Approximation algorithms

Some optimisation problems are “hard”, little chance of finding poly-time algorithm
that computes optimal solution

e largest clique
e smallest vertex cover
e largest independent set

But: We can calculate a sub-optimal solution in poly time.

e pretty large clique
e pretty small vertex cover
e pretty large independent set

Approximation algorithms compute near-optimal solutions.

Known for thousands of years. For instance, approximations of value of ; some
engineers still use 4 these days : -)

Approximation algorithms 1



Consider optimisation problem.
Each potential solution has positive cost, we want near-optimal solution.

Depending on problem, optimal solution may be one with

e maximum possible cost (maximisation problem), like maximum clique,

e or one with minimum possible cost (minimisation problem), like minimum
vertex cover.

Algorithm has approximation ratio of p(n), if for any input of size n, the cost C
of its solution is within factor p(n) of cost of optimal solution C*, i.e.

Approximation algorithms 2



Maximisation problems:

o O < C <O,

e C*/C gives factor by which optimal solution is better than approximate solu-
tion (note: C*/C' > 1 and C/C* < 1).

Minimisation problems:

e O<(C*<L(C,

e C/C* gives factor by which optimal solution is better than approximate solu-
tion (note C'/C* > 1 and C*/C < 1).

Approximation ratio is never less than one:

C O
— <1 == —>1
C* C

Approximation algorithms 3



Approximation Algorithm

An algorithm with guaranteed approximation ration of p(n) is called a p(n)-
approximation algorithm.

A 1-approximation algorithm is optimal, and the larger the ratio, the worse the
solution.

e For many N'P-complete problems, constant-factor approximations exist
(i.e. computed cligue is always at least half the size of maximum-size clique),

e sometimes in best known approx ratio grows with n,

e and sometimes even proven lower bounds on ratio (for every approximation
alg, the ratio is at least this and that, unless P = N'P).

Approximation algorithms 4



Approximation Scheme

Sometimes the approximation ratio improves when spending more computation
time.

An approximation scheme for an optimisation problem is an approximation al-
gorithm that takes as input an instance plus a parameter ¢ > 0 s.t. for any fixed
e, the scheme is a (1 + ¢)-approximation (trade-off).

Approximation algorithms 5



PTAS and FPTAS

A scheme is a poly-time approximation scheme (PTAS) if for any fixed € > 0O, it
runs in time polynomial in input size.

Runtime can increase dramatically with decreasing e, consider T'(n) = n2/c.

e 2 1 1/2 1/4 1/100
3

n |[T(n) n n? n* n n200

101 10t 102 10%* 108 1029
102 102 10* 108 1016 10490
103 103 10° 1012 1024 10990
10% 10* 10% 1016 1032 10890

We want: if ¢ decreases by constant factor, then running time increases by at
most some other constant factor, i.e., running time is polynomial in n and 1 /e.
Example: T(n) = (2/¢) - n?, T(n) = (1/€)? - n3.

Such a scheme is called a fully polynomial-time approximation scheme (FPAS).

Approximation algorithms 6



Example 1: Vertex cover

Problem: given graph G = (V, E), find smallest V! C V s.t. if (u,v) € E, then
u € V' orv € V/ or both.

Decision problem is N'P-complete, optimisation problem is at least as hard.
Trivial 2-approximation algorithm.

APPROX-VERTEX-COVER

1: C 0

2. B/ +— FE

3: while £ = ( do

4:  let (u,v) be an arbitrary edge of £’

5 C + CU{(u,v)}
6 remove from E’ all edges incident on either « or v
7: end while

Claim: after termination, C is a vertex cover of size at most twice the size of an
optimal (smallest) one.

Approximation algorithms 7



Step 3: choose edge (a,b) Result, size 6

Optimal result, size 4

Approximation algorithms



Theorem. APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof. The running time is trivially bounded by O(V E) (at most | E| iterations,
each of complexity at most O(V")). However, O(V + E) can easily be shown.

Correctness: (' clearly is a vertex cover.

Approximation algorithms 9



Size of the cover: let A denote set of edges that are picked ({(c, e), (d, g), (a,b)}
in example).

e |n order to cover edges in A, any vertex cover, in particular an optimal cover
C™*, must include at least one endpoint of each edge in A.

e By construction of the algorithm, no two edges in A share an endpoint (once
edge is picked, all edges incident on either endpoint are removed).

e Therefore, no two edges in A are covered by the same vertex in C*, and

[C7] = |Al.

e When an edge is picked, neither endpoint is already in (', thus

IC|=2-|A]|.
Combining (1) and (2) yields

Cl=2-|A] <2 |C7
(g.e.d.)

