
9

5.4 Logical Clocks

5.4.1 Lamport’s Logical Clock
If we are only interested in ordering events (not in time duration), then there is no need to

use units like hour, minute or second. We might as well use dimensionless positive integers,
with the understanding that smaller (larger) integers denote “earlier” (“later”) times. We
also interpret the concept of “earlier”(“later”) differently from its conventional meaning.
We will equate “earlier” with the “happened-before” (=“causally precedes”) relation among
events.1 “Clocks” which keep such “logical time” are called logical clocks.

Let Ci denote the logical clock associated with processor i. Namely, for any event e which
occurs in processor i, Ci(e) denotes the logical time of its occurrence. The global time for
event e, denoted C(e), is defined by C(e) = Ci(e) if e occurs in processor i. Because of our
interpretation of “earlier” and “later” as explained above, in assigning a logical time C(e) to
event e, C() would have to satisfy certain conditions. Intuitively, if a causally affects (i.e.,
happened before) b, we would want C(a) < C(b) to hold, because an event wouldn’t affect
another event that happened “earlier”.

Clock condition: if a → b then C(a) < C(b)

Fig. 5 shows an assignment of integer values to events in such a way that the clock
condition is enforced. Those integer values were computed following the implementation
rules given below (the clock at each site is initialized to 0). Note that C(p4) = 6, even
though C(p3) = 3. This is because event q5 with C(q5) = 5 happened before p4, and
therefore we must have C(p4) > C(q5).

r

6

5

4

3

2

1

q

q

q

q

q

q

4

3

2

1

r

r

P Q R

p

p

p

p

1

2

3

4

r

6

0 0 0

1
1

1

2
2

3

4

3

3

5

6

5

6
Time

Figure 5: Lamport’s logical clock values.

Implementation Rules for Ci()

1Note that our concept of “earlier” is a total order (i.e., it orders any pair of events), while “happened-
before” is a partial order, so that two concurrent events are not related by the “happened-before” relationship.

CMPT401 Chapter 5, Summer 04 10

R1: Increment Ci whenever a new event occurs: the new event is considered to occur at
the updated time.

R2: 1. When sending a message, attach timestamp ts = Ci (after step R1), and

2. Upon receiving a message, advance the local clock to Max{Ci, ts}+1, and consider
that the receiving event took place at this new time (ts is the time stamp of the
received message, i.e., the value of Cj at message sending time if the sender is
processor j). 2

If global clocks are implemented by rules R1 and R2, the local clocks at two different
processors may diverge without bound, if they don’t exchange messages for a long time. If
our only purpose of having global clock is to order events, then no harm is done. If it is
desired to keep all local clocks more or less in pace, each processor can send special “tick
messages” regularly or whenever an event occurs in that processor.

It is often desired to have a total order2 among all the events. The above implementation
of logical clock defines a total order for each processor. Therefore, all we need is to order any
pair of events from different processors. This can be done simply by assigning a processor
id (a unique integer), id(i), to each processor i, and using Ci.id(i) as the clock value of
processor i, where “.” is a decimal point. This way, if Ci = Cj, the decimal part will break
the tie.

5.4.2 Holding back deliveries
You may want to design the communication subsystem (a part of the kernel) that delays

the delivery of messages that arrived “too soon”, so that the delivered messages conform to
the order you want to enforce. The basic idea is to hold back the delivery of message M

to process P until there is a guarantee that no message M ′ with M ′.ts < M.ts will arrive at
P in the future.

In the following message delivery scheme, we assume that the messages from a particular
source arrive in the FIFO order. Each site (processor) maintains a set of message queues,
one for each other site (processor), and follows the following steps:

1. When a message arrives, it is first placed in the correponding queue.

2. As soon as all queues become non-empty, then compare the timestamps of the messages
at the heads of the queues, and deliver the message with the oldest timestamp.

The above scheme works, provided all message queues always become non-empty. Un-
fortunately, there is normally no such guarantee. In the next section, therefore, we consider
multicasts to solve this problem.

There is another problem with the above scheme. With Lamport’s clock, C(a) < C(b)
does not necessarily imply a → b. Therefore, a message M1 with a smaller timestamp may
not necessarily causally affect another message M2 with a larger timestamp, and hence M2

could be delivered before M1 without violating causality. However, by employing Lamport’s
clock values, we may unnecessarily delay some messages. We address this issue in the

2Recall that the “happened-before” relation is a partial order.

CMPT401 Chapter 5, Summer 04 11

next subsection, by introducing a clock whose values exactly represent the happened-bofore
relation.

