5.4 LoGgicAL CLOCKS

5.4.1 Lamport’s Logical Clock

If we are only interested in ordering events (not in time duration), then there is no need to
use units like hour, minute or second. We might as well use dimensionless positive integers,
with the understanding that smaller (larger) integers denote “earlier” (“later”) times. We
also interpret the concept of “earlier” (“later”) differently from its conventional meaning.
We will equate “earlier” with the “happened-before” (=“causally precedes”) relation among
events.! “Clocks” which keep such “logical time” are called logical clocks.

Let C; denote the logical clock associated with processor i. Namely, for any event e which
occurs in processor i, C;(e) denotes the logical time of its occurrence. The global time for
event e, denoted C/(e), is defined by C(e) = C;(e) if e occurs in processor . Because of our
interpretation of “earlier” and “later” as explained above, in assigning a logical time C'(e) to
event e, C() would have to satisfy certain conditions. Intuitively, if a causally affects (i.e.,
happened before) b, we would want C'(a) < C(b) to hold, because an event wouldn’t affect
another event that happened “earlier”.

Clock condition: if a — b then C'(a) < C(b)

Fig. 5 shows an assignment of integer values to events in such a way that the clock
condition is enforced. Those integer values were computed following the implementation
rules given below (the clock at each site is initialized to 0). Note that C(ps) = 6, even
though C(p3) = 3. This is because event g5 with C'(gs) = 5 happened before p,, and
therefore we must have C(py) > C(gs).

P Q R
0 0 0
1]
Pl 191 1
AN . | TN
\Si ‘\\
i 2\
pz!/z q2 \
3
ag1)
p.l3
3
q4*<‘\"\ o
5/q./ .5
STY Ny
6 :)
[/ \ Ti
4 re6 Ime
q6 6y I

Figure 5: Lamport’s logical clock values.

Implementation Rules for C;()

INote that our concept of “earlier” is a total order (i.e., it orders any pair of events), while “happened-
before” is a partial order, so that two concurrent events are not related by the “happened-before” relationship.

CMPT401 Chapter 5, Summer 04 10

R1: Increment C; whenever a new event occurs: the new event is considered to occur at
the updated time.

R2: 1. When sending a message, attach timestamp ts = C; (after step R1), and

2. Upon receiving a message, advance the local clock to Max{C;,ts}+1, and consider
that the receiving event took place at this new time (ts is the time stamp of the
received message, i.e., the value of C; at message sending time if the sender is
processor 7). O

If global clocks are implemented by rules R1 and R2, the local clocks at two different
processors may diverge without bound, if they don’t exchange messages for a long time. If
our only purpose of having global clock is to order events, then no harm is done. If it is
desired to keep all local clocks more or less in pace, each processor can send special “tick
messages” regularly or whenever an event occurs in that processor.

It is often desired to have a total order? among all the events. The above implementation
of logical clock defines a total order for each processor. Therefore, all we need is to order any
pair of events from different processors. This can be done simply by assigning a processor
id (a unique integer), id(7), to each processor i, and using C;.id(i) as the clock value of
processor ¢, where “.” is a decimal point. This way, if C; = C}, the decimal part will break
the tie.

5.4.2 Holding back deliveries

You may want to design the communication subsystem (a part of the kernel) that delays
the delivery of messages that arrived “too soon”, so that the delivered messages conform to
the order you want to enforce. The basic idea is to hold back the delivery of message M
to process P until there is a guarantee that no message M’ with M’.ts < M.ts will arrive at
P in the future.

In the following message delivery scheme, we assume that the messages from a particular
source arrive in the FIFO order. Each site (processor) maintains a set of message queues,
one for each other site (processor), and follows the following steps:

1. When a message arrives, it is first placed in the correponding queue.

2. Assoon as all queues become non-empty, then compare the timestamps of the messages
at the heads of the queues, and deliver the message with the oldest timestamp.

The above scheme works, provided all message queues always become non-empty. Un-
fortunately, there is normally no such guarantee. In the next section, therefore, we consider
multicasts to solve this problem.

There is another problem with the above scheme. With Lamport’s clock, C(a) < C(b)
does not necessarily imply a — b. Therefore, a message M; with a smaller timestamp may
not necessarily causally affect another message M, with a larger timestamp, and hence M,
could be delivered before M; without violating causality. However, by employing Lamport’s
clock values, we may unnecessarily delay some messages. We address this issue in the

2Recall that the “happened-before” relation is a partial order.

