Approximation algorithms

Some optimisation problems are "hard", little chance of finding poly-time algorithm that computes **optimal** solution

- largest clique
- smallest vertex cover
- largest independent set

But: We can calculate a sub-optimal solution in poly time.

- pretty large clique
- pretty small vertex cover
- pretty large independent set

Approximation algorithms compute near-optimal solutions.

Known for thousands of years. For instance, approximations of value of π ; some engineers still use 4 these days :-)

Consider optimisation problem.

Each potential solution has **positive cost**, we want **near-optimal** solution.

Depending on problem, optimal solution may be one with

- maximum possible cost (maximisation problem), like maximum clique,
- or one with **minimum possible cost** (minimisation problem), like minimum vertex cover.

Algorithm has **approximation ratio** of $\rho(n)$, if for any input of size *n*, the cost *C* of its solution is **within factor** $\rho(n)$ of cost of optimal solution C^* , i.e.

$$\max\left(\frac{C}{C^*}, \frac{C^*}{C}\right) \le \rho(n)$$

Maximisation problems:

- $0 < C \leq C^*$,
- C*/C gives factor by which optimal solution is better than approximate solution (note: C*/C ≥ 1 and C/C* ≤ 1).

Minimisation problems:

- $0 < C^* \leq C$,
- C/C^* gives factor by which optimal solution is better than approximate solution (note $C/C^* \ge 1$ and $C^*/C \le 1$).

Approximation ratio is **never** less than one:

$$\frac{C}{C^*} < 1 \implies \frac{C^*}{C} > 1$$

Approximation Algorithm

An algorithm with guaranteed approximation ration of $\rho(n)$ is called a $\rho(n)$ -approximation algorithm.

A 1-approximation algorithm is optimal, and the larger the ratio, the worse the solution.

- For many \mathcal{NP} -complete problems, **constant-factor approximations exist** (i.e. computed clique is always at least half the size of maximum-size clique),
- sometimes in best known approx ratio grows with n,
- and sometimes even proven lower bounds on ratio (for every approximation alg, the ratio is at least this and that, unless $\mathcal{P} = \mathcal{NP}$).

Sometimes the approximation ratio improves when spending more computation time.

An **approximation scheme** for an optimisation problem is an approximation algorithm that takes as input an instance **plus** a parameter $\epsilon > 0$ s.t. for any fixed ϵ , the scheme is a $(1 + \epsilon)$ -approximation (*trade-off*).

PTAS and FPTAS

A scheme is a **poly-time approximation scheme** (PTAS) if for any fixed $\epsilon > 0$, it runs in time polynomial in input size.

Runtime can increase **dramatically** with decreasing ϵ , consider $T(n) = n^{2/\epsilon}$.

n	$\epsilon T(n)$		$\frac{1}{n^2}$	1/2 n ⁴	1/4 n ⁸	$1/100 \\ n^{200}$
10 ¹ 10 ² 10 ³		10 ² 10 ³	10 ⁴ 10 ⁶	10 ⁸ 10 ¹²	10 ²⁴	10 ⁴⁰⁰ 10 ⁶⁰⁰
10^{4}		10^{4}	10 ⁸	10^{16}	10 ³²	10^{800}

We want: if ϵ decreases by constant factor, then running time increases by at **most** some other constant factor, i.e., running time is polynomial in n and $1/\epsilon$. Example: $T(n) = (2/\epsilon) \cdot n^2$, $T(n) = (1/\epsilon)^2 \cdot n^3$.

Such a scheme is called a fully polynomial-time approximation scheme (FPAS).

Example 1: Vertex cover

Problem: given graph G = (V, E), find <u>smallest</u> $V' \subseteq V$ s.t. if $(u, v) \in E$, then $u \in V'$ or $v \in V'$ or both.

Decision problem is \mathcal{NP} -complete, optimisation problem is at least as hard.

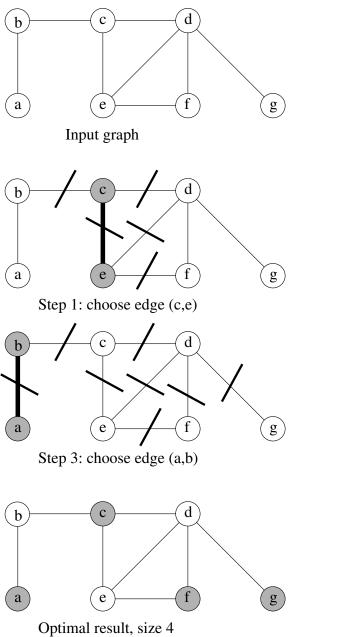
Trivial 2-approximation algorithm.