Approximation algorithms 10



Interesting observation: we could prove that size of VC returned by alg is at
most twice the size of optimal cover, without knowing the latter.

How? We lower-bounded size of optimal cover (|C*| > | Al).

One can show that A is in fact a maximal matching in G.

e The size of any maximal matching is always a lower bound on the size of an
optimal vertex cover (each edge has to be covered).

e The alg returns VC whose size is twice the size of the maximal matching A.

Approximation algorithms 11



Example 2: The travelling-salesman problem

Problem: given complete, undirected graph G = (V, E) with non-negative inte-
ger cost c(u, v) for each edge, find cheapest hamiltonian cycle of G.

Consider two cases: with and without triangle inequality.

c satisfies triangle inequality, if it is always cheapest to go directly from some u to
some w; going by way of intermediate vertices can’t be less expensive.

Related decision problem is N'P-complete in both cases.

Approximation algorithms 12



TSP with triangle inequality

We use function MST-PRIM(G, ¢, r), which computes an MST for G and weight
function ¢, given some arbitrary root r.

Input: G = (V,E),c: E — R

APPROX-TSP-TOUR

1: Select arbitrary v € V' to be “root”
2: Compute MST T for G and ¢ from root r using
MST-PRIM(G, c, 1)
3: Let L be list of vertices visited in pre-order tree walk of T°
4: Return the hamiltonian cycle that vistis the vertices in the order L

Approximation algorithms 13



(o)

)
=)

N

J

-
N

st ca. 19.1

!

N

b

N

-

s

N

Resulting tour, co

R

O

{C

(e )
N

4/
)
),

N
o -

)

H/

Set of points, lie in grid

(n)

2/
N
\b/

(R

Pre—order walk

-~

Y

=

b)
<

©

(

14

st ca. 14.7

Optimal tour, co

Approximation algorithms



Theorem. APPROX-TSP-TOUR is a poly-time 2-approximation algorithm for the
TSP problem with triangle inequality.

Proof.

Polynomial running time obvious, simple MST-PRiM takes ©(V2), computing
preorder walk takes no longer.

Correctness obvious, preorder walk is always a tour.
Approximation ratio: Let H* denote an optimal tour for given set of vertices.
Deleting any edge from H* gives a spanning tree.

Thus, weight of minimum spanning tree is lower bound on cost of optimal tour:

o(T) < c(H™)

Approximation algorithms 15



A full walk of T lists vertices when they are first visited, and also when they are
returned to, after visiting a subtree.

Ex: a,b,c,b,h,b,a,d,e,fe,g,e,d,a

Full walk W traverses every edge exactly twice (although some vertex perhaps
way more often), thus

c(W) = 2¢(T)

Together with ¢(T") < ¢(H™), this gives c(W) = 2¢(T) < 2¢(H™)

Approximation algorithms 16



Problem: W is in general not a proper tour, since vertices may be visited more
than once. ..

But: by our friend, the triangle inequality, we can delete a visit to any vertex
from WW and cost does not increase.

Deleting a vertex v from walk W between visits to © and w means going from
directly to w, without visiting v.

This way, we can consecutively remove all multiple visits to any vertex.

Ex: full walk a,b,c,b,h,b,a,d,e,fe,g,e,d,a becomes a,b,c,h,d,e,f,g.

Approximation algorithms 17



This ordering (with multiple visits deleted) is identical to that obtained by preorder
walk of T" (with each vertex visited only once).

It certainly is a Hamiltonian cycle. Let’s call it H.
H is just what is computed by APPROX-TSP-TOUR.
H is obtained by deleting vertices from W, thus

c(H) < (W)

Conclusion:
c(H) < c(W) <2c(H")
(g.e.d.)

Although factor 2 looks nice, there are better algorithms.
There’s a 3/2 approximation algorithm by Christofedes (with triangle inequality).

Arora and Mitchell have shown that there is a PAS if the points are in the Euclidean
plane (meaning the triangle inequality holds).

Approximation algorithms 18



The general TSP

Now c does no longer satisfy triangle inequality.

Theorem. If P = NP, then for any constant p > 1, there is no poly-time p-
approximation algorithm for the general TSP.

Proof. By contradiction. Suppose there is a poly-time p-approximation algorithm
A, p > 1 integer. We use A to solve HAMILTON-CYCLE in poly time (this implies
P = NP).

Let G = (V, E) be instance of HAMILTON-CYCLE. Let G’ = (V, E") the com-
plete graph on V.

E' = {(u,v) : u,v €V Au% v}

We assign costs to edges in E':

(u,v) = 1 if (u,v) € E
ALY =Y 5oV 41 otherwise

Creating G’ and c from G certainly possible in poly time.

