
1

Chapter 3

Attribute Grammars

2Chapter 3: Semantics

Meaning

What is the semantics or meaning of the
expression: 2+3
n Its value: 5

n Its type (type checker): int
n A string (infix-to-postfix translator): + 2 3

The semantics of a construct can be any
quantity or set of quantities associated
with the construct.

3Chapter 3: Semantics

Attribute Grammars

Formalism for specifying semantics based on
context-free grammars (BNF).
Used to solve some typical problems:
n Type checking and type inference
n Compatibility between procedure definition and call.

Associate attributes with terminals and
nonterminals.

Associate semantic functions with productions.
n Used to compute attribute values.

4Chapter 3: Semantics

Attributes

A quantity associated with a construct.
n X.a for attribute a of X (X is either a

nonterminal or a terminal).

Attributes have values:
n Each occurrence of an attribute of an attribute

in a parse tree has a value.

Grammar symbols can have any number
of attributes.

5Chapter 3: Semantics

Example: Evaluating arithmetic
expressions

<exp> ::= <exp> + <term>

<exp> ::= <exp> – <term>
<exp> ::= <term>

<term> ::= <term> * <factor>

<term> ::= <term> div <factor>
<term> ::= <factor>

<factor> ::= (<exp>)
<factor> ::= num

6Chapter 3: Semantics

Example: 7*5
val is the value of the digit
At the root of the parse tree:
n <exp>.val has value 35

At the bottom-left:
n <num>.val has value 7

Attributes for terminal symbols:
n come with the symbol
n the value of the token

Attribute values for nonterminals:
n Defined by semantic rules

Attached to productions

Decorated parse tree
n Attributes attached to the nodes

<exp>. val = 35

<term>. val = 7 <factor>.val = 5

<term>. val = 35

<num>.val = 5<factor>.val = 7

<num>.val = 7

*

2

7Chapter 3: Semantics

Attributes

Syntax symbols can return values (sort of output
parameters)
n Digits can return its numeric value

digit <?val>

Nonterminal symbols can have also input
attributes.
n Parameters that are passed from the “calling”

production.
number <?base, ?val>
n base: number base (e.g. 10 or 2 or 16)
n val: returned value of the number

8Chapter 3: Semantics

Information Flow

inherited

synthesized

... ...

computed

available

9Chapter 3: Semantics

Synthesized Attributes

The values is computed from the values of
attributes of the children.
Pass information up the parse tree
(bottom-up propagation).
S-attribute grammar uses only synthesized
attributes
Example:
n Value of expressions
n Types of expressions

10Chapter 3: Semantics

Inherited Attributes

The values is computed from the values of
attributes of the siblings and parent.
Pass information down the parse tree (top-
down propagation) or from left siblings to
the right siblings
Example:
n Type information
n Where does a variable occur? LHS or RHS

11Chapter 3: Semantics

Example 1
Translating decimal numbers between 0
and 99 into their English phrases.

number phrase
0 zero

10 ten
19 nineteen
20 twenty
31 thirty one

n Translations are based on each digit
31: thirty, the translation of 3 on the left, and one,
the translation of 1 on the right.
Exceptions:
n 30 is thirty , not thirty zero
n 19: is nineteen, not ten nine

12Chapter 3: Semantics

Example 1: Syntax

<number> ::= <digit>
<number> ::= <digit> <set_digit>
<set_digit> ::= <digit>
<digit> ::= 0|1|2|3|4|5|6|7|8|9

<N> ::= <D>
<N> ::= <D> <S>
<S> ::= <D>
<D> ::= 0|1|2|3|4|5|6|7|8|9

3

13Chapter 3: Semantics

Attribute Occurrences

Same attribute can be associated with different
symbols appearing in the same grammar rule.
Attribute occurrenceof a rule p is an ordered
pair of attributes and natural number <a,j>
representing the attribute a at position j in
production p.
Two disjoint subsets:
n Defined occurrences for a production:

The information flowing into a node of the parse tree.
n Used occurrences for a production

The information flowing out a node of the parse tree.

14Chapter 3: Semantics

Rule: S? AB

• Set of inherited attributes of all the grammar symbols on
the LHS plus the set of synthesized attributes of the RHS.

Used Attribute Occurrences

Syn(S)

In(S) In(A) In(B)

synthesized

inherited

S A B

Syn(B)Syn(A)

15Chapter 3: Semantics

Rule: S? AB

• Set of synthesized attributes of all the grammar symbols
on the LHS plus the set of inherited attributes of the RHS.

Defined Attribute Occurrences

Syn(S)

In(S) In(A)

synthesized

inherited

S A B

Syn(B)Syn(A)

In(B)

16Chapter 3: Semantics

Semantic Function

Define a semantic function for every
defined occurrence in terms of the values
of used occurrences.

