
Approximation algorithms

Some optimisation problems are “hard”, little chance of finding poly-time algorithm
that computes optimal solution

• largest clique
• smallest vertex cover
• largest independent set

But: We can calculate a sub-optimal solution in poly time.

• pretty large clique
• pretty small vertex cover
• pretty large independent set

Approximation algorithms compute near-optimal solutions.

Known for thousands of years. For instance, approximations of value of ⇡; some
engineers still use 4 these days :-)

Approximation algorithms 1

Consider optimisation problem.

Each potential solution has positive cost, we want near-optimal solution.

Depending on problem, optimal solution may be one with

• maximum possible cost (maximisation problem), like maximum clique,

• or one with minimum possible cost (minimisation problem), like minimum
vertex cover.

Algorithm has approximation ratio of ⇢(n), if for any input of size n, the cost C
of its solution is within factor ⇢(n) of cost of optimal solution C⇤, i.e.

max

C

C⇤
,
C⇤

C

!

 ⇢(n)

Approximation algorithms 2

Maximisation problems:

• 0 < C  C⇤,

• C⇤/C gives factor by which optimal solution is better than approximate solu-
tion (note: C⇤/C � 1 and C/C⇤  1).

Minimisation problems:

• 0 < C⇤  C,

• C/C⇤ gives factor by which optimal solution is better than approximate solu-
tion (note C/C⇤ � 1 and C⇤/C  1).

Approximation ratio is never less than one:

C

C⇤
< 1)

C⇤

C
> 1

Approximation algorithms 3

Approximation Algorithm

An algorithm with guaranteed approximation ration of ⇢(n) is called a ⇢(n)-
approximation algorithm.

A 1-approximation algorithm is optimal, and the larger the ratio, the worse the
solution.

• For many NP-complete problems, constant-factor approximations exist
(i.e. computed clique is always at least half the size of maximum-size clique),

• sometimes in best known approx ratio grows with n,

• and sometimes even proven lower bounds on ratio (for every approximation

alg, the ratio is at least this and that, unless P = NP).

Approximation algorithms 4

Approximation Scheme

Sometimes the approximation ratio improves when spending more computation
time.

An approximation scheme for an optimisation problem is an approximation al-
gorithm that takes as input an instance plus a parameter ✏ > 0 s.t. for any fixed
✏, the scheme is a (1 + ✏)-approximation (trade-off).

Approximation algorithms 5

PTAS and FPTAS

A scheme is a poly-time approximation scheme (PTAS) if for any fixed ✏ > 0, it
runs in time polynomial in input size.

Runtime can increase dramatically with decreasing ✏, consider T (n) = n2/✏.

✏ 2 1 1/2 1/4 1/100
n T (n) n n2 n4 n8 n200

10

1

10

1

10

2

10

4

10

8

10

200

10

2

10

2

10

4

10

8

10

16

10

400

10

3

10

3

10

6

10

12

10

24

10

600

10

4

10

4

10

8

10

16

10

32

10

800

We want: if ✏ decreases by constant factor, then running time increases by at
most some other constant factor, i.e., running time is polynomial in n and 1/✏.
Example: T (n) = (2/✏) · n2, T (n) = (1/✏)2 · n3.

Such a scheme is called a fully polynomial-time approximation scheme (FPAS).

Approximation algorithms 6

Example 1: Vertex cover

Problem: given graph G = (V,E), find smallest V 0 ✓ V s.t. if (u, v) 2 E, then
u 2 V 0 or v 2 V 0 or both.

Decision problem is NP-complete, optimisation problem is at least as hard.

Trivial 2-approximation algorithm.

APPROX-VERTEX-COVER

1: C ;
2: E0 E
3: while E0 6= ; do
4: let (u, v) be an arbitrary edge of E0

5: C C [{(u, v)}
6: remove from E0 all edges incident on either u or v
7: end while

Claim: after termination, C is a vertex cover of size at most twice the size of an
optimal (smallest) one.

Approximation algorithms 7

Example

Step 3: choose edge (a,b)

Step 2: choose edge (d,g)

Result, size 6

Optimal result, size 4

a

b c d

e f g

Input graph

Step 1: choose edge (c,e)

a

b c d

e f g

a

b c d

e f g

a

b c d

e f g

a

b c d

e f g

a

b c d

e f g

Approximation algorithms 8

Theorem. APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof. The running time is trivially bounded by O(V E) (at most |E| iterations,
each of complexity at most O(V)). However, O(V + E) can easily be shown.

Correctness: C clearly is a vertex cover.

Approximation algorithms 9

Size of the cover: let A denote set of edges that are picked ({(c, e), (d, g), (a, b)}
in example).

• In order to cover edges in A, any vertex cover, in particular an optimal cover
C⇤, must include at least one endpoint of each edge in A.

• By construction of the algorithm, no two edges in A share an endpoint (once
edge is picked, all edges incident on either endpoint are removed).

• Therefore, no two edges in A are covered by the same vertex in C⇤, and

|C⇤| � |A|.

