
CMPT 383
Quiz #8

December 1, 2005

1. Imagine a language of expressions for representing integers defined by the syntax
rules:

(i) Zero is an expression
(ii) If e is an expression, then so are succ(e) and pred(e).
(iii) If e1 and e2 are expression, then so is add(e1,e2).

An evaluator reduces expressions in this language by applying the following rules
repeatedly until no longer possible:
 succ(pred(e)) = e
 pred(succ(e)) = e
 add(zero,e2) = e2
 add(succ(e1),e2) = succ(add(e1,e2))
 add(pred(e1),e2) = pred(add(e1,e2))
Simplify the expression add(succ(pred(zero)),zero) using:

a) Innermost reduction sequence.
add(succ(pred(zero)),zero)
{ by succ(pred(e)) = e }
add(zero,zero)
{ by add(zero,e) = e }
zero

b) Outermost reduction sequence.

add(succ(pred(zero)),zero)
{ by add(succ(e1),e2) = succ(add(e1,e2)) }
succ(add(pred(zero),zero))
{ by add(pred(e1),e2) = pred(add(e1,e2)) }
succ(pred(add(zero,zero)))
{ by succ(pred(e)) = e }
add(zero,zero)
{ add(zero,e2) = e2 }
zero

c) Can the expression be simplified using another reduction sequence?

add(succ(pred(zero)),zero)
{ by add(succ(e1),e2) = succ(add(e1,e2)) }
succ(add(pred(zero),zero))
{ by add(pred(e1),e2) = pred(add(e1,e2)) }
succ(pred(add(zero,zero)))
{ by add(zero,e2) = e2 }
succ(pred(zero))
{ by succ(pred(e)) = e }
zero

2. Which of the following equations are true for all xs and which are false?

a) []:xs = xs False
b) []:xs =[[],xs] False
c) xs:[] = xs False
d) xs:[] = [xs] True
e) xs:xs = [xs,xs] False
f) [[]] ++ xs = xs False

g) [[]] ++ xs = [xs] False
h) [[]] ++ xs = [[],xs] False
i) [[]] ++ [xs] = [[],xs] True
j) [xs] ++ [] = [xs] True
k) [xs] ++ [xs] = [xs,xs] True

3. Define a data type Direction whose values describe the four major points of the

compass, and define a function reverse for reversing direction.

data Direction = North | South | East | West
 deriving (Enum)

reverse :: Direction -> Direction
reverse d = toEnum(mod (fromEnum d + 2) 4)

or

data Direction = North | South | East | West
 deriving (Eq)

reverse :: Direction -> Direction
reverse d
 | d == North = South
 | d == South = North
 | d == East = West
 | d == West = East

4. Evaluate map (map square) [[1,2],[3,4,5]]

[[1,4],[9,16,25]]

5. The Fibonacci numbers f0, f1, … are defined by the rule that f0=0, f1=1 and
fn+2=fn+fn+1 for all n>=0. Give a definition of the function fib that takes an integer n and
returns fn.

fib :: Integer à Integer
fib 0 = 0
fib 1 = 1
fib (n+2) = fib n + fib (n+1)

6. Using pattern matching, define a function rev2 that reverses all lists of length 2, but
leaves others unchanged. Ensure that the patterns are exhaustive and disjoint.

rev2 :: [a] -> [a]
rev2 [] = []
rev2 (x:[]) = [x]
rev2 (x:y:[]) = [y,x]
rev2 (x:y:z:xs) = (x:y:z:xs)

7. Define a function nextlet that takes a letter of the alphabet and returns the letter coming
after it. Assume that letter ‘A’ follows ‘Z’.

nextlet :: Char à Char
nextlet c
 | c == ‘Z’ = ‘A’
 | c == ‘z’ = ‘a’
 | otherwise = chr(ord c + 1)

8. Explain informally, but clearly and fully, what the function assert_length, defined
below, does.

assert_length :: Integer à [a] à [a]
assert_length 0 xs = []

assert_length (n+1) xs = (head xs) : assert_length n (tail xs)

The function assert_length takes a nonnegative integer n and a list xs as
arguments. This function selects an initial segment (the fist n elements) of the
given list (xs). An error is produced if the list (xs) is smaller than the
number or elements required (n).

