Chapter 3

Semantics

Topics

@Introduction

& Static Semantics
@Attribute Grammars
@Dynamic Semantics
#Operational Semantics
@ Axiomatic Semantics
@Denotational Semantics

Chapter 3: Semantics

Introduction

@Language implementors
= Understand how all the constructs of the
language are form and their intended effect
when executed.
@lLanguage users
= Determine how to encode a possible solution
of a problem (program) using the reference
manual of the programming language.
@Less knowledge of how to correctly define
the semantics of a language.

Chapter 3: Semantics 3

Introduction

@Well-designed programming language
= Semantics should follow directly from syntax.

= Form of a statement should strongly suggest
what the statement is meant to accomplish.

@Definition of a programming language
= Complete: semantics and syntax are fully
defined.
@ A language should provides a variety of
different constructs, each one with a
precise definition.

Chapter 3: Semantics

Introduction

@lLanguage manuals

= Definition of semantics is given in ordinary
natural language.
= Construct
@Syntax: a rule (or set of rules) from a BNF or
other formal grammar.

@#Semantics: a few paragraphs and some
examples.

Chapter 3: Semantics 5

Introduction

@Natural language description
= Ambiguous in its meaning

#Different readers come away with different
interpretations of the semantics of a language
construct.

@A method is needed for giving a
readable, precise, and concise definition
of the semantics of an entire language.

Chapter 3: Semantics

Static Semantics

@BNFs cannot describe all of the syntax of
programming languages.
= Some context-specific parts are left out.

@ls there a form to generate L={a"b"c"}
using a context-free grammar or a BNF?

2@An attempt:
<string> ::= <aseq> <bseqg> <c seq>
<aseq>:=a|<aseg>a

<bseq> e I <bseq> : _
<cseg>:=c|<cseq>c

Chapter 3: Semantics 7

Static Semantics

@ Some problems have nothing to do with

“meaning” in the sense of run-time behavior

« They are concern about the legal form of the
program.

= Static semantics refers to type checking and resolving
declarations.

= Examples:

@ All variables must be declared before they are referenced

@ Ada: the name on the end of a procedure must match the
procedurés name

@ Both sides of an assignment must be of the same type.

Chapter 3: Semantics 8

Static Semantics

@Earliest attempts to add semantics to a
programming language

@Add extensions to the BNF grammar
that defined the language.

=« Given a parse tree for a program,
additional information could be extracted
from that tree.

Chapter 3: Semantics 9

Attribute Grammars: Basic
Concepts

@ A context-free grammar extended to provide
context-sensitivity information by appending
attributes to each node of a parse tree.

@ Each distinct symbol in the grammar has
associated with it a finite, possibly empty, set of
attributes.

= Each attribute has a domain of possible values.

= An attribute may be assigned values from its domain
during parsing.

» Attributes can be evaluated in assignments and
conditions.

Chapter 3: Semantics 10

Attribute Grammars: Generalities

@Two classes of attributes:

= Synthesized attribute

#Gets its value from the attributes attached to its
children (subtree below the node).

@Used to pass semantic information up a parse
tree.
= Inherited attribute
#Gets its value from the attributes attached to the
parent (subtree above the node).

@#Used to pass semantic information down and
across a tree.

Chapter 3: Semantics 11

Attribute Grammays: Parse Tree

Chapter 3: Semantics 12

Attribute Grammar Definition

@Associate some functions to compute the
value of the attributes with each
production in the grammar.

@These local definitions associated with
each production of the grammar define
the values of the attributes for all parse
trees.

@Given the definitions and a parse tree,
algorithms exist to compute the attributes
of all the nodes in the three.

Chapter 3: Semantics 13

Attribute Grammars

@Starting with the underlying context-free
grammar G=<N,T,P,S>

@For every production p in P
= Number of terminal and nonterminal symbols
in string a: n(p).
2If ais the empty string, then n(p)=0.

#Sometimes each symbol of a production will be
considered individually.
= For all production pl P: A? aor py? py,0,-.- Py

Chapter 3: Semantics 14

Attribute Grammars

@Augment the context-free grammar by
attributes and semantic rules.
@Set of attributes: At.

= For each attribute al At: associate a set of
values Domain(a).

= An attribute is just a name for a set of values
@Set of attributes: two disjoint classes:

= Inherited attributes In and the synthesized
attributes Syn (At=InE Syn and InC Syn=/F).

Chapter 3: Semantics 15

Attribute Grammars: attributes

@There is a set of attributes At(x)l At to
every grammar symbol xi NET
= At(x) can be seen as additional information
about the symbol x.
2Set
« In(x) ={al At(x) | al In}
» Syn(x) = {al At(x)|al Syn}
= Requirements:

#In(S)= £ (start symbol can inherit no information)

@For all {1 T, Syn(t)= / (there is no structure beneath a
terminal from which to synthesize information)

Chapter 3: Semantics 16

Attribute Grammars: rules

& Same attribute can be associated with different
symbols appearing in the same grammar rule.
« Example: S? AB, all could inherit attribute i nt
associated to them: In(S)=In(A)=In(B)={int}.
= Itis impossible to consider the set of attributes
associated with all the symbols of a production

without losing track of which attributes appear more
than once.