• When an edge is picked, neither endpoint is already in C, thus

|C| = 2 · |A|.
Combining (1) and (2) yields

|C| = 2 · |A|  2 · |C⇤|

(q.e.d.)

Approximation algorithms 10

Interesting observation: we could prove that size of VC returned by alg is at
most twice the size of optimal cover, without knowing the latter.

How? We lower-bounded size of optimal cover (|C⇤| � |A|).

One can show that A is in fact a maximal matching in G.

• The size of any maximal matching is always a lower bound on the size of an
optimal vertex cover (each edge has to be covered).

• The alg returns VC whose size is twice the size of the maximal matching A.

Approximation algorithms 11

Example 2: The travelling-salesman problem

Problem: given complete, undirected graph G = (V,E) with non-negative inte-
ger cost c(u, v) for each edge, find cheapest hamiltonian cycle of G.

Consider two cases: with and without triangle inequality.

c satisfies triangle inequality, if it is always cheapest to go directly from some u to
some w; going by way of intermediate vertices can’t be less expensive.

Related decision problem is NP-complete in both cases.

Approximation algorithms 12

TSP with triangle inequality

We use function MST-PRIM(G, c, r), which computes an MST for G and weight
function c, given some arbitrary root r.

Input: G = (V,E), c : E ! IR

APPROX-TSP-TOUR

1: Select arbitrary v 2 V to be “root”
2: Compute MST T for G and c from root r using

MST-PRIM(G, c, r)

3: Let L be list of vertices visited in pre-order tree walk of T
4: Return the hamiltonian cycle that vistis the vertices in the order L

Approximation algorithms 13

a a

a a

a

Set of points, lie in grid MST, root a

Pre−order walk Resulting tour, cost ca. 19.1

Optimal tour, cost ca. 14.7

a

b

c

d

e

f g

h

a

b

c

d

e

f g

h

a

b

c

d

e

f g

h

a

b

c

d

e

f g

h

a

b

c

d

e

f g

h

Approximation algorithms 14

Theorem. APPROX-TSP-TOUR is a poly-time 2-approximation algorithm for the
TSP problem with triangle inequality.

Proof.

Polynomial running time obvious, simple MST-PRIM takes ⇥(V 2

), computing
preorder walk takes no longer.

Correctness obvious, preorder walk is always a tour.

Approximation ratio: Let H⇤ denote an optimal tour for given set of vertices.

Deleting any edge from H⇤ gives a spanning tree.

Thus, weight of minimum spanning tree is lower bound on cost of optimal tour:

c(T)  c(H⇤)

Approximation algorithms 15

A full walk of T lists vertices when they are first visited, and also when they are
returned to, after visiting a subtree.

Ex: a,b,c,b,h,b,a,d,e,f,e,g,e,d,a

Full walk W traverses every edge exactly twice (although some vertex perhaps
way more often), thus

c(W) = 2c(T)

Together with c(T)  c(H⇤), this gives c(W) = 2c(T)  2c(H⇤)

Approximation algorithms 16

Problem: W is in general not a proper tour, since vertices may be visited more
than once. . .

But: by our friend, the triangle inequality, we can delete a visit to any vertex
from W and cost does not increase.

Deleting a vertex v from walk W between visits to u and w means going from u

directly to w, without visiting v.

This way, we can consecutively remove all multiple visits to any vertex.

Ex: full walk a,b,c,b,h,b,a,d,e,f,e,g,e,d,a becomes a,b,c,h,d,e,f,g.

Approximation algorithms 17

This ordering (with multiple visits deleted) is identical to that obtained by preorder
walk of T (with each vertex visited only once).

It certainly is a Hamiltonian cycle. Let’s call it H.

H is just what is computed by APPROX-TSP-TOUR.

H is obtained by deleting vertices from W , thus

c(H)  c(W)

Conclusion:

c(H)  c(W)  2c(H⇤)

(q.e.d.)

Although factor 2 looks nice, there are better algorithms.

There’s a 3/2 approximation algorithm by Christofedes (with triangle inequality).

Arora and Mitchell have shown that there is a PAS if the points are in the Euclidean
plane (meaning the triangle inequality holds).

Approximation algorithms 18

The general TSP

Now c does no longer satisfy triangle inequality.

Theorem. If P 6= NP , then for any constant ⇢ � 1, there is no poly-time ⇢-
approximation algorithm for the general TSP.

Proof. By contradiction. Suppose there is a poly-time ⇢-approximation algorithm
A, ⇢ � 1 integer. We use A to solve HAMILTON-CYCLE in poly time (this implies
P = NP).

Let G = (V,E) be instance of HAMILTON-CYCLE. Let G0 = (V,E0) the com-
plete graph on V :

E0 = {(u, v) : u, v 2 V ^ u 6= v}

We assign costs to edges in E0:

c(u, v) =

(
1 if (u, v) 2 E
⇢ · |V |+1 otherwise

Creating G0 and c from G certainly possible in poly time.

Approximation algorithms 19

Consider TSP instance hG0, ci.

