Approximation algorithms

Some optimisation problems are “hard”, little chance of finding poly-time algorithm
that computes optimal solution

e largest clique
e smallest vertex cover
e largest independent set

But: We can calculate a sub-optimal solution in poly time.

e pretty large clique
e pretty small vertex cover
e pretty large independent set

Approximation algorithms compute near-optimal solutions.

Known for thousands of years. For instance, approximations of value of ; some
engineers still use 4 these days : -)
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Consider optimisation problem.
Each potential solution has positive cost, we want near-optimal solution.

Depending on problem, optimal solution may be one with

e maximum possible cost (maximisation problem), like maximum clique,

e or one with minimum possible cost (minimisation problem), like minimum
vertex cover.

Algorithm has approximation ratio of p(n), if for any input of size n, the cost C
of its solution is within factor p(n) of cost of optimal solution C*, i.e.
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Maximisation problems:

o O < C <O,

e C*/C gives factor by which optimal solution is better than approximate solu-
tion (note: C*/C' > 1 and C/C* < 1).

Minimisation problems:

e O<(C*<L(C,

e C/C* gives factor by which optimal solution is better than approximate solu-
tion (note C'/C* > 1 and C*/C < 1).

Approximation ratio is never less than one:

C O
— <1 == —>1
C* C

Approximation algorithms 3



Approximation Algorithm

An algorithm with guaranteed approximation ration of p(n) is called a p(n)-
approximation algorithm.

A 1-approximation algorithm is optimal, and the larger the ratio, the worse the
solution.

e For many N'P-complete problems, constant-factor approximations exist
(i.e. computed cligue is always at least half the size of maximum-size clique),

e sometimes in best known approx ratio grows with n,

e and sometimes even proven lower bounds on ratio (for every approximation
alg, the ratio is at least this and that, unless P = N'P).
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Approximation Scheme

Sometimes the approximation ratio improves when spending more computation
time.

An approximation scheme for an optimisation problem is an approximation al-
gorithm that takes as input an instance plus a parameter ¢ > 0 s.t. for any fixed
e, the scheme is a (1 + ¢)-approximation (trade-off).
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PTAS and FPTAS

A scheme is a poly-time approximation scheme (PTAS) if for any fixed € > 0O, it
runs in time polynomial in input size.

Runtime can increase dramatically with decreasing e, consider T'(n) = n2/c.

e 2 1 1/2 1/4 1/100
3

n |[T(n) n n? n* n n200

101 10t 102 10%* 108 1029
102 102 10* 108 1016 10490
103 103 10° 1012 1024 10990
10% 10* 10% 1016 1032 10890

We want: if ¢ decreases by constant factor, then running time increases by at
most some other constant factor, i.e., running time is polynomial in n and 1 /e.
Example: T(n) = (2/¢) - n?, T(n) = (1/€)? - n3.

Such a scheme is called a fully polynomial-time approximation scheme (FPAS).
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Example 1: Vertex cover

Problem: given graph G = (V, E), find smallest V! C V s.t. if (u,v) € E, then
u € V' orv € V/ or both.

Decision problem is N'P-complete, optimisation problem is at least as hard.
Trivial 2-approximation algorithm.

APPROX-VERTEX-COVER

1: C 0

2. B/ +— FE

3: while £ = ( do

4:  let (u,v) be an arbitrary edge of £’

5 C + CU{(u,v)}
6 remove from E’ all edges incident on either « or v
7: end while

Claim: after termination, C is a vertex cover of size at most twice the size of an
optimal (smallest) one.
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Step 3: choose edge (a,b) Result, size 6

Optimal result, size 4
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Theorem. APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof. The running time is trivially bounded by O(V E) (at most | E| iterations,
each of complexity at most O(V")). However, O(V + E) can easily be shown.