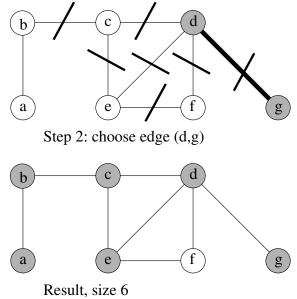
APPROX-VERTEX-COVER

- 1: $C \leftarrow \emptyset$
- 2: $E' \leftarrow E$
- 3: while $E' \neq \emptyset$ do
- 4: let (u, v) be an arbitrary edge of E'
- 5: $C \leftarrow C \cup \{(u, v)\}$
- 6: remove from E' all edges incident on either u or v
- 7: end while

Claim: after termination, C is a vertex cover of size at most twice the size of an optimal (smallest) one.

Example





Approximation algorithms

Theorem. APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof. The **running time** is trivially bounded by O(VE) (at most |E| iterations, each of complexity at most O(V)). However, O(V + E) can easily be shown.

Correctness: *C* clearly **is** a vertex cover.

Size of the cover: let A denote set of edges that are picked ($\{(c, e), (d, g), (a, b)\}$ in example).

- In order to cover edges in A, any vertex cover, in particular an optimal cover
 C*, must include at least one endpoint of each edge in A.
- By construction of the algorithm, no two edges in A share an endpoint (once edge is picked, all edges incident on either endpoint are removed).
- Therefore, no two edges in A are covered by the same vertex in C^* , and

 $|C^*| \ge |A|.$

• When an edge is picked, neither endpoint is already in C, thus

$$|C| = 2 \cdot |A|.$$

Combining (1) and (2) yields

$$|C| = 2 \cdot |A| \le 2 \cdot |C^*|$$

(q.e.d.)

Interesting observation: we could prove that size of VC returned by alg is at most twice the size of optimal cover, **without knowing the latter**.

How? We **lower-bounded** size of optimal cover $(|C^*| \ge |A|)$.

One can show that A is in fact a **maximal matching** in G.

- The size of any maximal matching is always a **lower bound** on the size of an optimal vertex cover (each edge has to be covered).
- The alg returns VC whose size is twice the size of the maximal matching A.

Problem: given complete, undirected graph G = (V, E) with non-negative integer cost c(u, v) for each edge, find cheapest hamiltonian cycle of G.

Consider two cases: with and without triangle inequality.

c satisfies triangle inequality, if it is always cheapest to go directly from some u to some w; going by way of intermediate vertices can't be less expensive.

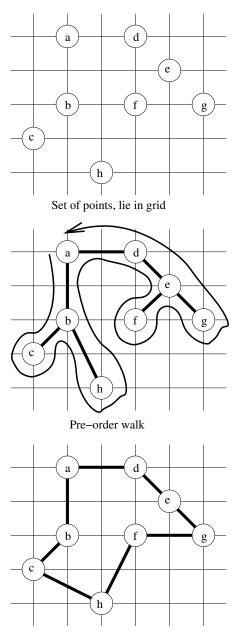
Related decision problem is \mathcal{NP} -complete in both cases.

We use function MST-PRIM(G, c, r), which computes an MST for G and weight function c, given some arbitrary root r.

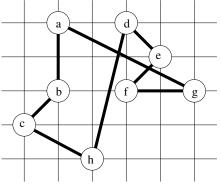
Input: $G = (V, E), c : E \to \mathbf{R}$

APPROX-TSP-TOUR

- 1: Select arbitrary $v \in V$ to be "root"
- 2: Compute MST T for G and c from root r using MST-PRIM(G, c, r)
- 3: Let L be list of vertices visited in pre-order tree walk of ${\cal T}$
- 4: Return the hamiltonian cycle that vistis the vertices in the order *L*



Optimal tour, cost ca. 14.7



Resulting tour, cost ca. 19.1

Theorem. APPROX-TSP-TOUR is a poly-time 2-approximation algorithm for the TSP problem with triangle inequality.

Proof.

Polynomial running time obvious, simple MST-PRIM takes $\Theta(V^2)$, computing preorder walk takes no longer.

Correctness obvious, preorder walk is always a tour.

Approximation ratio: Let H^* denote an optimal tour for given set of vertices.

Deleting any edge from H^* gives a spanning tree.