CMPT401 Chapter 5, Summer 04 11

next subsection, by introducing a clock whose values exactly represent the happened-bofore
relation.

5.4.3 Representing partial order by vector logical clock

When comparing two n-vectors, V and W, we write V < W if

1. For each k(1 < k <n), V]k] < W][k| holds, where V[k]| denotes the kth component of
V.

2. V[j] < W[j] holds for at least one j.
If only condition 1 holds, then we write V < W. O
As we saw above, it is desirable to have a clock VC with the following property:

a — b if and only if VC(a) < VC(b),

so that, by comparing VC'(a) and VC'(b), we could tell if a and b are causally related. Clearly,
we must use a vector for VC(a), since scaler quantities cannot represent a partial order.
There is a straightforward way of generalizing Lamport’s logical clock to the vector logical
clock which satisfies the above condition. In this subsection, we assume each processor (or
a unique process that represents it) maintains its own local clock.

For each processor P;, its local (vector) clock V;() has n components, where n is the
total number of processors. Its ith component, is just the event counter at P;, which is

incremented every time an event occurs in P;. For each local event e, processor P; maintains
Vi(e) as follows:

1. Initialize Vi(eg) = [0,...,0], where eq is the hypothetical “initializing event”.

2. For each event e in P;, increment the ith component of V;() by 1, ie., Vi(e)[i] =
Vi(prev)[i] + 1, where prev is the last event of P; prior to e.

3. To send a message (let m be its sending event), attach V;(m) as the timestamp.

4. If m is the receiving event of a message with timestamp ts[|, update V() as follows:
e For each component k (# i), compute V;(m)[k] = max{ V;(prev)[k],ts[k]}.> O

We now prove that a — b if and only if V;(a) < V;(b), where a is an event of P, and b
is an event of P;.

First consider the case where both a and b are “adjacent” events of a process P; such that
a — b. Then it is clear that V;(a)[i| < Vi(b)[i] and Vi(a) < V;(b). Similarly, if a is the sending
event of a message M (by P,;) and b is the receiving event of M (by P;), then we clearly have
Vi(a) < V;(b). This is because, on receiving M, P; updates V; so that V;(a)[j] < V;(b)[j] and
Vila)[k] < V(B)[K] for all k.

In general, if a — b, then we have a — e; — e3 — ... — b, such that a and e; are related
as in i) or ii) (so, V(a) < V(ey1)), e1 and ey are related as in i) or ii) (so, V(ey) < V(ea)),
etc. From the transitivity of “<”, it follows that if « — b then we have V;(a) < V;(b).

3Note that 1 is not added to the max value, unlike in Lamport’s clock.

CMPT401 Chapter 5, Summer 04 12

We now want to prove that if V;(a) < V;(b) then a — b by showing that if a /4 b
then Vi(a) £ V;(b). Pay attention to the ith components, V;(a)[i] and V;(b)[i]. (For
example, consider which events have vector clock values not larger than V;(E;) = [200] in
Fig. 6.) a / b implies that, in the space-time diagram, there is no directed path from a
to b. Therefore, the ith component of V;(a) is larger than the ith component of V;(b), i.e.,
Vi(a)lil > V;(B)lil, hence Vi(a) £ V;(b) 0

Example:

L o0o!

001!

450 |

! | 443
- 264
E2: 273

@ (b)

! 550

Figure 6: Vector logical clocks of three processors: (a) Event £ happened before the events
surrounded by dashed lines; (b) The events surrounded by dashed lines happened before
event Fs.

As in the previous section, the global vector clock (without subscript) is defined by
V(a) = Vi(a) if a is an event of processor P;. Clearly, two events a and b are concurrent iff
neither V(a) < V(b) nor V(b) < V(a) holds.

5.5 GROUP COMMUNICATION

5.5.1 Multicasting
One-to-one communication is often called a unicast. In a multicast, a message is sent
to all the members of a group. Some of its possible applications are

1. Sending a video stream to a set of customers,
2. Implementing a chat program for more than two participants,
3. Sending updates to a group of replica managers, etc.

Internet protocol IPv4 defines Class D as the multicast addresses. They all start with the
bit sequence 1110, i.e., they range from. 224.0.0.1 to 239.255.255.255, which provide about
228 ~ 268 million addresses. Some of these addresses are set aside for specific purposes. For

CMPT401 Chapter 5, Summer 04 13

example, 224.0.0.1 is for all systems on “this” subnet, and 224.2.0.0 ~ 224.2.127.253 are for
multimedia conference calls.