Correctness: (' clearly is a vertex cover.
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Size of the cover: let A denote set of edges that are picked ({(c, e), (d, g), (a,b)}
in example).

e |n order to cover edges in A, any vertex cover, in particular an optimal cover
C™*, must include at least one endpoint of each edge in A.

e By construction of the algorithm, no two edges in A share an endpoint (once
edge is picked, all edges incident on either endpoint are removed).

e Therefore, no two edges in A are covered by the same vertex in C*, and

[C7] = |Al.

e When an edge is picked, neither endpoint is already in (', thus

IC|=2-|A]|.
Combining (1) and (2) yields

Cl=2-|A] <2 |C7
(g.e.d.)
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Interesting observation: we could prove that size of VC returned by alg is at
most twice the size of optimal cover, without knowing the latter.

How? We lower-bounded size of optimal cover (|C*| > | Al).

One can show that A is in fact a maximal matching in G.

e The size of any maximal matching is always a lower bound on the size of an
optimal vertex cover (each edge has to be covered).

e The alg returns VC whose size is twice the size of the maximal matching A.
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Example 2: The travelling-salesman problem

Problem: given complete, undirected graph G = (V, E) with non-negative inte-
ger cost c(u, v) for each edge, find cheapest hamiltonian cycle of G.

Consider two cases: with and without triangle inequality.

c satisfies triangle inequality, if it is always cheapest to go directly from some u to
some w; going by way of intermediate vertices can’t be less expensive.

Related decision problem is N'P-complete in both cases.
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TSP with triangle inequality

We use function MST-PRIM(G, ¢, r), which computes an MST for G and weight
function ¢, given some arbitrary root r.

Input: G = (V,E),c: E — R

APPROX-TSP-TOUR

1: Select arbitrary v € V' to be “root”
2: Compute MST T for G and ¢ from root r using
MST-PRIM(G, c, 1)
3: Let L be list of vertices visited in pre-order tree walk of T°
4: Return the hamiltonian cycle that vistis the vertices in the order L
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Theorem. APPROX-TSP-TOUR is a poly-time 2-approximation algorithm for the
TSP problem with triangle inequality.

Proof.

Polynomial running time obvious, simple MST-PRiM takes ©(V2), computing
preorder walk takes no longer.

Correctness obvious, preorder walk is always a tour.
Approximation ratio: Let H* denote an optimal tour for given set of vertices.
Deleting any edge from H* gives a spanning tree.

Thus, weight of minimum spanning tree is lower bound on cost of optimal tour:

o(T) < c(H™)

Approximation algorithms 15



A full walk of T lists vertices when they are first visited, and also when they are
returned to, after visiting a subtree.

Ex: a,b,c,b,h,b,a,d,e,fe,g,e,d,a

Full walk W traverses every edge exactly twice (although some vertex perhaps
way more often), thus

c(W) = 2¢(T)

Together with ¢(T") < ¢(H™), this gives c(W) = 2¢(T) < 2¢(H™)
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Problem: W is in general not a proper tour, since vertices may be visited more
than once. ..

But: by our friend, the triangle inequality, we can delete a visit to any vertex
from WW and cost does not increase.

Deleting a vertex v from walk W between visits to © and w means going from
directly to w, without visiting v.

This way, we can consecutively remove all multiple visits to any vertex.

Ex: full walk a,b,c,b,h,b,a,d,e,fe,g,e,d,a becomes a,b,c,h,d,e,f,g.
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This ordering (with multiple visits deleted) is identical to that obtained by preorder
walk of T" (with each vertex visited only once).

It certainly is a Hamiltonian cycle. Let’s call it H.
H is just what is computed by APPROX-TSP-TOUR.
H is obtained by deleting vertices from W, thus

c(H) < (W)

Conclusion:
c(H) < c(W) <2c(H")
(g.e.d.)

Although factor 2 looks nice, there are better algorithms.
There’s a 3/2 approximation algorithm by Christofedes (with triangle inequality).

Arora and Mitchell have shown that there is a PAS if the points are in the Euclidean
plane (meaning the triangle inequality holds).
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The general TSP

Now c does no longer satisfy triangle inequality.

Theorem. If P = NP, then for any constant p > 1, there is no poly-time p-
approximation algorithm for the general TSP.

Proof. By contradiction. Suppose there is a poly-time p-approximation algorithm
A, p > 1 integer. We use A to solve HAMILTON-CYCLE in poly time (this implies
P = NP).

Let G = (V, E) be instance of HAMILTON-CYCLE. Let G’ = (V, E") the com-
plete graph on V.