… …

Rule 1

Rule 2

Defined Used

… …

Function definitions

17Chapter 3: Semantics

Example 1: Semantics
<N> ::= <D> N.trans := spell(D.val)
<N> ::= <D> <S> S.in ::= D.val

N.trans ::= S.trans
<S> ::= <D> S.val := if D.val = 0 then decade(S.in)

else if S.in ≤ 1 then spell(10*S.in +D.val)
else decade(P.in) || spell(D.val)

<D> ::= 0 <D>.val := 0
…

<D> ::= 9 <D>.val := 9

Functions spell and decade:
spell(1) = one, spell(2) = two, …, spell(19) = nineteen

decade(0) = zero, decade(1) = ten, …, decade(9) = ninety

18Chapter 3: Semantics

Example 2: Syntax

<binary> ::= <digit>
<binary> ::= <digit> <binary>
<digit> ::= 0
<digit> ::= 1

 ::= <D>
 ::= <D>
<D> ::= 0
<D> ::= 1

Decimal value of a binary number

4

19Chapter 3: Semantics

Example 2: Semantics

 ::= <D> B.pos := 1
B.val := D.val
D.pow := 0

<B1> ::= <D> <B2> B1.pos := B2.pos + 1
B1.val := B2.val + D.val
D.pow := B2.pos

<D> ::= 0 D.val := 0
<D> ::= 1 D.val := 2D.pow

20Chapter 3: Semantics

Example 2: Sample Parse Tree

pos val

pos val

pos val

pos valpos val

pos val

pos val

pos val

B

D B

D
B

D B

D

1

0

1

0

3 8

4 10

2 0

3 2

1 2

2 2

1 0

0 0

Evaluation of parse tree for 1010

21Chapter 3: Semantics

Example 3: Syntax

<assign> ::= <var> = <expr>
<expr> ::= <var> + <var>
<expr> ::= <var>
<var> ::= X | Y | Z

<A> ::= <V> = <E>
<E> ::= <V> + <V>
<E> ::= <V>
<V> ::= X | Y | Z

Simple Assignment Statements

22Chapter 3: Semantics

Example 3: Semantics

<A> ::= <V> = <E> E.exp := V.act
<E> ::= <V> + <V> E.act = if (V1.act = int) and

V2.act := int) then int
else real

<E> ::= <V> E.act := E.exp
<V> ::= X | Y | Z V.act = …

Variables can be either real or integer.
Both sides of an assignment different: type = real
Same type on both sides of an assignment

23Chapter 3: Semantics

Attribute Grammars: Summary

An attribute grammar is a context-free
grammar with two disjoint sets of
attributes (inherited and synthesized)
and semantic functions for all defined
attribute occurrences.

24Chapter 3: Semantics

Attribute Grammar: Process

1. EBNF
2. Attributes

• Identify the parameters of the syntax
symbols.
§ Output attributes (synthesized) yield results.
§ Input attributes (inherited) provide context.

3. Semantic functions

5

Chapter 3

Operational Semantics

26Chapter 3: Semantics

Dynamic Semantics

Semantics of a programming language is
the definition of the meaning of any
program that is syntactically valid.
Intuitive idea of programming meaning:
“whatever happens in a (real or model)
computer when the program is executed. ”
n A precise characterization of this idea is

called operational semantics.

27Chapter 3: Semantics

Operational Semantics:
advantages and disadvantages
Operational Semantics
n Advantage of representing program

meaning directly in the code of a real (or
simulated) machine.

n Potential weakness, since the definition of
semantics is confined to a particular
architecture (either real or abstract).

Virtual machine also needs a semantic
description, which adds complexity and can
lead to circular definitions.

28Chapter 3: Semantics

Operational Semantics

Provides a definition of program meaning by
simulating the program’s behavior on a
machine model that has a very simple (through
not necessarily realistic) instruction set and
memory organization.
Definition of the virtual computer can be
described using an existing programming
language or a virtual computer (idealized
computer).
Change in the state of the machine (memory,
registers, etc) defines the meaning of the
statement.

29Chapter 3: Semantics

Process

The process:
n Identify a virtual machine (an idealized

computer).

n Build a translator (translates source code to
the machine code of an idealized computer).

n Build a simulator for the idealized computer.

Operational semantics is sometimes called
transformational semantics, if an existing
programming language is used in place of
the virtual machine.