Thus, weight of **minimum** spanning tree is lower bound on cost of optimal tour:

 $c(T) \le c(H^*)$

A full walk of T lists vertices when they are first visited, and also when they are returned to, after visiting a subtree.

Ex: a,b,c,b,h,b,a,d,e,f,e,g,e,d,a

Full walk W traverses every edge **exactly twice** (although some vertex perhaps way more often), thus

$$c(W) = 2c(T)$$

Together with $c(T) \leq c(H^*)$, this gives $c(W) = 2c(T) \leq 2c(H^*)$

Problem: W is in general **not** a proper tour, since vertices may be visited more than once...

But: by our friend, the **triangle inequality**, we can **delete** a visit to any vertex from W and cost does **not increase**.

Deleting a vertex v from walk W between visits to u and w means going from u **directly** to w, without visiting v.

This way, we can consecutively remove all multiple visits to any vertex.

Ex: full walk a,b,c,b,h,b,a,d,e,f,e,g,e,d,a becomes a,b,c,h,d,e,f,g.

This ordering (with multiple visits deleted) is **identical** to that obtained by preorder walk of T (with each vertex visited only once).

It certainly is a Hamiltonian cycle. Let's call it H.

H is just what is computed by APPROX-TSP-TOUR.

H is obtained by deleting vertices from W, thus

 $c(H) \leq c(W)$

Conclusion:

$$c(H) \le c(W) \le 2c(H^*)$$

(q.e.d.)

Although factor 2 looks nice, there are better algorithms.

There's a 3/2 approximation algorithm by Christofedes (with triangle inequality).

Arora and Mitchell have shown that there is a PAS if the points are in the Euclidean plane (meaning the triangle inequality holds).

The general TSP

Now c does no longer satisfy triangle inequality.

Theorem. If $\mathcal{P} \neq \mathcal{NP}$, then for any constant $\rho \geq 1$, there is no poly-time ρ -approximation algorithm for the general TSP.

Proof. By contradiction. Suppose there is a poly-time ρ -approximation algorithm $A, \rho \geq 1$ integer. We use A to solve HAMILTON-CYCLE in poly time (this implies $\mathcal{P} = \mathcal{NP}$).

Let G = (V, E) be instance of HAMILTON-CYCLE. Let G' = (V, E') the complete graph on V:

$$E' = \{(u, v) : u, v \in V \land u \neq v\}$$

We assign **costs** to edges in E':

$$c(u,v) = \left\{ egin{array}{c} 1 & ext{if } (u,v) \in E \
ho \cdot |V| + 1 & ext{otherwise} \end{array}
ight.$$

Creating G' and c from G certainly possible in poly time.

Consider TSP instance $\langle G', c \rangle$.

If original graph G has a Hamiltonian cycle H, then c assigns cost of one to reach edge of H, and G' contains tour of cost |V|.

Otherwise, any tour of G' **must** contain some edge **not** in E, thus have cost at least

$$\underbrace{(\rho \cdot |V| + 1)}_{\notin E} + \underbrace{(|V| - 1)}_{\in E} = \rho \cdot |V| + |V| \ge (\rho + 1) \cdot |V|$$

There is a **gap** of $\geq \rho \cdot |V|$ between cost of tour that is Hamiltonian cycle in G = |V| and cost of any other tour.

Apply A to $\langle G', c \rangle$.

By assumption, A returns tour of cost at most ρ times the cost of optimal tour. Thus, if G contains Hamiltonian cycle, A **must** return it.

```
If G is not Hamiltonian, A returns tour of cost > \rho \cdot |V|.
```

We can use A to decide HAMILTON-CYCLE.

(q.e.d.)

The proof was example of **general technique** for proving that a problem **cannot** be approximated well.

Suppose given \mathcal{NP} -hard problem X, produce minimisation problem Y s.t.

- "*yes*" instances of X correspond to instances of Y with value at most some k,
- "no" instances of X correspond to instances of Y with value greater than ρk

Then there is **no** ρ -approximation algorithm for Y unless $\mathcal{P} = \mathcal{NP}$.

Set-Covering Problem

Input: A finite set *X* and a family \mathcal{F} of subsets over *X*. Every $x \in X$ belongs to at least one $F \in \mathcal{F}$.

Output: A minimum $S \subset \mathcal{F}$ such that

$$X = \bigcup_{F \in S} F.$$

We say that such S covers X and $x \in X$ is covered by $S' \subset \mathcal{F}$ if there exists a set $S_i \in S'$ that contains x.

The problem is a generalisation of the vertex cover problem.

It has many applications (cover a set of skills with workers,...)