E' = {(u,v) : u,v €V Au% v}

We assign costs to edges in E':

(u,v) = 1 if (u,v) € E
ALY =Y 5oV 41 otherwise

Creating G’ and c from G certainly possible in poly time.
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Consider TSP instance (G/, c).

If original graph G has a Hamiltonian cycle H, then c assigns cost of one to reach
edge of H, and G’ contains tour of cost |V|.

Otherwise, any tour of G’ must contain some edge not in E, thus have cost at
least

- WVI+D+AVI=-D=p-[V[+ V= (p+1)-|V]
ZE cE

There is a gap of > p - |V| between cost of tour that is Hamiltonian cycle in G
(= |V|) and cost of any other tour.

Apply Ato (G’ c).

By assumption, A returns tour of cost at most p times the cost of optimal tour.
Thus, if G contains Hamiltonian cycle, A must return it.

If G is not Hamiltonian, A returns tour of cost > p - |V]|.

We can use A to decide HAMILTON-CYCLE. (g.e.d.)
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The proof was example of general technique for proving that a problem cannot
be approximated well.

Suppose given N'P-hard problem X, produce minimisation problem Y s.t.

e “yes’ instances of X correspond to instances of Y with value at most some
k,

e “no’ instances of X correspond to instances of Y with value greater than pk

Then there is ho p-approximation algorithm for Y unless P = NP.
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Set-Covering Problem

Input: A finite set X and a family F of subsets over X. Every x € X belongs to
at least one F' € F.

Output: A minimum S C F such that

X=|J F
We say that such S covers X and x € X is covered by S’ C F if there exists a
set S; € S’ that contains .
The problem is a generalisation of the vertex cover problem.

It has many applications (cover a set of skills with workers,...)
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We use a simple greedy algorithm to solve approximate the problem.

The idea is to add in every round a set S to the solution that covers the largest
number of uncovered elements.

APPROX-SET-COVER
1: U<+ X
2: S+ ()
3: while U = () do
4.  Select an S; € F that maximzes |S; N U]|
5 U<+U-—-S5;
6 S+ SUS;
7: end while

The algorithm returns S.
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Theorem. APPROX-SET-COVER is a poly-time log n-approximation algorithm
where n = {max |F|: F € F}.

Proof. The running time is clearly polynomially in | X| and |F|.
Correctness: S clearly is a set cover.

Remains to show: S is a logn approximation

We will use harmonic nhumbers:

1

&.I

d
H(d)= ),
i=1

H(0) =0and H(d) = O(logd).
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Analysis

e Let S; be the ith subset selected by APPROX-SET-COVER
e We assign a one to each set S; selected by the algorithm.

e We will distribute the cost evenly over all elements that are covered for the
first time.

e Let ¢, be the cost assigned to x € X. Then

1
S, = (S1USyU---US; )|

Cx

e Let C be the cost of APPROX-SET-COVER. Then

C = an;.

reX
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Analysis Il

e Since each x € X isin at least one set S’ € S* we have

Z Zcxz ZchZC

S'eS* xeS'’ reX
e Hence,
C < Z Z Cx.
S'eS* xeSs’
Lemma. For any set F' € F we have
S o < H(|F)).

xEF

Using the lemma we get

C< > Y < ) H(@S)<C" -H(max{|F|: F e F}).
S'eS* xeS’ S'eS*
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Lemma. For any set F' € F we have

> e < H(|F)).

xeF

Proof. Considerany set FF € Fand: = 1,2,...C and let

u; = |F—(S1USyU---US;_1)|

u; is the number of elements in F' that are not covered by S, So,...S;.
We also define ug = |F|.
Now let k be the smallest index such that u;, = O.

Then u;_1 > u; and u;_1 — u; elements of F' are covered for the first time by S;
(fori =1,...k).
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We have

1

cz = ) (uj—1—
%;:x Z =17 ) 1S, = (S1US>U -+ US;_1)]

Observe that

[S; — (S1USU---US; 1) > |F—-(S1USU---US; 1) = ;.

(the alg. chooses S; such that the number of newly covered elements is max.).

Hence
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