
1

1

Logical time and logical clocks

Knowing the ordering of events is important
not enough with physical time

Two simple points [Lamport 1978]
the order of two events in the same process
the event of sending message always happens before the
event of receiving the message.

happened-before relations: partial order,
HB1, HB2
HB3 means happened-before relation is transitive

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

Not all events are related by →, e.g., a → e and e → a
they are said to be concurrent; write as a || e

a → b (at p1) c →d (at p2) b → c (m1) also d → f (m2)

2

2

Lamport’s logical clocks

It is a monotonically increasing software counter. It
need not relate to a physical clock
Each process pi has a logical clock Li

LC1: Li is incremented by 1 before each event
at process pi

LC2: (a) when process pi sends message m, it
piggybacks t = Li

(b) when pj receives (m,t), it sets Lj :=
max(Lj, t) and applies LC1 before
timestamping the event receive (m)

e → e’ ⇒ L(e) < L(e’) but not vice versa
Example: event b and event e
shortcoming of Lamport’s clock

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

3

3

Vector clocks (Mattern [1989] and Fidge
[1991])

Fix the problem in Lamport’s clock
Vector clock: an array of N integers for a system
with N processes. Each process Pi has its own local
vector clock Vi.
Rules for updating clocks:

VC1:initially Vi[j] = 0 for i, j = 1, 2, …N
VC2:before pi timestamps an event it sets Vi[i] := Vi[i] +1
VC3: pi piggybacks t = Vi on every message it sends
VC4: when pi receives (m,t) it sets Vi[j] := max(Vi[j] , t[j])
j = 1, 2, …N (then adds I to its own element using VC2)

• Merge operation

E.g. at p2, (0, 0, 0) -> (0, 1, 0) -> (0, 2, 0) ->
(0, 3, 0) … -> (1, 4, 3)

Now, received a mes. from p3 that piggybacks t = (1,0,3).

Vi[i] is precise information; Vi[j] (j≠ i) is updated
from received messages.

In RIP, periodic updates and triggered updates
only triggered updates by received messages

4

4

Compare vector timestamps
Meaning of =, <=, < for vector timestamps

(1) V = V’ iff V[j] = V’[j] for j = 1, 2, …, N
(2) V ≤ V’ iff V[j] ≤ V’[j] for j = 1, 2, …, N
(3) V < V’ iff V ≤ V’ and V ≠ V’

Examples: (1, 3, 2)<(1, 3, 3); (1, 3, 2)| |(2, 3, 1)
Note that e → e’ implies V(e) < V(e’). The
converse is also true.

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

5

5

Global states

Hard to obtain a global state of distributed system
consists of states of multiple processes and channel states
concurrency, independent failure, no global clock
only by message passing the state of each process (data
and variables), is private information.

If all processes do agree on the time, the state
recorded at processes is a global state of the
system.

But, no perfect clock synchronization

How to obtain a meaningful global state from local
states recorded at different real times?
Some definitions

A history hi of process pi is a series of events happened at
process pi.
The state of process pi just before the k-th event is
denoted by si

k.
A global history H is the union of the N process histories.
A cut is a subset of its global history that is a union of
prefixes of process histories.
The global state of a cut is the set of states S=(s1,…,sN),
where si is the state of pi just after the last event of pi in
the cut.

6

6

Cut

A cut C divides all events to PC (those happened
before C) and FC (future events)
A Cut C is consistent if there is no message whose
sending event is in FC and whose receiving event is
in PC

Inconsistent cut: an ‘effect’ without a ‘cause’
it’s enough to check message sending and receiving
events in the cut
Consistent/inconsistent states.

m1 m2

p1

p2
Physical

time

e1
0

Consistent cut
Inconsistent cut

e1
1 e1

2 e1
3

e2
0 e2

1 e2
2

7

7

Global states

Consider the execution of a distributed system as a
sequence of transitions between global states of the
system.
In each transition, exact one event happens at some
single process in the system.

sending message event, receiving message event, or an
internal event

A run is an ordering of the events that satisfies the
happened-before relation in one process.
A consistent run is an ordering of the events that
satisfies all the happened-before relations.
Clearly, not all runs pass through consistent global
states, but all consistent runs do pass through
consistent global states.
We say that a state S’ is reachable from a state S if
there exists a consistent run from S to S’.

May exist more than one consistent run, since the
ordering from happened-before relation is a partial order.

8

8

Global states of distributed systems
‘Snapshot’ algorithm, [Chandy & Lamport 1985]: to
determine global states of distributed systems.

It’s a distributed algorithm to collect local states.
Another approach is to collect local states in a centralized
fashion.

processes Monitor process.
Example: distributed debugging

Evaluating possibly predicate X, evaluating definitely predicate
X’.

Collecting the state
state messages
two simple ways to reduce the state-message traffic to the
monitor.

• predicate may depend on only partial part of the processes’
states

• send their state when the predicate may be changed
Obtaining consistent global states

The ordering of states, from the vector timestamps of the state
messages.

• Since different message latencies, not depend on the
ordering of received state messages.

9

9

Check if one global state is
consistent

Let S=(s1,…,sN) be a global state received from the
state messages.
Let V(si) be the vector timestamp of state si,
received from pi.
S is a consistent global state if and only if:
V(si)[i] >= V(sj)[i] for i,j=1,…,N.