= More confusing: productions that have a nonterminal
appearing more than once, as in S? ASA.

Chapter 3: Semantics 17

Attribute Grammars: attribute
occurrences

& Attribute occurrenceof a rule p is an ordered
pair of attributes and natural number <a,j>
representing the attribute a at position j in
production p.

« Particular rule pi P an attribute occurrence at j will
be written p.a.

= Set of attribute occurrences for a production p is
defined: AO(p) = {p;a| al At(p), O£ £n(p) }

Chapter 3: Semantics 18

Attribute Grammars: attribute
occurrences

@Set of attribute occurrences for a rule is
divided into two disjoint subsets.
= Defined occurrences for a production p:

DO(p) = { p-s | ST Syn(p)} E {pi |11 In(p), 1£] £ n(p) }
@1In a parse tree, the set UO(p) represents the information
flowing into the node of the parse tree labeled p,
= Used occurrences for a production p:
UO(p) = { p-i |iT In(R)} E {p.s | sT Syn(p), 1£j £ n(p) }
@ In a parse tree, the set DO(p) represents the information
flowing out flowing into the node of the parse tree labeled p,

Chapter 3: Semantics 19

Attribute Grammars: flow of
attribute occurrences

Rule: S? AB .

~In(S) Syn(S)

s ET]
In(A A In(B) Syn(B
A B
-

-

Chapter 3: Semantics 20

Attribute Grammars: used attribute
occurrences
@Used attribute occurrences (the

information flowing in) are In(S), Syn(A),
and Syn(B).

synthesized

inherited

Chapter 3: Semantics 21

Attribute Grammars: defined
attribute occurrences

@Defined attribute occurrences (the
information flowing out) are Syn(S), In(A),
and In(B).

synthesized

inherited

Chapter 3: Semantics 22

Attribute Grammars: semantic
function

@ Semantic function f,, .

=« For every attribute occurrence vi DO(p)

» Defined values for attributes in DO(p) in terms of the
values of the attributes in UO(p).
Produces a value for the attribute a from values of the
attributes of UO(p).
There is no requirement that all the attribute
occurrences of UO(p) are used by f,.
Dependency set (Dpv.) of f,,. is the set of attribute
occurrences used (subset of EJO(p))
Doy could be empty

@ Value of the attribute: computed without any other additional
information. The functionf, , is a constant.
Chapter 3: Semantics 23

Attribute Grammar

2An attribute grammar as a context-free
grammar with two disjoint sets of
attributes (inherited and synthesized)
and semantic functions for all defined
attribute occurrences.

Chapter 3: Semantics 24

Attribute Grammar: binary digits
example

& Context-free grammar that generates strings
of binary digits.
p:B® D
q:B® DB
rbD® 0
ssD® 1
& Attributes:
= val: accumulate the value of the binary numbers

= pow and pos: keep track of the position and the
power of 2.

Chapter 3: Semantics 25

Attribute Grammar: binary digits
example

% Compute the defined and the used occurrences for
each production

% The defined occurrences is the set of synthesized
attributes of the LHS plus the set of inherited
attributes of all the grammar symbols of the RHS.

Chapter 3: Semantics 26

Attribute Grammar: binary digits
example

@ Function definitions for the eight defined attribute occurrences.

Chapter 3: Semantics 27

Attribute Grammar: binary digits

example
]

’ _
Evaluation of parse tree for 1010

Chapter 3: Semantics 28

Dynamic Semantics

@Semantics of a programming language is
the definiton of the meaning of any
program that is syntactically valid.

@intuitive idea of programming meaning:
“whatever happens in a (real or model)
computer when the program is executed.”

= A precise characterization of this idea is
called operational semantics.

Chapter 3: Semantics 29

Dynamic Semantics

2Another way to view programming
meaning is to start with a formal
specification of what a program is
supposed to do, and then rigorously
prove that the program does that by
using a systematic series of logical
steps.

=« This approach evokes the idea of

axiomatic semantics.

Chapter 3: Semantics 30

Dynamic Semantics

@A third way to view the semantics of a
programming language is to define the
meaning of each type of statement that
occurs in the (abstract) syntax as a state-
transforming mathematical function.
= The meaning of a program can be expressed

as a collection of functions operating on the
program state.

=« This approach is called denotational
semantics.

