
1

Chapter 4

Lexical and Syntax Analysis

2Chapter 4: Lexical and Syntax Analysis

Topics

Introduction
Lexical Analysis
Syntax Analysis
Recursive -Descent Parsing
Bottom-Up parsing

3Chapter 4: Lexical and Syntax Analysis

Language Implementation

There are three possible approaches to
translating human readable code to
machine code

1. Compilation

2. Interpretation
3. Hybrid

4Chapter 4: Lexical and Syntax Analysis

Compilation

5Chapter 4: Lexical and Syntax Analysis

Introduction

The syntax analysis portion of a
language processor nearly always
consists of two parts:
n A low-level part called a lexical analyzer

Based on a regular grammar.

Output: set of tokens.

n A high-level part called a syntax analyzer
Based on a context-free grammar or BNF

Output: parse tree.
6Chapter 4: Lexical and Syntax Analysis

Issues in Lexical and Syntax
Analysis

Reasons for separating both analysis:
1) Simpler design.

§ Separation allows the simplification of one or the other.
§ Example: A parser with comments or white spaces is more

complex

2) Compiler efficiency is improved.
• Optimization of lexical analysis because a large amount of

time is spent reading the source program and partitioning it
into tokens.

3) Compiler portability is enhanced.
§ Input alphabet peculiarities and other device-specific

anomalies can be restricted to the lexical analyzer.

2

7Chapter 4: Lexical and Syntax Analysis

Lexical Analyzer

First phase of a compiler.

It is also called scanner.
Main task: read the input characters and
produce as output a sequence of tokens.

Process:
Input: program as a single string of characters.
Collects characters into logical groupings and assigns
internal codes to the groupings according to their
structure.

Groupings: lexemes
Internal codes: tokens

8Chapter 4: Lexical and Syntax Analysis

Examples of Tokens

Example of an assignment
result = value / 100;

Token Lexeme
IDENT result

ASSIGNMENT_OP =
IDENT value

DIVISION_OP /

INT_LIT 100
SEMICOLON ;

9Chapter 4: Lexical and Syntax Analysis

Interaction between lexical and
syntax analyzers

source
program

lexical
analyzer

syntax
analyzer

symbol
table

token

get next token

parse
tree

10Chapter 4: Lexical and Syntax Analysis

Lexical Analysis

Secondary tasks:
n Stripping out from the source program

comments and white spaces in the form of
blank, tab, and new line characters.

n Correlating error messages from the
compiler with the source program.

n Inserting lexemes for user-defined names
into the symbol table.

11Chapter 4: Lexical and Syntax Analysis

Building a Lexical Analyzer

Three different approaches:
n Write a formal description of the tokens and

use a software tool that constructs table-driven
lexical analyzers given such a description (e,g,
lex)

n Design a state diagram that describes the
tokens and write a program that implements
the state diagram

n Design a state diagram that describes the
tokens and hand-construct a table-driven
implementation of the state diagram

12Chapter 4: Lexical and Syntax Analysis

State Transition Diagram

Directed graph
Nodes are labeled with state names.
Arcs are labeled with the input characters that
cause the transitions
An arc may also include actions the lexical
analyzer must perform when the transition is
taken.
A state diagrams represent a finite automaton
which recognizes regular languages
(expressions).

3

13Chapter 4: Lexical and Syntax Analysis

State Diagram Design

A naive state diagram would have a transition
from every state on every character in the
source language - such a diagram would be very
large.

In many cases, transitions can be combined to
simplify the state diagram
n When recognizing an identifier, all uppercase and

lowercase letters are equivalent
Use a character class that includes all letters

n When recognizing an integer literal, all digits are
equivalent - use a digit class

14Chapter 4: Lexical and Syntax Analysis

State Diagram: Example

15Chapter 4: Lexical and Syntax Analysis

Syntax Analyzer

The syntax analyzer or parser must determine
the structure of the sequence of tokens provided
to it by the scanner.
Check the input program to determine whether
is syntactically correct.

Produce either a complete parse tree of at least trace
the structure of the complete parse tree.
Error: produce a diagnostic message and recover
(gets back to a normal state and continue the analysis
of the input program: find as many errors as possible
in one pass).

16Chapter 4: Lexical and Syntax Analysis

Parser

Two categories of parsers
n Top-down: produce the parse tree,

beginning at the root down to the
leaves.

n Bottom-up: produce the parse tree,
beginning at the leaves upward to the
root.

17Chapter 4: Lexical and Syntax Analysis

Conventions

Terminal symbols: lowercase letters at the
beginning of the alphabet (a,b,…)
Nonterminal symbols: uppercase letters at the
beginning of the alphabet (A,B,…)
Terminals or nonterminals: uppercase letters at
the end of the alphabet (W,X,Y,Z)
Strings of terminals: lowercase letters at the end
of the alphabet (w,x,y,z)
Mixed strings (terminals and/or nonterminals):
lowercase Greek letters (α,β,δ,γ)

18Chapter 4: Lexical and Syntax Analysis

Top-Down Parser

Build the parse tree in preorder.
o Begins with the root.
o Each node is visited before its branches

are followed.
o Branches from a particular node are

followed in left-to-right order.