If original graph G has a Hamiltonian cycle H, then c assigns cost of one to reach
edge of H, and G0 contains tour of cost |V |.

Otherwise, any tour of G0 must contain some edge not in E, thus have cost at
least

(⇢ · |V |+1)| {z }
62E

+(|V |� 1)| {z }
2E

= ⇢ · |V |+ |V | � (⇢+1) · |V |

There is a gap of � ⇢ · |V | between cost of tour that is Hamiltonian cycle in G
(= |V |) and cost of any other tour.

Apply A to hG0, ci.

By assumption, A returns tour of cost at most ⇢ times the cost of optimal tour.
Thus, if G contains Hamiltonian cycle, A must return it.

If G is not Hamiltonian, A returns tour of cost > ⇢ · |V |.

We can use A to decide HAMILTON-CYCLE. (q.e.d.)

Approximation algorithms 20

The proof was example of general technique for proving that a problem cannot
be approximated well.

Suppose given NP-hard problem X, produce minimisation problem Y s.t.

• “yes” instances of X correspond to instances of Y with value at most some
k,

• “no” instances of X correspond to instances of Y with value greater than ⇢k

Then there is no ⇢-approximation algorithm for Y unless P = NP .

Approximation algorithms 21

Set-Covering Problem

Input: A finite set X and a family F of subsets over X. Every x 2 X belongs to
at least one F 2 F .

Output: A minimum S ⇢ F such that

X =

[

F2S
F.

We say that such S covers X and x 2 X is covered by S0 ⇢ F if there exists a
set Si 2 S0 that contains x.

The problem is a generalisation of the vertex cover problem.

It has many applications (cover a set of skills with workers,...)

Approximation algorithms 22

We use a simple greedy algorithm to solve approximate the problem.

The idea is to add in every round a set S to the solution that covers the largest
number of uncovered elements.

APPROX-SET-COVER

1: U X

2: S ;
3: while U 6= ; do
4: Select an Si 2 F that maximzes |Si

T
U |

5: U U � Si

6: S S [Si

7: end while

The algorithm returns S.

Approximation algorithms 23

Theorem. APPROX-SET-COVER is a poly-time logn-approximation algorithm
where n = {max |F | : F 2 F}.

Proof. The running time is clearly polynomially in |X| and |F|.

Correctness: S clearly is a set cover.

Remains to show: S is a logn approximation

We will use harmonic numbers:

H(d) =

dX

i=1

1

d
.

H(0) = 0 and H(d) = O(log d).

Approximation algorithms 24

Analysis

• Let Si be the ith subset selected by APPROX-SET-COVER

• We assign a one to each set Si selected by the algorithm.

• We will distribute the cost evenly over all elements that are covered for the
first time.

• Let cx be the cost assigned to x 2 X. Then

cx =

1

|Si � (S
1

[S
2

[· · · [Si�1)|
.

• Let C be the cost of APPROX-SET-COVER. Then

C =

X

x2X
cx.

Approximation algorithms 25

Analysis II

• Since each x 2 X is in at least one set S0 2 S⇤ we have

X

S02S⇤

X

x2S0
cx �

X

x2X
cx := C

• Hence,

C 
X

S02S⇤

X

x2S0
cx.

Lemma. For any set F 2 F we have
X

x2F
cx  H(|F |).

Using the lemma we get

C 
X

S02S⇤

X

x2S0
cx 

X

S02S⇤
H(S0)  C⇤ ·H(max{|F | : F 2 F}).

Approximation algorithms 26

Lemma. For any set F 2 F we have
X

x2F
cx  H(|F |).

Proof. Consider any set F 2 F and i = 1,2, . . . C and let

ui = |F � (S
1

[S
2

[· · · [Si�1)|.

ui is the number of elements in F that are not covered by S
1

, S
2

, . . . Si.

We also define u
0

= |F |.

Now let k be the smallest index such that uk = 0.

Then ui�1 � ui and ui�1 � ui elements of F are covered for the first time by Si

(for i = 1, . . . k).

Approximation algorithms 27

We have

X

x2F
cx =

kX

i=1

(ui�1 � ui) ·
1

|Si � (S
1

[S
2

[· · · [Si�1)|

Observe that

|Si � (S
1

[S
2

[· · · [Si�1)| � |F � (S
1

[S
2

[· · · [Si�1)| = ui.

(the alg. chooses Si such that the number of newly covered elements is max.).

Hence

X

x2F
cx 

kX

i=1

(ui�1 � ui) ·
1

ui�1

Approximation algorithms 28

X

x2F
cx 

kX

i=1

(ui�1 � ui) ·
1

ui�1

=

kX

i=1

ui�1X

j=ui+1

1

ui�1


kX

i=1

ui�1X

j=ui+1

1

j

=

kX

i=1

0

@
ui�1X

j=1

1

j
�

uiX

j=1

1

j

1

A

=

kX

i=1

�
H(ui�1)�H(ui)

�

= H(u
0

)�H(uk) = H(u
0

)�H(0)

= H(u
0

) = H(|F |))

Approximation algorithms 29