5.4.3 Representing partial order by vector logical clock

When comparing two n-vectors, V and W , we write V < W if

1. For each k(1 ≤ k ≤ n), V [k] ≤ W [k] holds, where V [k] denotes the kth component of
V .

2. V [j] < W [j] holds for at least one j.

If only condition 1 holds, then we write V ≤ W . 2

As we saw above, it is desirable to have a clock VC with the following property:

a → b if and only if VC (a) < VC (b),

so that, by comparing VC (a) and VC (b), we could tell if a and b are causally related. Clearly,
we must use a vector for VC (a), since scaler quantities cannot represent a partial order.
There is a straightforward way of generalizing Lamport’s logical clock to the vector logical
clock which satisfies the above condition. In this subsection, we assume each processor (or
a unique process that represents it) maintains its own local clock.

For each processor Pi, its local (vector) clock Vi() has n components, where n is the
total number of processors. Its ith component, is just the event counter at Pi, which is
incremented every time an event occurs in Pi. For each local event e, processor Pi maintains
Vi(e) as follows:

1. Initialize Vi(e0) = [0, . . . , 0], where e0 is the hypothetical “initializing event”.

2. For each event e in Pi, increment the ith component of Vi() by 1, i.e., Vi(e)[i] =
Vi(prev)[i] + 1, where prev is the last event of Pi prior to e.

3. To send a message (let m be its sending event), attach Vi(m) as the timestamp.

4. If m is the receiving event of a message with timestamp ts[], update Vi() as follows:

• For each component k (6= i), compute Vi(m)[k] = max{Vi(prev)[k], ts[k]}.3 2

We now prove that a → b if and only if Vi(a) < Vj(b), where a is an event of Pi and b

is an event of Pj.
First consider the case where both a and b are “adjacent” events of a process Pi such that

a → b. Then it is clear that Vi(a)[i] < Vi(b)[i] and Vi(a) < Vj(b). Similarly, if a is the sending
event of a message M (by Pi) and b is the receiving event of M (by Pj), then we clearly have
Vi(a) < Vj(b). This is because, on receiving M , Pj updates Vj so that Vi(a)[j] < Vj(b)[j] and
Vi(a)[k] ≤ Vj(b)[k] for all k 6= j.

In general, if a → b, then we have a → e1 → e2 → . . . → b, such that a and e1 are related
as in i) or ii) (so, V (a) < V (e1)), e1 and e2 are related as in i) or ii) (so, V (e1) < V (e2)),
etc. From the transitivity of “<”, it follows that if a → b then we have Vi(a) < Vj(b).

3Note that 1 is not added to the max value, unlike in Lamport’s clock.

CMPT401 Chapter 5, Summer 04 12

We now want to prove that if Vi(a) < Vj(b) then a → b by showing that if a 6→ b

then Vi(a) 6< Vj(b). Pay attention to the ith components, Vi(a)[i] and Vj(b)[i]. (For
example, consider which events have vector clock values not larger than V1(E1) = [200] in
Fig. 6.) a 6→ b implies that, in the space-time diagram, there is no directed path from a

to b. Therefore, the ith component of Vi(a) is larger than the ith component of Vj(b), i.e.,
Vi(a)[i] > Vj(b)[i], hence Vi(a) 6< Vj(b). 2

Example:

P2P1

(a)

E1: 200

273
264

000000000

P3

100

300

450

550

230
240

220

010

250

001

242

243
260

P2P1

(b)

E2: 273
264

000000000

P3

100

200

300

450

550

230
240

220

010

250

001

242

243
260

Figure 6: Vector logical clocks of three processors: (a) Event E1 happened before the events
surrounded by dashed lines; (b) The events surrounded by dashed lines happened before
event E2.

As in the previous section, the global vector clock (without subscript) is defined by
V (a) = Vi(a) if a is an event of processor Pi. Clearly, two events a and b are concurrent iff
neither V (a) < V (b) nor V (b) < V (a) holds.

5.5 Group Communication

5.5.1 Multicasting
One-to-one communication is often called a unicast. In a multicast, a message is sent

to all the members of a group. Some of its possible applications are

1. Sending a video stream to a set of customers,

2. Implementing a chat program for more than two participants,

3. Sending updates to a group of replica managers, etc.

Internet protocol IPv4 defines Class D as the multicast addresses. They all start with the
bit sequence 1110, i.e., they range from. 224.0.0.1 to 239.255.255.255, which provide about
228 ≈ 268 million addresses. Some of these addresses are set aside for specific purposes. For

CMPT401 Chapter 5, Summer 04 13

example, 224.0.0.1 is for all systems on “this” subnet, and 224.2.0.0 ∼ 224.2.127.253 are for
multimedia conference calls.

