
CMPT 383
Midterm

October 25, 2005

1. (10%) Indicate whether the following statements are True or False

a) The six attributes of a variable are name, alias, type, lifetime, scope, and
address. False

b) In aliasing, one name at a program point refers to two entitie s and only the
context of its instantiation disambiguates it. False

c) A pure interpreter produces a faster program execution than a compiler. False
d) Top-down parsers are LL parsers where 1st L stands for left-to-right scan and

2nd L stands for a leftmost derivation. True
e) The Shift process of a bottom-up parser is the most complicated process. False
f) Bottom-up parsers are in the LR family, where L stands for left-to-right scan

and R stands for rightmost derivation. True
g) An enumeration type is a structured data type. False
h) The size of a union data type is equal to the sum of the size of each variant.

False
i) The input of a lexical analyzer is the set of tokens and its output is a parse tree.

False
j) The variable strBaby_boy uses the Hungarian camel notation. False

2. (5%) Program# 1 is a legal Pascal program:
a) What values do true and false have this program?

Both (true and false) have the value false.

b) What principles does this violate?
Readability à syntax considerations à special words
True and false do no reflect their expected meaning (values).

3. (20%) The following is the syntax definition for identifiers in Java:
An identifier is a sequence of one or more characters. The first character must be a
letter, underscore, or dollar sign. The other characters must be letters, numbers,
underscores, or dollar signs

a) Define Java identifier <id> in BNF.
<id> ::= <char> <char_numbers>
<char> ::= a | b | … | z | A | B | … | Z | _ | $
<number> ::= 0 | 1 | … | 9
<char_number> ::= <char> | <number>
<char_numbers> ::= <char_number> | <char_number> <char_numbers>

b) Define Java identifier <id> in EBNF with only one production rule.

<id> -> (a | b | … | z | A | B | … | Z | _ | $) {(a | b | … | z
| A | B | … | Z | _ | $ | 0 | 1 | … | 9)}

c) Define Java identifier <id> using a syntax diagram.

d) Based on the BNF grammar, write the leftmost derivation for the following

identifier: _state_01$a
<id> => <char> <char_numbers> => _ <char_numbers> => _
<char_number> <char_numbers> => _ <char> <char_numbers> => _ s
<char_numbers> => _ s <char_number> <char_numbers> => _ s <char>
<char_numbers> => _ s t <char_numbers> => _ s t <char_number>
<char_numbers> => _ s t <char> <char_numbers> => _ s t a
<char_numbers> => _ s t a <char_number> <char_numbers> => _ s t
a<char> <char_numbers> => _ s t a t <char_numbers> => _ s t a t
<char_number> <char_numbers> => _ s t a t <char> <char_numbers>
=> _ s t a t e <char_numbers> => _ s t a t e <char_number>
<char_numbers> => _ s t a t e <char> <char_numbers> => _ s t a t
e _<char_numbers> => _ s t a t e _ <char_number> <char_numbers>
=> _ s t a t e _ <number > <char_numbers> => _ s t a t e _ 0
<char_numbers> => _ s t a t e _ 0 <char_number> <char_numbers>
=> _ s t a t e 0 <number > <char_numbers> => _ s t a t e _ 0 1
<char_numbers> => _ s t a t e _ 0 1 <char_number>
<char_numbers> => _ s t a t e _ 0 1 <char > <char_numbers> => _
s t a t e _ 0 1 $ <char_numbers> => _ s t a t e _ 0 1 $
<char_number> => _ s t a t e _ 0 1 $ <char > =>
_ s t a t e _ 0 1 $ a

4. (6%) Given Grammar#1. Show all pairwise disjoint tests for <A>

FIRST(<A1>) = FIRST() = {f,g,c,d,b,∈}
FIRST(<A2>) = FIRST(<C>) = {f,g,c,∈}
FIRST(<A3>) = FIRST(a) = {a}

FIRST() = FIRST(<D>)∪FIRST(b) = {f,g,c,d,b,∈}
FIRST(<D>) = FIRST(<C>)∪FIRST(d)∪{∈} = {f,g,c,d,∈}
FIRST(<C>) = {f}∪{g}∪{c}∪{∈} = {f,g,c,∈}

FIRST(<A1>) ∩ FIRST(<A3>) = ∅ (pass)
FIRST(<A2>) ∩ FIRST(<A3>) = ∅ (pass)
FIRST(<A1>) ∩ FIRST(<A2>) = {f,g,c,∈} (fail)

5. (10%) Given Grammar#2 and its corresponding LR parsing table
a) Show T*(E)+id is a right sentential form of the grammar.
E => E + T => E + F => E + id => T + id => T * F + id
=> T * (E) + id

b) Show the phrases, simple phases, and handle of the above right sentential form.