Java provides API’s for multicasting in the java.net.* package. Given below are simple
programs for a multicast sender and receiver. For an additional example, see Fig. 4.17 of
the Textbook.

Java multicast sender:
The following program multicasts a command-line message to a multicast group and
quits. It does not join the group.

import java.io.*;
import java.net.*;
public class mcSender {
public static void main (String[] args) {
MulticastSocket s;
InetAddress group;
try {
group = InetAddress.getByName("239.1.2.3");
s = new MulticastSocket(3456);
s.setTimeToLive(1l);
String msg = args[0]; //Msg in command line should be in quotes.
DatagramPacket packet =
new DatagramPacket (msg.getBytes(), msg.length(), group, 3456);
s.send (packet) ;
s.close();
}
catch (Exception ex) { ex.printStackTrace();
} //end catch
}//end main
} //end class

s.setTimeToLive() in the above program specifies the number of hops within the range
[0,255] that the message should traverse before being discarded. It should be set to 0 if the
multicast is restricted to processes on the same host. It should be set to 1 if the multicast
is restricted to processes on the same subnet. A larger value will generate a lot of network
traffic.

Java multicast receiver:
The following program receives one multicast message, prints it and quits.

import java.io.*;
import java.net.*;
public class mcReceiver {
public static void main (String[] args) {

CMPT401 Chapter 5, Summer 04 14

MulticastSocket s;
InetAddress group;
try {
group = InetAddress.getByName("239.1.2.3");
s = new MulticastSocket(3456);
s.joinGroup (group) ;
byte[] buf = new byte[100];
DatagramPacket recv =
new DatagramPacket (buf, buf.length);
s.receive(recv) ;
System.out.println (new String(buf));
s.close();
}
catch (Exception ex) { ex.printStackTrace();
} //end catch
}//end main
} //end class

In order to run, first start a few receivers; they will block on s.receive(). Then start
the sender; it will send the message, ” This is a test msg.”, and stop. Then the receivers will
get unblocked and receive the message and stop.

5.6 ISIS VECTOR CLOCK

As we saw earlier, the vector logical clocks exactly incorporate the happened-before (i.e.,
causally-precedes) relation. Thus, upon reception of a message M with vector timestamp
M.ts, process P; can determine if it has already received a message which is causally preceded
by M. If V; > M.ts, it has indeed received such a message and a causality violation has
occurred.

For a concrete example, see Fig. 7, where processor P decides to migrate an object O to
processor (Q.* In the meantime, process R is looking for O: it sends an enquiry message to
P and is told by message M, that O is now at (), but discovers by sending message M3 to
Q@ that) doesn’t have it. What’s gone wrong? The problem here is that message M; that
causally precedes message M3 arrived at () after Ms. It’s like you get an official letter firing
you from your boss after you have heard a rumour that you have been fired.

Note that causality violations can occur even if all communication channels are FIFO as
in Fig. 7. To releave the application programmers from the problems caused by causality
violations, we want to design the communication subsystem that delays the delivery of
messages that arrived “too soon”, in such a way that no causality violation can occur. Let
M = M in Fig. 7. We want to hold back the delivery of message M to process P until
there is a guarantee that no message M’ with M’.ts < M.ts will arrive at P in the future.
The ISIS system uses multicasting to provide such a guarantee.

4Here we identify a processor with the process running on it.

CMPT401 Chapter 5, Summer 04 15

P Q R
Migrate Q 001 | "Whereis O?'
00 100 1
101 |
201 M2
T |o01

" e
1> n't know

¥ 100
VIOLATION!

212

Figure 7: Causality violation detection.

In ISIS, only the sending events advance the local component of the vector clock. Thus,
we need to modify the definition of the vector time, so that the ¢th component of the vector
time is the sequence number of messages generated by processor P;. Each processor P;
maintains the local vector clock L; = (L[1],...,L[n]). We have explained above how its
local component L[i] is advanced. For j = 1,2,...,n, j # i, L[j] is the sequence number of
the most recent message from P; that has arrived and delivered; it does not reflect those
messages from P;, if any, currently in the holdback queue. Initially, L[j] = 0 for all j,

Suppose a new message M multicast by P; arrives at P;. P; compares the vector times-
tamp of the message M.ts (call it V') and its own local vector clock L; and delivers M if the
following two conditions are satisfied:

1. V[j]
2. V[k] < L[K] for all k # j.

L[j]+ 1 (M is the next expected message from P;),

Condition 2. above means, intuitively, that the receiver is as up-to-date as the sender of
M about the current values of the event counters at the other processors. If V[k] > L[k]| for
some k # j, then it implies that there is a message M’ from Pj that the sender P; knows
about but P; doesn’t know about. Therefore, P; must wait until M’ arrives before delivering
M.

