
Chapter 1

Preliminaries

2Chapter 1: Preliminaries

Topics

Motivation
Programming Domains
Language Evaluation Criteria
Language Design Trade-Offs
Influences on Language Design
Language Categories
Implementation Methods

3Chapter 1: Preliminaries

Languages

The purpose of language is communication
n Natural languages
n Programming languages

Writing an English essay:
n Many can write in English

n Few write well

4Chapter 1: Preliminaries

What is a Programming Language?

What is a language?
n A set of rules that enables communication

of ideas between people (between people
and machines).

What is a program?
n A set of instructions intended for machine

execution.

What is a programming language?
n A set of rules that define a set of legal

programs.

5Chapter 1: Preliminaries

I already know a Programming
Language

Why do I need to learn the concepts of
programming languages?
n I already know the latest/greatest/coolest

programming language.
n I can solve any problem using the

programming language that I already know.

6Chapter 1: Preliminaries

What is the best Programming
Language?

Java

C
C++

Perl
Python

Visual Basic
Lisp

Pascal

Prolog

ML
Modula-2

Fortran
Cobol

Smalltalk
Haskell

Algol

7Chapter 1: Preliminaries

No clear winner

Obviously there is no “best” language for all
situations.
n Type of program
n Time available
n Cost
n Size and scope of program
n Programmer familiarity

Real computer programmers do not get religious about their
languages, they get pragmatic and understand the trade-offs in
their language choices.

8Chapter 1: Preliminaries

Reasons to study concepts of PLs

1. Improves ability to express ideas
n Languages influence the way you think and

approach problems.
n As you study new language features it may

help you utilize or extend your own language
skills.

n New features can be later simulated in other
language.

Limit kinds of
control structure

Limit of
constructed algorithms

9Chapter 1: Preliminaries

Reasons to study concepts of PLs

2. Improves background for choosing
appropriate languages
n Helps you understand the trade-offs in

languages.

n Provides alternatives choices that suits the
project’s scope.

Trade-offs in
languages

Informed language
decision

10Chapter 1: Preliminaries

Reasons to study concepts of PLs

3. Increases ability to learn new languages
n There is significant similarity in the

constructs provided by languages so that
learning a language is often just a matter of
syntax.

• Loops (while, for, do)
• Selection (if, case)
• Data types (int, char, string, object)
• Jumps (goto, break, continue)

Data abstraction
concept

Abstract data type
(Java)

11Chapter 1: Preliminaries

Reasons to study concepts of PLs

4. Allows a better understanding of the
significance of implementation
n Why the languages are design the way they

are.

n Recursion vs. Iteration (faster)

Understand
design’s purpose

Ability to use a language
more intelligently

12Chapter 1: Preliminaries

Reasons to study concepts of PLs

5. Increases ability to design new
languages

6. Overall advancement of computing
n Is the most popular programming language

the best choice?

n Why a language is the most popular?

13Chapter 1: Preliminaries

What impacts Programming
Language Design?

Application domain

Evaluation Criteria

Computer architecture

Programming methodologies

14Chapter 1: Preliminaries

What impacts Programming
Language Design?

Application domain

Evaluation Criteria

Computer architecture

Programming methodologies

The set of applications (algorithms)
that we want to implement using

our programming language

15Chapter 1: Preliminaries

Programming Domains

Scientific
n Focus on calculations

Simple data structures
Large numbers of floating-point arithmetic
computations

n Primary concern: efficiency

n Languages: Fortran, Algol 60

16Chapter 1: Preliminaries

Programming Domains

Business
n Focus on reports and calculations

Facilitates the production of reports
Have precise ways of describing and storing
decimal numbers and character data
Specifies decimal arithmetic operations

n Language: Cobol

17Chapter 1: Preliminaries

Programming Domains

Artificial Intelligence
n Use symbolic rather than numeric computations.
n Focus on string and list manipulation
n Languages: Lisp family (Common Lisp, Scheme, ML),

Prolog.

Systems Programming
n Focus on fast execution

Need efficiency because of continuous use

n Low-level features
n Languages: PL/S (IBM), Extended Algol, C

18Chapter 1: Preliminaries

Programming Domains

Scripting Languages
n Putting a list of commands (script) in a file to

be executed.
Little code

n Generally domain specific

n Usually interpreted
n Languages: s h and ksh (for shell), awk

(report-generation), tcl and tk (X Windows),
Perl (CGI programming), JavaScript, PHP

19Chapter 1: Preliminaries

What impacts Programming
Language Design?

Application domain

Evaluation Criteria

Computer architecture

Programming methodologies

The set of factors that are important
to the users of the programming

language

20Chapter 1: Preliminaries

Project Manager’s Dilemma

Which language shall we use in the next
project?
n To come to a decision one needs arguments in favor

or against a language.
There are 4 main criteria:
n Readability
n Writability
n Reliability
n Cost

Are there other factors?

21Chapter 1: Preliminaries

Language Evaluation Criteria

Readability
n The ease with which programs can be read

and understood.
Writability
n The ease with which a language can be

used to create programs.
Reliability
n Reliable performance (according to

specifications) under all conditions.

22Chapter 1: Preliminaries

♦Restricted aliasing

♦Exception handling

♦Type checking

♦♦Expressivity

♦♦Support for abstraction

♦♦♦Syntax design

♦♦♦Data type and structures

♦♦♦Control structure

♦♦♦Simplicity / orthogonality

ReliabilityWritabilityReadabilityCharacteristics

Criteria

Language Evaluation Criteria

23Chapter 1: Preliminaries

Evaluation Criteria: Readability

Readability describes the ease of which
programs can be read and understood.
This is the most important criterion.
It significantly affects the maintainability of
code (mayor cost for programs).
It must be considered in the context of
problem domain.

24Chapter 1: Preliminaries

Evaluation Criteria: Readability

Overall simplicity
n Too many features is bad

n Multiplicity of features is bad.

n Operator overloading makes confusion.

Too simple can be just as much trouble (machine languages
just 0 and 1)

count = count+1
count += 1
count++
++count

C

Factors

Features Domain

Prog. 1 Prog. 2

8 + 4
8.3 + 4.9
“test” + “it”
[1,3,4] + [5,6,1] = [6,9,5] or [1,3,4,5,6,1] or 20?

C

25Chapter 1: Preliminaries

Evaluation Criteria: Readability

Orthogonality
n A small number of primitive constructs

combined in a relative small number of
ways and everything can be combined with
anything else.

Every possible combination is legal.
n Meaning is context independent

Pointer is able to point to any type of variable.
n Makes the language easy to learn and read.
n Lack of orthogonality leads to exceptions to

rules.

Factors

26Chapter 1: Preliminaries

Evaluation Criteria: Readability

Control statements
n Program easier to read from top to

bottom.
Unstructured: GOTO
Structured: loop

Data type and structures
n Not enough structures leads to work-

arounds which can reduce clarity.
Boolean type (vs. 0 and 1)
Record (vs. Arrays)

Factors

loop 1:
if (incr >=20) go to out;

loop 2:
if (sum > 100) go to next;
go to loop2;

next:
incr++;
go to loop 1;

out:

ADA

while((incr < 20) {
while (sum <= 100) {

sum += incr;
}
incr++;

}

C

27Chapter 1: Preliminaries

Evaluation Criteria: Readability

Syntax considerations
n Identifier length and form

Too short equals bad variable names.
n Special words

Block structure
n end vs. end-if and end-loop

Special words

n Form and meaning
Semantics should follows directly from syntax.

Factors

for I in 1..10 loop
if a then
end if;

end loop;

for (i=1; i<10; i++)
{

if (a)
{
}

}

C