Phrases: T*(E)+id, T*(E), (E), id
Simple phrases: (E), id
Handle: (E)

c) For sentence id+id*id, for each reduce action in the LR parsing, show the

partial parse tree built by this reduce.

6. (10%) Given Grammar#3. Is the grammar ambiguous? Is the grammar left-recursive?

The grammar is ambiguous because there is more than one parse tree for some strings, such
as ffaga

The grammar is left-recursive because there is the following chain:
<A> => w => <C> w <A> w => <A> g w <A> w

7. (10%) Given Grammar#4. Show that the two conditions for predictive parsing are
satisfied.
First condition:
FIRST(<exp>1) ∩ FIRST((<exp>2) = ∅
FIRST(<exp>1) = {(}

FIRST(<exp>2) = {a}

Second condition:
FIRST(<list>) ∩ FOLLOW(<list>) = ∅
FIRST(<list>) = FIRST(<exp>) = { (, a }
FOLLOW(<list>) = FIRST()) = {) }

8. (12%) Consider the attribute grammar with nonterminals A, B, C, and terminals x
and y. The start symbol is A. The attributes are assigned to these grammar symbols as
indicated by parse tree #1. The grammar (Grammar #5) has 5 productions labeled p, q,
r, s, and t. List the defined and used attribute occurrences.

 Defined Used
p A.attA, C.att2, C.att1 B.attB, C.att3
q A[1].attA, C.att2, C.att1 B.attB, C.att3, A[2].attA
r B.attB, x.attx
s C.att3, x.attx C.att2, C.att1
t C[1].att3, x.attx, C[2].att2, c[2].att1 C[1].att2, C[1].att1, C[2].att3

9. (5%) Given the partial program #2 (Explain your answer)

For variables a, b, c, d, which one is type compatible with which one, in terms of
a) Name type compatibility?
None of a, b, c, d are compatible in terms of name type compatibility.

b) Structure type compatibility?
a is compatible with c
b is compatible with d

10. (12%) Use the partial program #3 (record definition) to answer the following questions.

Assume that char and bool variables take 1 byte, int and pointer variables take
4 bytes and double variables take 8 bytes.

a) How many bytes are needed to store a variable of the student type?
20 + 4 + 4 + 8 = 36

b) What are the offsets (starting position relative to the base address of the data

objects in bytes) for each field in the record?
name 0
id 20
credits 24
gpa 28

c) How many bytes would be needed to store an array of students created with the

following declaration? student class[20];
20 * 36 = 720

d) What is the address of student[10].credits relative to the start of the array?
10 * 36 + 24 = 360 + 24 = 384

Program #1 (Question 2) Program #2 (Question 9)
 struct A {int x; float y;};
program Homer; struct B {float a; int b;};
var true, false : boolean; typedef A C;
begin typedef B D;

(* := is assignment *) A a; B b; C c; D d;
(* = is test for equality *)

 true := 1 = 0; Program #3
 false := true;
 (* here *) typedef struct student {
end. char name[20];

 int id, credits;
 double gpa;

} student;

Grammar #1 (Question 4) Grammar #3 (Question 6)

<A> ::= | <C> | a <A> ::= f <A> g <A>| f <A>| w | a
 ::= <D> | b ::= f <A> w | <C> w <A>
<C> ::= f | g | c <C> | ∈ <C> ::= g | <A> g | g <A> g
<D> ::= <C> d | ∈

Grammar #2 (Question 5) Grammar #4 (Question 7)

<E> ::= <E> + <T> | <T> <exp> ::= (<list>) | a
<T> ::= <T> * <F> | <F> <list> ::= <exp> [<list>]
<F> ::= (<E>) | id

Grammar #5 (Question 8)

p: <A> ::= <C>

 q: <A> ::= <C><A>
 r: ::= y x
 s: <C> ::= x

 t: <C> ::= x <C>

 Parse Tree #1 (Question 8)

LR Parsing Table for Grammar #2 (Question 5)
STACK INPUT ACTION

$ id1+id2*id3$ Shift
$id1 +id2*id3$ Reduce by Fàid
$F +id2*id3$ Reduce by TàF
$T +id2*id3$ Reduce by EàT
$E +id2*id3$ Shift
$E+ id2*id3$ Shift
$E+id2 *id3$ Reduce by Fàid
$E+F *id3$ Reduce by TàF
$E+T *id3$ Shift
$E+T* id3$ Shift
$E+T* id3 $ Reduce by Fàid
$E+T*F $ Reduce by TàT*F
$E+T $ Reduce by EàE+T
$E $ Accept

 <A>

 <C>

 y x x
.attx

.attB

.attx

.att3

.attA

.att1
.att2

