
CMPT 383 Midterm 1, Summer 2019 
Last name  

exactly as it appears on student card 

 

 

First name  
exactly as it appears on student card 

 

 

SFU Student #  

 

        

SFU email  
ends with sfu.ca 

 

 

 

This is a closed book exam: notes, books, computers, calculators, electronic devices, etc. are not 

permitted. Do not speak to any other students during their exam or look at their work. If you have a 

question, please remain seated and raise your hand and a proctor will come to you. 

 

 
Out 
of 

Your 
Mark 

Deep Functions 10  

 

Folding 10  

 

Short Answer: Scheme 10  

 

Currying and Continuations 10  

 

Haskell 5  

 

   

 Total 45  

 

 

 

  



CMPT 383, SFU Midterm 1 Summer 2019 

Instructor: T. Donaldson   Page 2 of  6 

Deep Functions 
(10 marks) Write a "deep" function called (deep-a2b x) that works as follows: 

• If x is the symbol 'a, then 'b is returned. 

• If x is a non-list other than 'a, then x is returned. 

• If x is a list, it returns a new list that is the same as x, except all occurrences of the symbol 'a  

(even ones deeply nested within sub-lists) have been replaced with the symbol 'b. The structure 

of x is not changed. 

For example: 

> (deep-a2b 'a) 
b 

> (deep-a2b 'm) 
m 

> (deep-a2b '(a 4 (b a c))) 
(b 4 (b b c)) 

> (deep-a2b '((a) (1 (((a)) cat) 2))) 
((b) (1 (((b)) cat) 2)) 

Use only basic Scheme functions that are part of standard Scheme and were discussed in the lectures and 

notes (no loops!). 

Make sure to use good Scheme programming style and perfect indentation: make your code easy to read. 

 

 

  



CMPT 383, SFU Midterm 1 Summer 2019 

Instructor: T. Donaldson   Page 3 of  6 

Folding 
a) (5 marks) Give an implementation of the right fold function. Call it foldr and use only recursion and 

basic Scheme code in your solution. 

 

 

 

 

 

 

 

 

 

b) (5 marks) Write a version of Scheme’s map function called mymap in terms of the foldr function 

above. It should use only basic Scheme functions (besides foldr) and should not use recursion. 

  



CMPT 383, SFU Midterm 1 Summer 2019 

Instructor: T. Donaldson   Page 4 of  6 

Short Answer: Scheme 

a) (3 marks) In Scheme, implement the compose 

function. It takes two single-input functions as input 

and returns a new function that is their composition. 

 
 
 
 
 
 
 
 
 
 
 

b) (2 marks) What does this expression evaluate to? 

 

((compose cdr car) '((a b c) (1 2 3))) 
 

 
 
 

c) (2 marks) What does this expression evaluate to? 

 
((compose car cdr) '((a b c) (1 2 3))) 
 

 

 

d) (3 marks) In each of the three boxes on the right, 

write a different Scheme expression that, when typed 

into the MIT Scheme interpreter, will make it print 

exactly this on the screen: 

 
(append (a (b)) (1 2)) 
 
Of course, MIT Scheme includes extra information like 

“;Value 13:” before the expression, but you should 

ignore that for this question. 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

  



CMPT 383, SFU Midterm 1 Summer 2019 

Instructor: T. Donaldson   Page 5 of  6 

Currying and Continuations 
a) (3 marks) Write a definition for a curried version of the cons function called c-cons. Don’t use any 

pre-defined currying function (such as curry2).  

 

 

 

 

 

b) (3 marks) Suppose f is any curried function that takes two inputs. Write a general-purpose function 

called (uncurry2 f) that returns an uncurried version of f. 

 

 

 

 

c) (2 marks) Write a continuation-passing style (CPS) version of the cons function named cons-c. 

 

 

 

 

 

d) (2 marks) What is the main application of continuation-passing style? 

  



CMPT 383, SFU Midterm 1 Summer 2019 

Instructor: T. Donaldson   Page 6 of  6 

Haskell 
(5 marks) Write a function (including its signature) called count that takes one Char and one String as 

input and returns the number of times the character appears in the string. For example: 

> count 'a' "tuna" 
1 

> count 'b' "tuna" 
0 

> count 'p' "pepper" 

3 

> count 'e' "" 

0 

To get full marks, don’t use recursion in your solution. 