Java provides API’s for multicasting in the java.net.* package. Given below are simple
programs for a multicast sender and receiver. For an additional example, see Fig. 4.17 of
the Textbook.

Java multicast sender:
The following program multicasts a command-line message to a multicast group and

quits. It does not join the group.

import java.io.*;

import java.net.*;

public class mcSender {

public static void main (String[] args) {

MulticastSocket s;

InetAddress group;

try {

group = InetAddress.getByName("239.1.2.3");

s = new MulticastSocket(3456);

s.setTimeToLive(1);

String msg = args[0]; //Msg in command line should be in quotes.

DatagramPacket packet =

new DatagramPacket(msg.getBytes(), msg.length(), group, 3456);

s.send(packet);

s.close();

}

catch (Exception ex) { ex.printStackTrace();

} //end catch

}//end main

} //end class

s.setTimeToLive() in the above program specifies the number of hops within the range
[0,255] that the message should traverse before being discarded. It should be set to 0 if the
multicast is restricted to processes on the same host. It should be set to 1 if the multicast
is restricted to processes on the same subnet. A larger value will generate a lot of network
traffic.

Java multicast receiver:
The following program receives one multicast message, prints it and quits.

import java.io.*;

import java.net.*;

public class mcReceiver {

public static void main (String[] args) {

CMPT401 Chapter 5, Summer 04 14

MulticastSocket s;

InetAddress group;

try {

group = InetAddress.getByName("239.1.2.3");

s = new MulticastSocket(3456);

s.joinGroup(group);

byte[] buf = new byte[100];

DatagramPacket recv =

new DatagramPacket(buf, buf.length);

s.receive(recv);

System.out.println (new String(buf));

s.close();

}

catch (Exception ex) { ex.printStackTrace();

} //end catch

}//end main

} //end class

In order to run, first start a few receivers; they will block on s.receive(). Then start
the sender; it will send the message, ”This is a test msg.”, and stop. Then the receivers will
get unblocked and receive the message and stop.

5.6 ISIS vector clock

As we saw earlier, the vector logical clocks exactly incorporate the happened-before (i.e.,
causally-precedes) relation. Thus, upon reception of a message M with vector timestamp
M.ts , process Pi can determine if it has already received a message which is causally preceded
by M . If Vi > M.ts, it has indeed received such a message and a causality violation has
occurred.

For a concrete example, see Fig. 7, where processor P decides to migrate an object O to
processor Q.4 In the meantime, process R is looking for O: it sends an enquiry message to
P and is told by message M2 that O is now at Q, but discovers by sending message M3 to
Q that Q doesn’t have it. What’s gone wrong? The problem here is that message M1 that
causally precedes message M3 arrived at Q after M3. It’s like you get an official letter firing
you from your boss after you have heard a rumour that you have been fired.

Note that causality violations can occur even if all communication channels are FIFO as
in Fig. 7. To releave the application programmers from the problems caused by causality
violations, we want to design the communication subsystem that delays the delivery of
messages that arrived “too soon”, in such a way that no causality violation can occur. Let
M = M1 in Fig. 7. We want to hold back the delivery of message M to process P until
there is a guarantee that no message M ′ with M ′.ts < M.ts will arrive at P in the future.
The ISIS system uses multicasting to provide such a guarantee.

4Here we identify a processor with the process running on it.

CMPT401 Chapter 5, Summer 04 15

212
212

202 202

201

101

100

201

RQ

to Q
"Where is O?"

M2

100 001

VIOLATION!

P

Migrate O

"On Q"

"Don’t know"

"Where is O?"
M3

M1

Figure 7: Causality violation detection.

In ISIS, only the sending events advance the local component of the vector clock. Thus,
we need to modify the definition of the vector time, so that the ith component of the vector
time is the sequence number of messages generated by processor Pi. Each processor Pi

maintains the local vector clock Li = 〈L[1], . . . , L[n]〉. We have explained above how its
local component L[i] is advanced. For j = 1, 2, . . . , n, j 6= i, L[j] is the sequence number of
the most recent message from Pj that has arrived and delivered; it does not reflect those
messages from Pj, if any, currently in the holdback queue. Initially, L[j] = 0 for all j,

Suppose a new message M multicast by Pj arrives at Pi. Pi compares the vector times-
tamp of the message M.ts (call it V) and its own local vector clock Li and delivers M if the
following two conditions are satisfied:

1. V [j] = L[j] + 1 (M is the next expected message from Pj),

2. V [k] ≤ L[k] for all k 6= j.

Condition 2. above means, intuitively, that the receiver is as up-to-date as the sender of
M about the current values of the event counters at the other processors. If V [k] > L[k] for
some k 6= j, then it implies that there is a message M ′ from Pk that the sender Pj knows
about but Pi doesn’t know about. Therefore, Pi must wait until M ′ arrives before delivering
M .