We use a simple greedy algorithm to solve approximate the problem.

The idea is to add in every round a set S to the solution that covers the largest number of uncovered elements.

APPROX-SET-COVER

- 1: $U \leftarrow X$
- $\mathbf{2:} \ S \leftarrow \emptyset$
- 3: while $U \neq \emptyset$ do
- 4: Select an $S_i \in \mathcal{F}$ that maximzes $|S_i \cap U|$
- 5: $U \leftarrow U S_i$
- 6: $S \leftarrow S \cup S_i$
- 7: end while

The algorithm returns S.

Theorem. APPROX-SET-COVER is a poly-time $\log n$ -approximation algorithm where $n = \{\max |F| : F \in \mathcal{F}\}.$

Proof. The running time is clearly polynomially in |X| and $|\mathcal{F}|$.

Correctness: *S* clearly **is** a set cover.

Remains to show: S is a $\log n$ approximation

We will use harmonic numbers:

$$H(d) = \sum_{i=1}^{d} \frac{1}{d}.$$

 $H(0) = 0 \text{ and } H(d) = O(\log d).$

Analysis

- Let S_i be the *i*th subset selected by APPROX-SET-COVER
- We assign a one to each set S_i selected by the algorithm.
- We will distribute the cost evenly over all elements that are covered for the first time.
- Let c_x be the cost assigned to $x \in X$. Then

$$c_x = \frac{1}{|S_i - (S_1 \cup S_2 \cup \cdots \cup S_{i-1})|}.$$

• Let C be the cost of APPROX-SET-COVER. Then

$$C = \sum_{x \in X} c_x.$$

Analysis II

• Since each $x \in X$ is in at least one set $S' \in S^*$ we have

$$\sum_{S' \in S^*} \sum_{x \in S'} c_x \ge \sum_{x \in X} c_x := C$$

$$C \le \sum_{S' \in S^*} \sum_{x \in S'} c_x.$$

Lemma. For any set $F \in \mathcal{F}$ we have

$$\sum_{x \in F} c_x \le H(|F|).$$

Using the lemma we get

$$C \leq \sum_{S' \in S^*} \sum_{x \in S'} c_x \leq \sum_{S' \in S^*} H(S') \leq C^* \cdot H(\max\{|F| : F \in \mathcal{F}\}).$$

Approximation algorithms

Lemma. For any set $F \in \mathcal{F}$ we have

$$\sum_{x \in F} c_x \le H(|F|).$$

Proof. Consider any set $F \in \mathcal{F}$ and i = 1, 2, ..., C and let

$$u_i = |F - (S_1 \cup S_2 \cup \cdots \cup S_{i-1})|.$$

 u_i is the number of elements in F that are not covered by $S_1, S_2, \ldots S_i$.

We also define $u_0 = |F|$.

Now let k be the smallest index such that $u_k = 0$.

Then $u_{i-1} \ge u_i$ and $u_{i-1} - u_i$ elements of F are covered for the first time by S_i (for i = 1, ..., k).

We have

$$\sum_{x \in F} c_x = \sum_{i=1}^k (u_{i-1} - u_i) \cdot \frac{1}{|S_i - (S_1 \cup S_2 \cup \dots \cup S_{i-1})|}$$

Observe that

$$|S_i - (S_1 \cup S_2 \cup \cdots \cup S_{i-1})| \ge |F - (S_1 \cup S_2 \cup \cdots \cup S_{i-1})| = u_i.$$

(the alg. chooses S_i such that the number of newly covered elements is max.).

Hence

$$\sum_{x \in F} c_x \le \sum_{i=1}^k (u_{i-1} - u_i) \cdot \frac{1}{u_{i-1}}$$

$$\sum_{x \in F} c_x \leq \sum_{i=1}^k (u_{i-1} - u_i) \cdot \frac{1}{u_{i-1}}$$

$$= \sum_{i=1}^k \sum_{j=u_i+1}^{u_{i-1}} \frac{1}{u_{i-1}}$$

$$\leq \sum_{i=1}^k \sum_{j=u_i+1}^{u_{i-1}} \frac{1}{j}$$

$$= \sum_{i=1}^k \left(\sum_{j=1}^{u_{i-1}} \frac{1}{j} - \sum_{j=1}^{u_i} \frac{1}{j} \right)$$

$$= \sum_{i=1}^k (H(u_{i-1}) - H(u_i))$$

$$= H(u_0) - H(u_k) = H(u_0) - H(0)$$

$$= H(u_0) = H(|F|)$$