If M is delivered, L[j] is incremented by one, so that L[j] = V[j] will hold. Otherwise,
M is held back until the arrival and delivery of other messages (such as M’ in the previous
paragraph) make the above conditions satisfied for M. In Fig. 8(a), when M, arrives with
timestamp M.ts = (110), Ps delays its delivery because Lz = (000) and M;.ts = (110)
violate condition 2. for component k = 1. Note that Ps’s vector time Lz remains (000).

When M, arrives at P3, as shown in Fig. 8(b), Ps delivers it and updates its time to
Ls = (100), and reexamines the timestamp M;.ts. The condition is now satisfied and M; is
also delivered.

The ISIS scheme works even if the message channel between two processors is not FIFO.

Proof of Correctness

CMPT401 Chapter 5, Summer 04 16

P1 P2 P3 P1 P2 P3
100 100

\ \
1100 10 ---M1
--~{000 ,

M1
M \
Y100

R

110
M2.ts =100
M1lits= 110 M1lits= 110
@ (b)

Figure 8: Message delivery: (a) Delivery of M; is delayed; (b) M, is delivered first then M.

In general, to prove a protocol correct, we need to show the following two properties:

1. Safety (bad things don’t happen): No causality violation in the context of message
delivery.

2. Liveness (good things keep happening): Livelock-free (starvation-free), i.e., no mes-
sage will wait forever in the hold-back Q.

(a) Safety: Messages are delivered without violating the causality order.
Consider two messages M; (from P;) and M, (from Py) received by P; such that the
sending event m; of M; precedes the sending event msy of My (my — my), i.e.,

Ml.tS(: IC’](ml)) < Mg.tS(:]Ok(mg)) (1)

where IC;(a) denotes the ISIS vector clock value at P; for event a. (Before this proof, we
used a simpler notation, L;, to denote IC';.)

We assume that P; delivered M, before M; and derive a contradiction. Just before P;
delivered M, by condition 1,

1C;[j] = 1Cj(ma)[j] — 1 hence IC;[j] < IC;(m1)lj]- (2)
However, the delivery of My by P; prior to that would have resulted in (condition 2),
1C7[j] = ICk(mo)lj]. (3)

Since IC}[j] < IC;[j] (My was delivered before M), from Eqs. (2) and (3), we have
ICk(m2)[j] < 1Cj(mq)[j]. However, this contradicts Eq. (1).

(b) Liveness: You never get into a situation where one or more messages get stuck in
holdback queues and are not delivered.

Informally, the delivery conditions (1) and (2) for msg M are satisfied if and only if the
receiver (P;) of M has received and delivered all messages that the sender (P;) had delivered
and sent before sending M. This will eventually happen, because they will all arrive at the
receiver. Let M be a msg in the holdback Q, which is not preceded by any other msg in Q.
Then this M satisfies the above condition, and would have been delivered, a contradiction.

CMPT401 Chapter 5, Summer 04 17

More formally, the delivery condition (1) is satisfied when all the messages sent by P;
before M arrive and are delivered. Condition (2) is satisfied when all the message that
sender P; know about when it sent M also arrive and are delivered. When they all arrive
eventually, they will be delivered, since every message in the holdback Q) is tested against
the delivery conditions each time a new message arrives and is delivered. So, if there exists
a delivery order, it will be discovered and carried out. Note that a greedy delivery is OK,
since advancing any component of /C; is beneficial for condition (2) to be satisfied.

To proceed more formally, note that

¢

1. All messages sent from one site are linearly ordered by the “precedes” relation.

2. The set of the timestamps of all messges is a partially ordered set, and therefore any
subset of the set is also partially ordered.

Suppose the subset corresponding to the messages in the holdback Q of a process P; is non-
empty. This Q contains at least one message M (from, say, P;) that is not preceded by any
other message in the). Thus, all msgs M’ with M’.ts < M.ts, i.e., all msgs P; had delivered
prior to sening M, have already been delivered by P;. This implies that IC;[k] > M.ts[k]
for all k # i, i.e., delivery condition (2) is satisfied.

Since P, has delivered all messages from P; that precede M, IC;[j] + 1 = M.ts (this is
delivery condition (1)). Therefore, M is deliverable. This contradicts the assumption that
M was in Q.

O

