
CMPT 383 Midterm 1, Fall 2019
Last name

exactly as it appears on student card

First name
exactly as it appears on student card

SFU Student #

SFU email
ends with sfu.ca

This is a closed book exam: notes, books, computers, calculators, electronic devices, etc. are not

permitted. Do not speak to any other students during their exam or look at their work. If you have a

question, please remain seated and raise your hand and a proctor will come to you.

Out
of

Your
Mark

Racket and EBNF 15

You Be the Interpreter! 10

Short Answer 10

 Total 35

CMPT 383, SFU Midterm 1 (Solutions) Summer 2019

Instructor: T. Donaldson Page 2 of 9

Racket and EBNF
Consider the following Racket-like language for prefix expressions involving just + and *. Both + and *

have exactly 2 arguments, and numbers and symbols (as permitted by Racket's number? and symbol?

functions) are considered legal expressions. Here are some example expressions:

Legal Not Legal
4.5 "4.5"
cat (cat)
(+ 4 -2) (+ 4)
(* a (* 2 2)) (a * (* 2 2))
(+ (* a b) (+ 4 mouse)) (+ 2 (* a b) (+ 4 mouse))

We’ll call this language AM for short.

a) (5 marks) Write an EBNF grammar that describes the syntax of AM. Use the Go-style EBNF notation

as used in lectures and in the notes.

 expr = number

 | symbol

 | "(" op expr expr ")" .

 op = "+" | "*" .

 number = a valid Racket number according to number? .

 symbol = a valid Racket symbol according to symbol? .

CMPT 383, SFU Midterm 1 (Solutions) Summer 2019

Instructor: T. Donaldson Page 3 of 9

b) (10 marks) Write a Racket function called (am-eval e) that evaluates any valid AM expression e. If

e doesn't contain any variables, then return the number that it evaluates to. If e contains one, or more,

variables, then return the symbol 'unknown. You can assume e is a valid AM expression.

For example:

> (am-eval '(+ (* 2 3) (+ 4 5)))

15

> (am-eval '(+ (* 2 3) (+ (* 4 y) 5)))
'unknown

You can use any standard Racket functions, and you can write helper functions if needed. In addition to

correctness, the following will also be considered by the markers:

• Is the syntax correct? Are relevant language features used appropriately?

• Is there any unnecessary code?

• Is the code readable? For example, is standard Racket-style indentation and spacing used?

;; am-eval1 recursively evaluates e, checking for unknown values as it goes

(define (am-eval1 e)

 (cond [(number? e) e]

 [(symbol? e) 'unknown]

 [else (match e

 [`(,op ,a ,b) (let ([aval (am-eval1 a)]

 [bval (am-eval1 b)])

 (if (and (number? aval)

 (number? bval))

 ((eval op) aval bval)

 'unknown))]

 [_ (error "invalid expression")])]))

;; in am-eval2 the standard Racket eval function is applied
;; to expressions that don’t have any variables

(define (is-var? x)

 (and (symbol? x)
 (not (equal? x '+)) ;; + and * are symbols, and so
 (not (equal? x '*)))) ;; they are special cases

(define (am-eval2 e)

 (cond [(number? e) e]
 [(symbol? e) 'unknown]

 [(ormap is-var? (flatten e)) 'unknown]
 [else (eval e)]))

CMPT 383, SFU Midterm 1 (Solutions) Summer 2019

Instructor: T. Donaldson Page 4 of 9

You Be the Interpreter!
(10 marks) For each of the following Racket expressions, write down on the right what that expression on

the left evaluates to when it is typed into the DrRacket interpreter. If something other than a value is

returned, then describe what happens using one or two words (e.g. for an error you can write “error”).

Note that in the sample solutions, step-by-step derivations are given to help explain what is going on.

Correct answers do not require the steps, just the final correct value.