If M is delivered, L[j] is incremented by one, so that L[j] = V [j] will hold. Otherwise,
M is held back until the arrival and delivery of other messages (such as M ′ in the previous
paragraph) make the above conditions satisfied for M . In Fig. 8(a), when M1 arrives with
timestamp M1.ts = 〈110〉, P3 delays its delivery because L3 = 〈000〉 and M1.ts = 〈110〉
violate condition 2. for component k = 1. Note that P3’s vector time L3 remains 〈000〉.

When M2 arrives at P3, as shown in Fig. 8(b), P3 delivers it and updates its time to
L3 = 〈100〉, and reexamines the timestamp M1.ts. The condition is now satisfied and M1 is
also delivered.

The ISIS scheme works even if the message channel between two processors is not FIFO.

Proof of Correctness

CMPT401 Chapter 5, Summer 04 16

M2

(b)(a)

P1 P2 P3

100

110

P1 P2 P3

M1

100

110

M1
000

100
110

M2.ts = 100
M1.ts = 110 M1.ts = 110

Figure 8: Message delivery: (a) Delivery of M1 is delayed; (b) M2 is delivered first then M1.

In general, to prove a protocol correct, we need to show the following two properties:

1. Safety (bad things don’t happen): No causality violation in the context of message
delivery.

2. Liveness (good things keep happening): Livelock-free (starvation-free), i.e., no mes-
sage will wait forever in the hold-back Q.

(a) Safety: Messages are delivered without violating the causality order.
Consider two messages M1 (from Pj) and M2 (from Pk) received by Pi such that the

sending event m1 of M1 precedes the sending event m2 of M2 (m1 → m2), i.e.,

M1.ts(= IC j(m1)) < M2.ts(= IC k(m2)) (1)

where IC j(a) denotes the ISIS vector clock value at Pj for event a. (Before this proof, we
used a simpler notation, Lj, to denote IC j.)

We assume that Pi delivered M2 before M1 and derive a contradiction. Just before Pi

delivered M1, by condition 1,

IC i[j] = IC j(m1)[j] − 1 hence IC i[j] < IC j(m1)[j]. (2)

However, the delivery of M2 by Pi prior to that would have resulted in (condition 2),

IC ∗

i [j] ≥ IC k(m2)[j]. (3)

Since IC ∗

i [j] < IC i[j] (M2 was delivered before M1), from Eqs. (2) and (3), we have
IC k(m2)[j] < IC j(m1)[j]. However, this contradicts Eq. (1).

(b) Liveness: You never get into a situation where one or more messages get stuck in
holdback queues and are not delivered.

Informally, the delivery conditions (1) and (2) for msg M are satisfied if and only if the
receiver (Pi) of M has received and delivered all messages that the sender (Pj) had delivered
and sent before sending M . This will eventually happen, because they will all arrive at the
receiver. Let M be a msg in the holdback Q, which is not preceded by any other msg in Q.
Then this M satisfies the above condition, and would have been delivered, a contradiction.

CMPT401 Chapter 5, Summer 04 17

More formally, the delivery condition (1) is satisfied when all the messages sent by Pj

before M arrive and are delivered. Condition (2) is satisfied when all the message that
sender Pj know about when it sent M also arrive and are delivered. When they all arrive
eventually, they will be delivered, since every message in the holdback Q is tested against
the delivery conditions each time a new message arrives and is delivered. So, if there exists
a delivery order, it will be discovered and carried out. Note that a greedy delivery is OK,
since advancing any component of IC i is beneficial for condition (2) to be satisfied.

To proceed more formally, note that

1. All messages sent from one site are linearly ordered by the “precedes” relation.

2. The set of the timestamps of all messges is a partially ordered set, and therefore any
subset of the set is also partially ordered.

Suppose the subset corresponding to the messages in the holdback Q of a process Pi is non-
empty. This Q contains at least one message M (from, say, Pj) that is not preceded by any
other message in the Q. Thus, all msgs M ′ with M ′.ts ≤ M.ts, i.e., all msgs Pj had delivered
prior to sening M , have already been delivered by Pi. This implies that ICi[k] ≥ M.ts[k]
for all k 6= i, i.e., delivery condition (2) is satisfied.

Since Pi has delivered all messages from Pj that precede M , IC i[j] + 1 = M.ts (this is
delivery condition (1)). Therefore, M is deliverable. This contradicts the assumption that
M was in Q.

2