Approximation algorithms 19



Consider TSP instance (G/, c).

If original graph G has a Hamiltonian cycle H, then c assigns cost of one to reach
edge of H, and G’ contains tour of cost |V|.

Otherwise, any tour of G’ must contain some edge not in E, thus have cost at
least

- WVI+D+AVI=-D=p-[V[+ V= (p+1)-|V]
ZE cE

There is a gap of > p - |V| between cost of tour that is Hamiltonian cycle in G
(= |V|) and cost of any other tour.

Apply Ato (G’ c).

By assumption, A returns tour of cost at most p times the cost of optimal tour.
Thus, if G contains Hamiltonian cycle, A must return it.

If G is not Hamiltonian, A returns tour of cost > p - |V]|.

We can use A to decide HAMILTON-CYCLE. (g.e.d.)

Approximation algorithms 20



The proof was example of general technique for proving that a problem cannot
be approximated well.

Suppose given N'P-hard problem X, produce minimisation problem Y s.t.

e “yes’ instances of X correspond to instances of Y with value at most some
k,

e “no’ instances of X correspond to instances of Y with value greater than pk

Then there is ho p-approximation algorithm for Y unless P = NP.

Approximation algorithms 21



Set-Covering Problem

Input: A finite set X and a family F of subsets over X. Every x € X belongs to
at least one F' € F.

Output: A minimum S C F such that

X=|J F
We say that such S covers X and x € X is covered by S’ C F if there exists a
set S; € S’ that contains .
The problem is a generalisation of the vertex cover problem.

It has many applications (cover a set of skills with workers,...)

Approximation algorithms 22



We use a simple greedy algorithm to solve approximate the problem.

The idea is to add in every round a set S to the solution that covers the largest
number of uncovered elements.

APPROX-SET-COVER
1: U<+ X
2: S+ ()
3: while U = () do
4.  Select an S; € F that maximzes |S; N U]|
5 U<+U-—-S5;
6 S+ SUS;
7: end while

The algorithm returns S.

Approximation algorithms 23



Theorem. APPROX-SET-COVER is a poly-time log n-approximation algorithm
where n = {max |F|: F € F}.

Proof. The running time is clearly polynomially in | X| and |F|.
Correctness: S clearly is a set cover.

Remains to show: S is a logn approximation

We will use harmonic nhumbers:

1

&.I

d
H(d)= ),
i=1

H(0) =0and H(d) = O(logd).

Approximation algorithms 24



Analysis

e Let S; be the ith subset selected by APPROX-SET-COVER
e We assign a one to each set S; selected by the algorithm.

e We will distribute the cost evenly over all elements that are covered for the
first time.

e Let ¢, be the cost assigned to x € X. Then

1
S, = (S1USyU---US; )|

Cx

e Let C be the cost of APPROX-SET-COVER. Then

C = an;.

reX

Approximation algorithms 25



Analysis Il

e Since each x € X isin at least one set S’ € S* we have

Z Zcxz ZchZC

S'eS* xeS'’ reX
e Hence,
C < Z Z Cx.
S'eS* xeSs’
Lemma. For any set F' € F we have
S o < H(|F)).

xEF

Using the lemma we get

C< > Y < ) H(@S)<C" -H(max{|F|: F e F}).
S'eS* xeS’ S'eS*

Approximation algorithms 26



Lemma. For any set F' € F we have

> e < H(|F)).

xeF

Proof. Considerany set FF € Fand: = 1,2,...C and let

u; = |F—(S1USyU---US;_1)|

u; is the number of elements in F' that are not covered by S, So,...S;.
We also define ug = |F|.
Now let k be the smallest index such that u;, = O.

Then u;_1 > u; and u;_1 — u; elements of F' are covered for the first time by S;
(fori =1,...k).

Approximation algorithms 27



We have

1

cz = ) (uj—1—
%;:x Z =17 ) 1S, = (S1US>U -+ US;_1)]

Observe that

[S; — (S1USU---US; 1) > |F—-(S1USU---US; 1) = ;.

(the alg. chooses S; such that the number of newly covered elements is max.).

Hence

Approximation algorithms

28



e F

VAN

IA

k 1
Z (wi—1 — u;)

i=1 i—1
k Us—1 1
DD

i=1 j=u;+1 -1

k Us—1 1

>, > -
i=1j=u;+1J

]
|
|

§

L
e

£

)=

S0 L)

> (H(ui—1) — H(uy))
i=1
H(ug) — H(ug) = H(ug) — H(0)

H(ug) = H(|F]))

.
=

=
S
.

[

=

. |

~ |l

Approximation algorithms

29