30Chapter 3: Semantics

Example

Pascal statement

for i := x to y do
begin

…
end

Operational Semantics

i := x
loop: if i > y goto out

…
i := i + 1
goto loop

out: …

Operational Semantics
(lower level)

mov i, r1
mov y, r2
jmpifless(r2,r1,out)
…

6

31Chapter 3: Semantics

Notation

State of a program σ:
n A set of pairs <v,val> that represent all active variables

and their current assigned values at some stage during
the program’s execution.

σ = { <x,1>, <y,2>, <z,3> }
After y = 2 * z + 3 σ = { <x,1>, <y,9>, <z,3> }
After w = 4 σ = { <x,1>, <y,9>, <z,3>, <w,4> }

State transformation of these type of assignments
can be represented by a function called overriding
union U
n σ1 = { <x,1>, <y,2>, <z,3> }
n σ2 = { <y,9>, <w,4> }
n σ1 U σ2 = { <x,1>, <y,9>, <z,3>, <w,4> }

32Chapter 3: Semantics

Notation

Execution rule:
premise

conclusion

n “If the premise is true, then the conclusion is
true”

33Chapter 3: Semantics

Examples

Addition of two expressions
σ(e1) ⇒ v1 σ(e1) ⇒ v1

σ(e1 + e2) ⇒ v1 + v2
Assignment statement (s.target = s.source)

σ(s.source) ⇒ v
σ(s.target = s.source) ⇒ σ U { <s.target,v> }
n Suppose: assignment x = x +1, current state x=5

σ(x) ⇒ 5 σ(1) ⇒ 1
σ(x+1) ⇒ 6

σ(x = x+1) ⇒ {…, <x,5>, …} U { <x,6> }

34Chapter 3: Semantics

Examples

Conditionals (s = if (s.text) s.then else s.else)

σ(s.test) ⇒ true σ(s.then) ⇒ σ1

σ(if(s.test)s.then else s.else) ⇒ σ1

σ(s.test) ⇒ false σ(s.else) ⇒ σ1

σ(if(s.test)s.then else s.else) ⇒ σ1

35Chapter 3: Semantics

Examples

Loops (s = while (s.test) s.body)

σ(s.test) ⇒ true σ (s.body) ⇒ σ1 σ1(while(s.test)s.body) ⇒ σ1

σ(while (s.text) s.body) ⇒ σ1

σ(s.test) ⇒ false
σ(while (s.text) s.body) ⇒ σ

36Chapter 3: Semantics

Evaluation

Advantages:
n May be simple, intuitive for small examples/
n Good if used informally.
n Useful for implementation.

Disadvantages:
n Very complex for large programs.
n Depends on programming languages of lower levels

(not mathematics)

Uses:
n Vienna Definition Language (VDL) used to define PL/I

(Wegner, 1972).
n Compiler work

7

Chapter 3

Axiomatic Semantics

38Chapter 3: Semantics

Dynamic Semantics

Another way to view programming
meaning is to start with a formal
specification of what a program is
supposed to do, and then rigorously
prove that the program does that by
using a systematic series of logical
steps.
n This approach evokes the idea of

axiomatic semantics.

39Chapter 3: Semantics

Axiomatic Semantics

Programmers: confirm or prove that a
program does what it is supposed to
do under al circumstances
Axiomatic semantics provides a
vehicle for developing proofs that a
program is “correct”.

40Chapter 3: Semantics

Axiomatic Semantics

• Example: prove mathematically that the
C/C++ function Max actually computes as
its result the maximum of its two
parameter: a and b.

• Calling this function one time will obtain an
answer for a particular a and b, such as 8
and 13. But the parameters a and b define a
wide range of integers, so calling it several
times with all the different values to prove its
correctness would be an infeasible task.

41Chapter 3: Semantics

Assertions

• The logical expressions used in axiomatic
semantics are called assertions.

• Precondition: an assertion immediately
preceding a statement that describes the
constraints on the program variables at that
point.

• Postcondition: an assertion immediately
following a statement that describes the
new constraints on some variables after the
execution of the statement.

42Chapter 3: Semantics

Assertions

• Example
sum = 2 * x + 1 { sum > 1 }

• Preconditions and postconditions are enclosed
in braces

• Possible preconditions:
{ x > 10 }

{ x > 50 }

{ x > 1000 }
{ x > 0 }

8

43Chapter 3: Semantics

Weakest Precondition

• It is the least restrictive precondition that will
guarantee the validity of the associated
postcondition.

• Correctness proof of a program can be
constructed if the weakest condition can be
computed from the given postcondition.

• Construct preconditions in reverse:
• From the postcondition of the last statement of the

program generate the precondition of the previous
statement.

• This precondition is the postcondition of the previous
statement, and so on.

44Chapter 3: Semantics

Weakest Precondition

• The precondition of the first statement states the
condition under which the program will compute the
desired results.

