
2005/9/22 1

4.3. External data representation and marshalling

At language-level data are stored in data structures
At TCP/UDP-level data are communicated as ‘messages’ or
streams of bytes – hence, conversion/flattening is needed

Converted to a sequence of bytes
Problem? Different machines have different primitive data reps,

Integers: big-endian and little-endian order
float-type: representation differs between architectures
char codes: ASCII, Unicode

Either both machines agree on a format type (included in parameter list)
or an intermediate external standard is used:

External data representation: an agreed standard for the representation of
data structures and primitive values
e.g., CORBA Common Data Rep (CDR) for many languages; Java object
serialization for Java code only

2005/9/22 2

4.3. External data representation and marshalling

Marshalling: process of taking a collection of data items and assembling
them into a form suitable for transmission
Unmarshalling: disassembling (restoring) to original on arrival
Three alter. approaches to external data representation and marshelling:

CORBA’s common data representation (CDR)
Java’s object serialization
XML (Extensible Markup Language) : defines a textual format for rep. structured data

First two: marshalling & unmarshalling carried out by middleware layer
XML: software available

First two: primitive data types are marshalled into a binary form
XML: represented texually

Whether the marshalled data include info concerning type of its contents?
CDR: no, just the values of the objects transmitted
Java: yes, type info in the serialized form
XML: yes, type info refer to externally defined sets of names (with types), namespaces

2005/9/22 3

4.3. External data representation and marshalling

Although we are interested in the use of external data
representation for the arguments and results of RMIs and
RPCs, it has a more general use for representing data
structures, objects, or structured documents in a form
suitable for transmission or storing in files

2005/9/22 4

4.3. External data representation and marshalling

CORBA CDR
15 primitive types: short, long, unsigned short, unsigned long,
float, double, char, boolean, octet, any
Constructed types: sequence, string, array, struct, enum and
union

note that it does not deal with objects (only Java does: objects
and tree of objects)

Type Representation

sequence length (unsigned long) followed by elements in order

string length (unsigned long) followed by characters in order (can also

can have wide characters)

array array elements in order (no length specified because it is fixed)

struct in the order of declaration of the components

enumerated unsigned long (the values are specified by the order declared)

union type tag followed by the selected member

2005/9/22 5

4.3. External data representation and marshalling

The flattened form represents a Person struct with value: {‘Smith’, ‘London’, 1934}

0–3
4–7
8–11
12–15
16–19
20-23
24–27

5

"Smit"

"h___"

6

"Lond"

"on__"

1934

index in
sequence of bytes 4 bytes

notes
on representation
length of string

‘Smith’

length of string
‘London’

unsigned long

2005/9/22 6

4.3. External data representation and marshalling

Type of a data item not given: assumed sender and recipient
have common knowledge of the order and types of data items
Types of data structures and types of basic data items are
described in CORBA IDL

Provides a notation for describing the types of arguments
and results of RMI methods

Struct Person {
string name;
string place;
unsigned long year;

};

2005/9/22 7

4.3. External data representation and marshalling

Java object serialization
Both objects and primitive data values may be passed as arguments
and results of method invocations
The following Java class is equivalent to Person struct

public class Person implements Serializable {
private String name;
private String place;
private int year;
public Person(String aName, String aPlace, int aYear) {

name = aName;
place = aPlace;
year = aYear;

}
// followed by methods for accessing the instance variables

}

Serializable interface (provided in java.io package) allows its
instances to be serialized

2005/9/22 8

4.3. External data representation and marshalling

Serialization: flattening objects into a serial form
for storing on disk or transmitting in a message
Deserialization: restoring the state of objects from
serialized form

Assumed has no prior knowledge of the types of the
objects in the serialized form
Some information about the class of each object is
included in the serialized form

2005/9/22 9

4.3. External data representation and marshalling

Java objects can contain references to other
objects

All objects it references are serialized
References are serialized as handles

A handle is a reference to an object within the
serialized form
Each object is written once only
Handle is written in subsequent occurrences

2005/9/22 10

4.3. External data representation and marshalling

To serialize an object:
(1) its class info is written out: name, version number
(2) types and names of instance variables

If an instance variable belong to a new class, then new class info must be
written out, recursively
Each class is given a handle

(3) values of instance variables

Example: Person p = new Person(“Smith”, “London”, 1934);

The true serialized form contains additional type markers; h0 and h1 are handles

Serialized values
Person

3

1934

8-byte version number

int year

5 Smith

java.lang.String
name

6 London

h0

java.lang.String
place

h1

Explanation

class name, version number

number, type and name of
instance variables

values of instance variables

2005/9/22 11

4.3. External data representation and marshalling

To make use of Java serialization:
To serialize: create an instance of ObjectOutputStream
Invoke writeObject method passing Person object as argument

To deserialize: create an instance of ObjectInputStream
Invoke readObject method to reconstruct the original object