(- (+ 10 1 2) (* 2 1 0) 2)

(- (+ 10 1 2) (* 2 1 0) 2)
= (- 13 0 2)
= 11

(rest (rest (first '((1 2) (3) (4 5 6)))))

(rest (rest (first
 '((1 2) (3) (4 5 6)))))
= (rest (rest '(1 2))
= (rest '(2))
= '()

(cons (list (+ 5 2)) '(a b))

(cons (list (+ 5 2)) '(a b))
= (cons (list 7) '(a b))
= (cons '(7) '(a b))
= '((7) a b)

(cons 'a (append '(b) (cons 'c '())))

(cons 'a (append '(b)
 (cons 'c '())))
= (cons 'a (append '(b) '(c)))
= (cons 'a '(b c))
= '(a b c)

(let ([a 3] [b 3]) (+ (if (< a b) 1 2)
(if (> a b) 3 4)))

(let ([a 3] [b 3])
(+ (if (< a b) 1 2)
 (if (> a b) 3 4)))
= (+ (if (< 3 3) 1 2)
 (if (> 3 3) 3 4))
= (+ 2 4)
= 6

(apply map (list even? '(5 6 7 8)))

(apply map (list even?
 '(5 6 7 8)))
= (apply map '(<even?-proc>
 '(5 6 7 8)))
= (map <even?-proc> '(5 6 7 8))
= '(#f #t #f #t)

CMPT 383, SFU Midterm 1 (Solutions) Summer 2019

Instructor: T. Donaldson Page 5 of 9

((lambda (x) (cons x `(list ,x))) 'a)

((lambda (x) (cons x `(list ,x))) 'a)
= (cons 'a `(list 'a))
= '(a list a)

(apply (first '(+ *)) '(1 2 3))

(apply (first '(+ *)) '(1 2 3))
= (apply '+ '(1 2 3))
= Error, '+ is a symbol, not a function

In contrast, note that using list instead of a quote

gives a different result:

(apply (first (list + *)) '(1 2 3))
= (apply (first (list + *)) '(1 2 3))
= (apply <proc+> '(1 2 3))
= (<proc+> '(1 2 3))

(foldr append '() (map list '(a b c)))

(foldr append '() (map list '(a b c)))
= (foldr append '() '((a) (b) (c))
= (append '(a) (append '(b)
 (append '(c) '())))
= (append '(a) (append '(b) '(c)))
= (append '(a) '(b c))
= '(a b c)

((lambda (x) (x x)) (lambda (x) (x x)))

It helps to first make this definition:

(define F (lambda (x) (x x))

For example, calling (F 'a) results in error because

Racket tries to evaluate ('a 'a), but 'a is not a

function.

The question asks you to evaluate (F F):

(F F)
= ((lambda (x) (x x)) F)
= (F F)
= ((lambda (x) (x x)) F)
= (F F)
…

It expands forever, and so the expression is an

infinite loop that never returns a value.

(F F) is an interesting expression: it is an infinite

loop that doesn’t use loops or recursion!

CMPT 383, SFU Midterm 1 (Solutions) Summer 2019

Instructor: T. Donaldson Page 6 of 9

Short Answer
a) (2 marks) Describe in brief, clear English the difference between calling a function and calling a macro

in Racket.

A function call evaluates its arguments and passes the resulting values to the function. A macro call

passes its arguments to the functions without first evaluating them.

b) (1 mark) Name two different standard Racket forms that are macros.

if, cond, and, define, match, lambda, let, etc.

c) (1 mark) Racket’s macros are hygienic. What does that mean?

Local variables in macros are automatically renamed (e.g using gensym) to be a unique name that is

different than any other variable in the current environment. This avoids clashes with the names of any

passed-in variables.

d) Consider the following code:

(define x 1)
(define f (lambda (x) (g 3)))
(define g (lambda (y) (+ x y)))

 i) (1 mark) Using static scoping, what does (f 6) evaluate to?

 4

 ii) (1 mark) Using dynamic scoping, what does (f 6) evaluate to?

 9

CMPT 383, SFU Midterm 1 (Solutions) Summer 2019

Instructor: T. Donaldson Page 7 of 9

e) (2 marks) Write a continuation passing style (CPS) version of Racket’s cons function called cons-c.

(define (cons-c x y k) (k (cons x y)))

f) (2 marks) Implement the (curry3 f) function that returns the curried version of any 3-argument

function f.

 (define (curry3 f)

 (lambda (x)

 (lambda (y)

 (lambda (z)

 (f x y z))))

CMPT 383, SFU Midterm 1 (Solutions) Summer 2019

Instructor: T. Donaldson Page 8 of 9

Blank for scratch work

CMPT 383, SFU Midterm 1 (Solutions) Summer 2019

Instructor: T. Donaldson Page 9 of 9

Blank page for scratch work