Chapter 3: Semantics 31

Dynamic Semantics: advantages
and disadvantages

@ Operational Semantics
= Advantage of representing program
meaning directly in the code of a real (or
simulated) machine.
= Potential weakness, since the definition of
semantics is confined to a particular
architecture (either real or abstract).

@ Virtual machine also needs a semantic
description, which adds complexity and can
lead to circular definitions.

Chapter 3: Semantics 32

Dynamic Semantics: advantages
and disadvantages

& Axiomatic semantics is useful in the exploration
of formal properties of programs.
= Programmers who must write provably correct

programs from a precise set of specification are
particularly well-served by this semantic style.

@ Denotational semantics is valuable because its
functional style brings the semantic definition of
a language to a high level of mathematical
precision
= Language designers obtain a functional definition of

the meaning of each language construct that is
independent of any particular machine architecture.

Chapter 3: Semantics 33

Operational Semantics

@Provides a definition of program meaning
by simulating the program’s behavior on a
machine model that has a very simple
(through not necessarily realistic)
instruction set and memory organization.

@ Definition of the virtual computer can be
described using an existing programming
language or a virtual computer (idealized
computer).

Chapter 3: Semantics 34

Operational Semantics: process

@ Change in the state of the machine (memory,
registers, etc) defines the meaning of the
statement.

@ The operational semantics of a high-level
language can be described using a virtual
computer.
= A pure hardware interpreter is too expensive.

= A pure software interpreter has also problems:
@ Machine-dependent
@ Difficult to understand

= A better alternative: a complete computer simulation.

Chapter 3: Semantics 35

Operational Semantics: process

@The process:

» Identify a virtual machine (an idealized
computer).

= Build a translator (translates source code to
the machine code of an idealized computer).

= Build a simulator for the idealized computer.

@Operational semantics is sometimes called
transformational semantics, if an existing
programming language is used in place of
the virtual machine.

Chapter 3: Semantics 36

Operational Semantics: automaton

@Automaton could be used as a virtual
machine:
= More complex that the simple automata
models used in the study of syntax and parsing
@Automaton has
= Internal state that corresponds to the internal
state of the program when it its executing;
#The state contains all the values of the variables,

the executable program, and various system-
defined housekeeping data structures.

Chapter 3: Semantics 37

Operational Semantics: automaton

= A set of formally defined operations used to
specify how the internal state of the automaton
may change,
@Corresponds to the execution of one instruction in
the program.
= A second part of the definition specifies how a
program text is translated into an initial state
for the automaton
@From this initial state, the rules defining the

automaton specify how the automaton moves from
state to state until a final state is reached.

Chapter 3: Semantics 38

Operational Semantics: process

Operational Semantics: evaluation

@ Advantages:
= May be simple, intuitive for small examples/
» Good if used informally.
= Useful for implementation.
@ Disadvantages:
= Very complex for large programs.

= Depends on programming languages of lower levels
(not mathematics)

@ Uses:

= Vienna Definition Language (VDL) used to define PL/I
(Wegner, 1972).

= Compiler work

Chapter 3: Semantics 40

Axiomatic Semantics

& Programmers: confirm or prove that a program
does what it is supposed to do under al
circumstances

& Axiomatic semantics provides a vehicle for
developing proofs that a program is “correct”.

Chapter 3: Semantics a1

Axiomatic Semantics

« Example: prove mathematically that the

C/C++ function Max actually computes as
its result the maximum of its two
parameter: a and b.

. Calling this function one time will obtain an
answer for a particular a and b, such as 8
and 13. But the parameters a and b define a
wide range of integers, so calling it several
times with all the different values to prove its
correctness would be an infeasible task.

Chapter 3: Semantics 42

Axiomatic Semantics

e Construct a proof to prove the correctness

of a program

. The meaning of a statement is defined by the
result of the logical expression that precedes
and follows it.

. Those logical expressions specifies constraints
on program variables.

. The notation used to describe constraints is
predicate calculus.

Chapter 3: Semantics 43

Axiomatic Semantics: assertions

» The logical expressions used in axiomatic
semantics are called assertions.

» Precondition: an assertion immediately
preceding a statement that describes the
constraints on the program variables at that
point.

» Postcondition: an assertion immediately
following a statement that describes the
new constraints on some variables after the
execution of the statement.

Chapter 3: Semantics 44

Axiomatic Semantics: assertions

» Example
sum=2* x + 1 { sum> 1}
. Preconditions and postconditions are enclosed
in braces
. Possible preconditions:
{ x > 10}
{ x > 50}
{ x > 1000 }
{ x>0}

x

Chapter 3: Semantics 45

Axiomatic Semantics: weakest
precondition

 ltis the least restrictive precondition that will
guarantee the validity of the associated
postcondition.

« Correctness proof of a program can be
constructed if the weakest condition can be
computed from the given postcondition.

« Construct preconditions in reverse:

From the postcondition of the last statement of the
program generate the precondition of the previous
statement.