Sij = global state after i events at process 1
and j events at process 2

S00

S10

S20

S21S30

S31

S32

S22

S23

S33

S43

Level 0

1

2

3

4

5

6

7

m1 m2

p1

p2
Physical

time

Cut C1

(1,0) (2,0) (4,3)

(2,1) (2,2) (2,3)

(3,0)
x1= 1 x1= 100 x1= 105

x2= 100 x2= 95 x2= 90

x1= 90

Cut C 2

10

1
0

Algorithms to evaluate possibly X
and definitely X’

To evaluate “possibly”: evaluate the value at each
reachable node from initial state. Stops when it
evaluates to True.
To evaluate “definitely”: find a set of states such
that all consistent runs must pass (a separator in
graph theory), then the evaluation value of each
state in this set is true.

11

1
1

Transactions and concurrency control

The goal of transactions
the objects managed by a server must remain in a
consistent state

• when they are accessed by multiple transactions and
• in the presence of server crashes

Recoverable objects
can be recovered after their server crashes
objects are stored in permanent storage

A transaction is a set of operations on objects,
specified by a client, to be performed as a unit
operation at the server side.

a unit operation for other clients

Chapter 13 focuses on the issues for a transaction at
a single server. Chapter 14 discusses issues for
transactions that involve several servers.

12

1
2

Bank example
Operations of the Account interface

Simple synchronization (without transactions)
multiple threads several client operations concurrently

inconsistent states
objects should be designed for safe concurrent access
Synchronized method in Java: each time, only one thread
can be used to access an object.
E.g. public synchronized void deposit(int amount) throws
RemoteException
atomic operations are free from interference from
concurrent operations in other threads.
use any available mutual exclusion mechanism (e.g.
mutex)

Failure model: disks, servers, communication
Stable storage: atomic write operation, by replicating
Stable processor: using stable storage to recover objects
Reliable RPC

deposit(amount)
deposit amount in the account

withdraw(amount)
withdraw amount from the account

getBalance() -> amount
return the balance of the account

setBalance(amount)
set the balance of the account to amount

13

1
3

Transactions

Transactions originally come from database
management systems.
Transactional file servers were built in the 1980s
Transactions on distributed objects late 1980s and
1990s.
From client’s viewpoint, a transaction=single step.
A client’s banking transaction

Atomicity of transactions
they are not affected by operations being performed for
other concurrent clients (called “isolation”);
either all of the operations are completed successfully or
they have no effect at all in the presence of server crashes
(called “all or nothing” effect)

Transaction T:
a.withdraw(100);
b.deposit(100);
c.withdraw(200);
b.deposit(200);

14

1
4

Transactions
Isolation

Synchronize operations at server side
One way: perform the transaction serially

• not suitable for servers whose resources are shared by
multiple users

• The aim for any server that supports transactions is to
maximize concurrency.

concurrency control

“All or nothing”
the objects must be recoverable
When a server acknowledges the completion of a client’s
transaction, record the objects in permanent storage

How to add transaction capabilities to servers?

Each transaction is created and managed by a coordinator
A transaction: cooperation between a client program, some
recoverable objects, and a coordinator.
invokes “openTransaction” to introduce a new transaction
(TID: transaction identifier), e.g. deposit(trans, amount)
invokes “closeTransaction” to indicate its end.

openTransaction() -> trans;
closeTransaction(trans) -> (commit, abort);
abortTransaction(trans);

15

1
5

Concurrency control
Two well-known problems of concurrent
transactions
Assume that the operations deposit, withdraw,
getBalance and setBalance are synchronized
operations (atomic).
‘lost update’ problem

two transactions both read the old value of a variable and
use it to calculate a new value

‘Inconsistent retrieval’ problem
a retrieval transaction runs concurrently with an update
transaction.

There is no such problem if transactions are done
one at a time
Serially equivalent interleaving

An interleaving of the operations of transaction such that
its effect is the same as if the transactions are performed
one at a time
avoid these problems

the same effect means
the read operations return the same values
the instance variables of the objects have the same values
at the end

16

1
6

Recoverability from aborts
Dirty reads

caused by the interaction between a read operation in one
transaction U and an earlier write operation in another
transaction T on the same object, and after U is
committed, T is aborted.
a transaction that committed with a ‘dirty read’ is not
recoverable
Fix: delays the commit operation
Cascading aborts: the aborting of the transactions may
cause other transactions to be aborted.
To avoid it, transactions are only allowed to read objects
that were written by committed transactions.
Avoidance of cascading aborts is a stronger condition
than recoverability

Premature writes
caused by the interaction between ‘write’ operations on
the same object, in different transactions.

Strict executions of transactions
to avoid both ‘dirty reads’ and ‘premature writes’.

• delay both read and write operations
executions of transactions are called strict if both read
and write operations on an object are delayed until all
transactions that previously wrote that object have either
committed or aborted.

17

1
7

Concurrency control approaches
serialize transactions in their access to objects, to
achieve ‘isolation’
Locking

Used by most practical systems
set a lock on each object just before it is accessed, and
remove these locks when the transaction has completed.
The lock is labeled with the transaction ID.
Only the corresponding transaction can access that locked
object. Other transaction may wait or in some cases, share
the lock (such as sharing read locks).
Problem: deadlock

optimistic concurrency control
a transaction proceeds until it asks to commit
before it’s allowed to commit, the server will check if this
transaction has some performed operations on objects that
conflict with the operations of other concurrent
transactions.

timestamp ordering
For each object, the server records the most recent time of
reading and writing operation on it;
For each operation, the timestamp of the transaction is
compared with the timestamp of the object to determine
whether the operation can be done, delayed or rejected.

