = b1/✏c.
– The number of possible bin types is R =

⇣
M+K
M

⌘
(which is constant).

– Hence, the number of possible packings is at most P =

⇣
n+R
R

⌘
(which is

polynomial in n). We can enumerate all of them.

Approximation algorithms 50

• Note: the packing we get is also valid for the original instance I

• To show

OPT(J)  (1 + ✏) · OPT(I).

– Consider instance J 0 which is defined like J but we round down instead
of rounding up. Clearly

OPT(J 0)  OPT(I).

– Instance J 0 yields a packing for all items of J (and I) but the Q items of
the largest group of J . Hence

OPT(J)  OPT(J 0) +Q  OPT(I) +Q.

– The largest group is packed into at most Q = bn✏2c bins.

– We also have (min. item size is ✏)

OPT(I) � n✏.

– We have Q = bn✏2c  ✏ OPT and

OPT(J)  (1 + ✏) · OPT(I)

Approximation algorithms 51

Small Items

They can be packed using first fit, the "hole" in every bin is at most ✏.

Approximation algorithms 52

APPROX-BIN-PACKING(I = {a
1

, a
2

, . . . , an})
1: Remove items of size < ✏

2: Round to optain constant number of item sizes
3: Find optimal Packing for the rounded items
4: Use this packing for original item sizes
5: Pack items of size < ✏ using First-Fit

Approximation algorithms 53

Back to the Proof of the Theorem.

Let I be the input instance and I 0 the set of large items of I. Let M be the number
of bins used by APPROX-BIN-PACKING.

We can find a packing for I 0 using at most (1 + ✏) · OPT(I 0) many bins.

We pack the small items in First Fit manner into the bins opened for I 0 and open
new bins if necessary.

• If no new bins are opened we have a M  (1 + ✏) · OPT(I 0)  (1 + ✏) ·
OPT(I).

• If new bins are opened for the small items, all but the last bin are full to the
extend of at least 1� ✏.

Hence the sum of item sizes in I is at least (M�1)·(1�✏) and with ✏  1/2

M 
OPT

1� ✏
+1  (1 + 2✏) · OPT(I) + 1.

Approximation algorithms 54

The Knapsack Problem

Given: A set S = {a
1

, a
2

, . . . an} of objects with sizes s
1

, s
2

, . . . sn 2 Z+ and
profits p

1

, p
2

, . . . pn 2 Z+ and a knapsack capacity B.

Goal: Find a subset of the objects whose total size is bounded by B and the total
profit is maximised.

First Idea: Use a simple greedy algorithm that sorts the items by decreasing ratio
of profit to size and pick objects in that order.

Homework: That algorithm can be arbitrarily bad!

Approximation algorithms 55

Better:

APPROX-KNAPSACK(I = {a
1

, a
2

, . . . , an})
1: Use the greedy algorithm to find a set of items S

2: Take the best of S and the item with largest profit

Theorem APPROX-KNAPSACK calculates a 2-approximation.

Proof.

Let k be the index of the first item that is not picked by the greedy algorithm.

Then p
1

+ p
2

+ · · ·+ pk � OPT (I) (recall Problem Sheet 2)

Hence, either p
1

+ p
2

+ · · ·+ pk�1 or pk is at least OPT
2

.

Approximation algorithms 56