• Correct program: If the precondition of the first
statement is implied by the input specification of the
program.

• The computation of the weakest precondition can
be done using:

• Axiom: logical statement that is assumed to be true.
• Inference rule: method of inferring the truth of one

assertion on the basis of the values of other
assertions.

45Chapter 3: Semantics

Assignment Statements

• Let x=E be a general assignment
statement and Q its postconditions.

• Precondition: P=Qx→E
• P is computed as Q with all instance of x

replaced by E
• Example

a = b/2-1 {a<10}
Weakest precondition: substitute b/2-1 in the postcondition {a<10}

b/2-1 < 10
b < 22

46Chapter 3: Semantics

Assignment Statements: examples

• General notation of a statement: {P} S {Q}

• More examples:

• x = 4*y+5 { x>13 }

• X = y-3*6 { x>-5 }

• X = 2*y+3*x { x>10}

47Chapter 3: Semantics

Assignment Statements

• An assignment with a precondition and a
postcondition is a theorem.

• If the assignment axiom, when applied to the
postcondition and the assignment statement, produces
the given precondition, the theorem is proved.

• Example:
{x > 5} x = x-3 {x>0}

Using the assignment axiom on
x = x-3 {x>0}
{x > 3}

{x > 5} implies {x > 3}

48Chapter 3: Semantics

Sequences

• The weakest precondition for a sequence
cannot be described by an axiom (only with
an inference rule)

• It depends on the particular kinds of statements in
the sequence.

• Inference rule:
• The precondition of the second statement is

computed.
• This is used as the postcondition of the first

statement.
• The precondition of the first element is the

precondition of the whole sequence.

9

49Chapter 3: Semantics

Sequences: examples

• Example:
y = 3*x+1;
x = y+3;
{x < 10}
Precondition of last assignment statement
y < 7

Used as postcondition of the first statement
3*x+1 < 7
x < 2

• Other example:
a = 3*(2*b+a);
b = 2*a -1
{ b > 5 }

50Chapter 3: Semantics

Selection

• Inference rule:
• Selection statement must be proven for

both when the Boolean control expression
is true and when it is false.

• The obtained precondition should be used
in the precondition of both the then and the
else clauses.

51Chapter 3: Semantics

Selection: example
• Example:

if (x > 0)
y = y-1

else y = y+1
{y > 0}

Axiom for assignment on the “then” clause
y = y-1 {y > 0}
y-1 > 0
y > 1

Same axiom to the “else” clause
y = y+1 {y > 0}
y+1 > 0
y > -1

But {y > 1}⇒ {y > -1}
Precondition of the whole statement: {y > 1}

52Chapter 3: Semantics

Evaluation

• Advantages:
• Can be very abstract.
• May be useful in program correctness proofs.
• Solid theoretical foundations.

• Disadvantages:
• Predicate transformers are hard to define.
• Hard to give complete meaning.
• Does not suggest implementation.

• Uses:
• Semantics of Pascal.
• Reasoning about correctness.

Chapter 3

Denotational Semantics

54Chapter 3: Semantics

Dynamic Semantics

A third way to view the semantics of a
programming language is to define the
meaning of each type of statement that
occurs in the (abstract) syntax as a state-
transforming mathematical function.
n The meaning of a program can be expressed

as a collection of functions operating on the
program state.

n This approach is called denotational
semantics.

10

55Chapter 3: Semantics

Denotational Semantics

Most rigorous, abstract, and widely known
method.

Based on recursive function theory.
Originally developed by Scott and Strachery
(1970).

Key idea: define a function that maps a program
(a syntactic object) to its meaning (a semantic
object).
n It is difficult to create the objects and mapping

functions.

56Chapter 3: Semantics

Denotational vs. Operational

Denotational semantics is similar to high-
level operational semantics, except:
n Machine is gone.
n Language is mathematics (lambda calculus).

Differences:
n In operational semantics, the state changes

are defined by coded algorithms for a virtual
machine

n In denotational semantics, they are defined by
rigorous mathematical functions.

57Chapter 3: Semantics

Denotational Semantics: evaluation

Advantages:
n Compact and precise, with solid mathematical

foundation.
n Provides a rigorous way to think about programs.
n Can be used to prove the correctness of programs.
n Can be an aid to language design.

Disadvantages:
n Requires mathematical sophistication
n Hard for programmers to use.

Uses:
n Semantics for Algol 60
n Compiler generation and optimization

58Chapter 3: Semantics

Summary

Each form of semantic description has its
place:
n Operational

Informal descriptions
Compiler work

n Axiomatic
Reasoning about particular properties
Proofs of correctness

n Denotational
Formal definitions
Probably correct implementations