Uses leftmost derivation.

4

19Chapter 4: Lexical and Syntax Analysis

Next sentential form?

Given a sentential form xAα, A is the
leftmost nonterminal that could be
expanded to get the next sentential form in
a leftmost derivation.

Current sentential form: xAα
A-rules: A? bB, A? cBb, and A? a
Next sentential form?:

xbBα or xcBbα or xaα

This is known as the parsing decision
problem for top-down parsers.

20Chapter 4: Lexical and Syntax Analysis

Example

<S> ::= <NP> <VP>
<S> ::= <aux> <NP> <VP>
<S> ::= <VP>
<NP> ::= <Proper_Noun>
<NP> ::= <Det> <Nom>
<Nom> ::= <Noun>
<Nom> ::= <Noun> <Nom>
<VP> ::= <Verb>
<VP> ::= <Verb> <NP>

A miniature English grammar

<Det> ::= that| this| a
<Noun> ::= book | flight | meal
<Verb> ::= book | prefer
<Aux> ::= does
<Prep> ::= from | to | on
<Proper_Noun> ::= Houston

21Chapter 4: Lexical and Syntax Analysis

Example: “Book that flight”

Suppose the parser is able to build all possible
partial trees at the same time.
The algorithm begins assuming that the input
can be derived by the designated start symbol S.

The next step is to find the tops of all trees which
can start with S, by looking for all the grammars
rules with S on the LHS.

There are 3 rules that expand S, so the second ply, or
level, has 3 partial trees.

22Chapter 4: Lexical and Syntax Analysis

Example: “Book that flight”

These constituents of these 3 new trees are
expanded in the same way we just expanded
S; and so on.
At each ply we use the RHS of the rules to
provide new sets of expectations for the
parser, which are then used to recursively
generate the rest of the tree.
Trees are grown downward until they
eventually reach the terminals at the bottom
of the tree.

23Chapter 4: Lexical and Syntax Analysis

Example: “Book that flight”

At this point, trees whose leaves fail to match
all the words in the input can be rejected,
leaving behind those trees that represent
successful parses.

In this example, only the fifth parse tree (the
one which has expanded the rule <VP> ::=
<Verb><NP>) will eventually match the input
sentence.

24Chapter 4: Lexical and Syntax Analysis

Top-Down Parser

Parsers look only one token ahead in the
input
n Given a sentential form, xAα , the parser must

choose the correct A-rule to get the next
sentential form in the leftmost derivation,
using only the first token produced by A

The most common top-down parsing
algorithms:
n Recursive descent - a coded implementation
n LL parsers - table driven implementation

5

25Chapter 4: Lexical and Syntax Analysis

Bottom-Up Parser

Bottom-up parsing is the earliest know
parsing algorithm.
Build the parse tree beginning at the
leaves and progressing towards the root.
Order corresponds to the reverse of a
rightmost derivation.
n The parse is successful if the parser

succeeds in building a tree rooted in the start
symbol that covers all of the input.

26Chapter 4: Lexical and Syntax Analysis

Example: “Book that flight”

The parse beginning by looking to each
word and building 3 partial trees with the
category of each terminal.
n The word book is ambiguous (it can be a

noun or a verb). Thus the parser must
consider two possible sets of trees.

n Each of the trees in the second ply is then
expanded, and so on.

27Chapter 4: Lexical and Syntax Analysis

Example: “Book that flight”

n In general, the parser extends one ply to the
next by looking for places in the parse- in-
progress where the right-hand-side of some
rule might fit.

n In the fifth ply, the interpretation of book as a
noun has been pruned because this parse
cannot be continued: there is no rule in the
grammar with RHS <Nominal><NP>

n The final ply is the correct parse tree.
The most common bottom-up parsing
algorithms are in the LR family

28Chapter 4: Lexical and Syntax Analysis

Top-Down vs. Bottom-Up

Advantage (top-down)
n Never waste time exploring trees that cannot

result in the root symbol (S), since it begins by
generating just those trees.

n Never explores subtrees that cannot find a
place in some S-rooted tree

o Bottom-up: left branch is completely wasted
effort because it is based on interpreting book
as Noun at the beginning of the sentence
despite the fact no such tree can lead to an S
given this grammar.

29Chapter 4: Lexical and Syntax Analysis

Top-Down vs. Bottom-Up

Disadvantage (top-down)
n Spend considerable effort on S trees that are

not consistent with the input.

n Firsts four of six trees in the third ply have left
branches that cannot match the word book.

n This weakness arises from the fact that they
can generate trees before ever examining the
input.