ObjectOutputStream out = new ObjectOutputStream(…);
out.writeObject(originalPerson);

ObjectInputStream in = new ObjectInputStream(…);

Person thePerson = in.readObject();

2005/9/22 12

4.3. External data representation and marshalling

Use of reflection
Reflection: inquiring about class properties, e.g., names, types
of methods and variables, of objects
Allows to do serialization and deserialization in a generic
manner, unlike in CORBA, which needs IDL specifications

For serialization, use reflection to find out (1) class name of
the object to be serialized and (2) the names, types and (3)
values of its instance variables
For deserialization, (1) class name in the serialized form is
used to create a class, (2) it is then used to create a
constructor with arguments types corresponding to those
specified in the serialized form. (3) the new constructor is
used to create a new object with instance variables whose
values are read from the serialized form

2005/9/22 13

4.3. External data representation and marshalling
Each process contains objects, some of which can receive remote

invocations, others only local invocations
Those that can receive remote invocations are called remote objects

Java and CORBA support distributed object model
Objects need to know the remote object reference of an object in another

process in order to invoke its methods
The remote interface specifies which methods can be invoked remotely
Remote object references are passed as arguments and compared to

ensure uniqueness

invocation invocation
remote

invocation
remote

local
local

local
invocation

invocation
A B

C

D

E

F

2005/9/22 14

4.3. External data representation and marshalling
A remote object reference must be unique over space and time

Over space: there may be many processes hosting remote objects
Over time: It should not be reused after the object is deleted. Why not?

its potential invoker may retain obsolete references
(IP address + port #) + (time of creation + local object number)

local object number is incremented each time an object is created in that process
identifies the object within the process
in case objects live only in the process that created them, the reference

can be used as an address of the remote object
to allow remote objects to be relocated in a different process on a

different computer, the reference cannot be used as address

Its interface tells the receiver what methods it has (e.g. class Method)

Internet address port number time object number interface of
remote object

32 bits 32 bits 32 bits 32 bits

2005/9/22 15

4.4. Client-Server communication
Designed to support typical client-server interactions
Request-reply: usually synchronous (why?)
Request-reply protocol: built over UDP or TCP (unnece. overheads)

ack redundant (why?)
connection establishing overhead
flow control overhead, redundant for majority of invocations,

which pass only small arguments and results

Request

ServerClient

doOperation

(wait)

(continuation)

Reply
message

getRequest

execute
method

message
select object

sendReply

2005/9/22 16

4.4. Client-Server communication
Request-reply protocol: 3 primitives

public byte[] doOperation (RemoteObjectRef o, int methodId, byte[] arguments)
sends a request message to the remote object and returns the reply.
The arguments specify the remote object, the method to be invoked and
the arguments of that method.

public byte[] getRequest ();
acquires a client request via the server port.

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort);
sends the reply message reply to the client at its Internet address and port.

Request

ServerClient

doOperation

(wait)

(continuation)

Reply
message

getRequest

execute
method

message
select object

sendReply

2005/9/22 17

4.4. Client-Server communication
Request-reply message structure:

messageType
requestId
objectReference
methodId
arguments

int (0=Request, 1= Reply)

int
RemoteObjectRef

int or Method

array of bytes

Internet address port number time object number interface of
remote object

32 bits 32 bits 32 bits 32 bits

Marshalled RemoteObjectRef:

2005/9/22 18

4.4. Client-Server communication
Message identifiers may be required by some schemes:

duplicate request handling
requestId: taken from an increasing sequence of

integers by the sending process
identifier for the sender process: IP address + port #

Duplicate request handling: (scenario?)
if reply not sent: make sure only execute once
if reply sent: need to re-execute, two cases

a server whose operations are all idempotent, ok

idempotent operation: can be performed repeatedly with the
same effect as if only performed exactly once (e.g.?)

otherwise, use a “history”, record of transmitted messages

2005/9/22 19

Summary
Heterogeneity is an important challenge to designers:

-Distributed systems must be constructed from a variety of different networks,
operating systems, computer hardware and programming languages

-The Internet communication protocols mask the difference in networks
and middleware can deal with the other differences

External data representation and marshalling
- CORBA marshals data for use by recipients that have prior knowledge of the
types of its components. It uses an IDL specification of the data types
- Java serializes data to include information about the types of its contents,
allowing the recipient to reconstruct it. It uses reflection to do this

RMI
- each object has a (global) remote object reference and a remote interface that
specifies which of its operations can be invoked remotely
- local method invocations provide exactly-once semantics; the best RMI can
guarantee is at-most-once
- Middleware components (proxies, skeletons and dispatchers) hide details of
marshalling, message passing and object location from programmers

2005/9/22 20

4.4. Client-Server communication
HTTP: an example of a request-reply protocol (TCP based)
Self-read
Projects?

http://www.ida.liu.se/~TDDB37/labs/