. This precondition is the postcondition of the previous
statement, and so on.

Chapter 3: Semantics 46

Axiomatic Semantics: weakest
precondition

. The precondition of the first statement states the
condition under which the program will compute the
desired results.

. Correct program: If the precondition of the first
statement is implied by the input specification of the
program.

« The computation of the weakest precondition can
be done using:
Axiom: logical statement that is assumed to be true.

- Inference rule: method of inferring the truth of one
assertion on the basis of the values of other
assertions.

Chapter 3: Semantics a7

Axiomatic Semantics: assignment
statements

» Let x=E be a general assignment
statement and Q its postconditions.
- Precondition: P=Qg ¢
- Pis computed as Qwith all instance of x
replaced by E
» Example
a = b/2-1 {a<10}

Weakest precondition: substitute b/ 2- 1 in the postcondition { a<10}

b/2-1 < 10
b < 22

Chapter 3: Semantics 48

Axiomatic Semantics: assignment
statements

* General notation of a statement: {P} S {Q}
» General notation of the assignment
statement: {Q,qe}x = E {Q}

* More examples:
X = 2*y-3 {x>25} 2*y-3 > 25
y > 14

X = x+y-3 {x>10} x+y-3 > 10
y > 13-x

Chapter 3: Semantics 49

Axiomatic Semantics: assignment
statements

« An assignment with a precondition and a
postcondition is a theorem.

- If the assignment axiom, when applied to the
postcondition and the assignment statement, produces
the given precondition, the theorem is proved.

« Example:
{x > 5} x = x-3 {x>0}

Using the assignment axiom on
x = x-3 {x>0}

{x >3}
{x > 5} implies {x > 3}

Chapter 3: Semantics 50

Axiomatic Semantics: sequences

* The weakest precondition cannot be
described by an axiom (only with an inference
rule)

. It depends on the particular kinds of statements in
the sequence.

« Inference rule:

. The precondition of the second statement is
computed.

. This is used as the postcondition of the first
statement.

. The precondition of the first element is the
precondition of the whole sequence.

Chapter 3: Semantics 51

Axiomatic Semantics: sequences

» Example:

y = 3*x+1;
X = y+3;

{x < 10}

Precondition of last assignment statement
y <7

Used as postcondition of the first statement
3*x+1 < 7
X < 2

Chapter 3: Semantics 52

Axiomatic Semantics: selection

* Inference rule:

. Selection statement must be proven for
both when the Boolean control expression
is true and when it is false.

. The obtained precondition should be used
in the precondition of both the then and the
else clauses.

Chapter 3: Semantics 53

Axiomatic Semantics: selection

* Example:
if (x > 0)
y =y-1
elsey = y+l
{y > 0}

Axiom for assignment on the “then” clause
y =y-1{y >0}

y-1 >0

y > 1
Same axiom to the “else” clause

y =y+l {y > 0}

y+1 > 0

y > -1

Bu{y > 1}p {y > -1}

Precondition of the whole statement: {y > 1}

Chapter 3: Semantics 54

Axiomatic Semantics: evaluation

« Advantages:
. Can be very abstract.
- May be useful in program correctness proofs.
. Solid theoretical foundations.
« Disadvantages:
. Predicate transformers are hard to define.
. Hard to give complete meaning.
. Does not suggest implementation.
¢ Uses:
- Semantics of Pascal.
. Reasoning about correctness.

Chapter 3: Semantics 55

Denotational Semantics

@ Most rigorous, abstract, and widely known
method.

@ Based on recursive function theory.

@ Originally developed by Scott and Strachery
(1970).

@ Key idea: define a function that maps a program
(a syntactic object) to its meaning (a semantic
object).

= Itis difficult to create the objects and mapping
functions.

Chapter 3: Semantics 56

Denotational vs. Operational

@Denotational semantics is similar to high-
level operational semantics, except:
= Machine is gone.
= Language is mathematics (lambda calculus).
@Differences:

= In operational semantics, the state changes
are defined by coded algorithms for a virtual
machine

= In denotational semantics, they are defined by
rigorous mathematical functions.

Chapter 3: Semantics 57

Denotational Semantics: evaluation

@ Advantages:

= Compact and precise, with solid mathematical
foundation.

= Provides a rigorous way to think about programs.
= Can be used to prove the correctness of programs.
= Can be an aid to language design.
@ Disadvantages:
= Requires mathematical sophistication
= Hard for programmers to use.
2 Uses:
= Semantics for Algol 60
= Compiler generation and optimization

Chapter 3: Semantics 58

Summary

@Each form of semantic description has its
place:
= Operational
@Informal descriptions
»Compiler work
= Axiomatic
#Reasoning about particular properties
#Proofs of correctness
= Denotational
#Formal definitions
@Probably correct implementations

Chapter 3: Semantics 59

10

