
1

Chapter 3

Syntax

2Chapter 3: Syntax

Topics

Introduction
English Description
Syntax
Regular Expressions
BNF
Variations of BNF
Chomsky Hierarchy
Parsing 
Ambiguity, associativity , and precedence.

3Chapter 3: Syntax

Introduction

Language definition
n Syntax
n Semantics

Syntax
n Form, format, well-formedness, and compositional 

structure of the language.
n Description of the ways different parts of the language 

may be combined to form other parts. 
Semantics
n Meaning and interpretation of the language.
n Description of what happens during the exsecution of a 

program.
4Chapter 3: Syntax

Introduction: English Description

n Early days 
Syntax and semantics: lengthy English explanations and 
many examples
Example (Syntax): the if-statement in Pascal may be 
described in words:

An if-statement consists of the word “if” followed by a condition, 
followed by the word “then”, followed by a statement, followed by an 
optional else part consisting of the word “else” and another statement.

n Example (Semantics): the if-statement in Pascal 
may be described in words:

An if-statement is executed by first evaluating its conditions. If 
the condition evaluates to true, then the statement following 
the “then” is executed. If the condition evaluates to false, and 
there is an else part, then the statement following the “else” is 
executed.

5Chapter 3: Syntax

Syntax

(Programming language) Definition of what 
constitutes a grammatically valid program in 
that language.
Syntax is specified as a set of rules, just as it 
is for natural languages.

Clear, concise, and formal definition syntax is 
especially important for programmers, 
implementers, language designer, etc.

The syntax of a language has a profound 
effect on the ease of use of a language.

6Chapter 3: Syntax

Definition of a Language

Formal language: set of finite string of 
atomic symbols.
Alphabet: set of symbols.
Sentences: the strings that belong to the 
language.

Alphabet: {a,b}
L1 = {a, b, ab }
L2 = {aa, aba, abba, abbba, … }

n More precise methods for defining languages are desirable than just 
using “…”.

This language is finite: just three strings

This language is infinite



2

7Chapter 3: Syntax

Definition of a Regular Expression
Invented by a mathematical logician Stephen
Kleene
A regular expression over A denotes a 
language with alphabet A and is defined by the 
following set or rules:

1. Empty. The symbol ∅ is a regular expression, denoting 
the language consisting of no strings {}.
2. Atom . Any single symbol of a∈A is a regular 
expression denoting the language consisting of the single 
string {a}.
3. Alternation. If r1 is a regular expression and r2 is a 
regular expression, then (r1+r2) is a regular expression. The 
language it denotes has all the strings from the language 
denoted by r1 and all the strings from the language denoted 
by r2. 

8Chapter 3: Syntax

Regular Expressions

4. Concatenation. If r1 and r2 are regular 
expressions, then (r1⋅r2) is a regular expression. The 
language it denotes is the set of all strings formed by 
concatenating a string from the set denoted by r1 to the 
end of a string in the set denoted by r2.
3. Closure . If r is a regular expression, then r* is a 
regular expression. The language it denotes consists of 
all strings formed by concatenating zero or more strings 
in the language denoted by r.

- Plus, dot, asterisk, the empty set symbol, and parentheses 
are part of the notation for regular expressions, not part of the 
languages being defined.

- Definitions are recursive.

9Chapter 3: Syntax

Conventions for Writing Regular 
Expressions

Regular Expression Meaning
x A character (stand for itself)

“xyz” A literal string (stands for itself)
M | N M or N

M N M followed by N (concatenation)

M* Zero or more occurrences of M
M+ One or more occurrences of M
[a-zA-Z] Any alphabetic character

[0-9] Any digit

. Any single charcater

10Chapter 3: Syntax

Regular Expressions: Example

Sequences of ASCII characters make up 
a legal identifier

l  stand for the regular expression denoting any 
lowercase or uppercase letter
d stand for the regular expression denoting any 
decimal digit.

n Modula-3 l ⋅ ( l+d+_ )*

n ML l ⋅ ( l+d+_+’ )*
n Ada l ⋅ ( l+d )* ⋅ ( _ ⋅ ( l+d ) ⋅ ( l+d )* )*

11Chapter 3: Syntax

Regular Expressions

Very popular tool in language design.
Generic lexical -analyzer generator :
n The regular expression is submitted directly.
n Two commonly used generators:

“Lex” (generating C code).
“Jlex” (for generating Java code).

What is the problem with regular expressions?
Why don’t we use them to describe the syntax of programming 
languages? 
n Major shortcoming: bracketing is not expressible

n Regular expressions are incapable of generating the language {anbn}
where the number of as must be equal to the number of bs, very useful for 
matching nested beginning and ending tags, such as occur in expressions 
(parentheses) and statement lists (braces).

12Chapter 3: Syntax

Formal Methods of Describing 
Syntax: BNF

Metalanguage: is a language used to define 
other language.
BNF: notation invented to describe the syntax of 
ALGOL 60
n Backus-Naur Form in honor of John Backus and 

Peter Naur, who developed the notation of this
metalanguage in unrelated research efforts.

n Language: a sequence of tokens.
n Tokens: identifiers, numbers, keywords, punctuation, 

etc. that constitute the lexicon of the language. 



3

13Chapter 3: Syntax

BNF: Grammar

n BNF grammar: a set of rewriting rules. 
A a left- hand side: syntactic categories 
n A syntactic category is a name for a set of token sequences

A right- hand side: sequences of tokens and syntactic 
categories.

<name> ::= sequence of tokens and syntactic categories
There may be many rules with the same left- hand side. 

n A token sequence belongs to a syntactic category if it 
can be derived by taking the right-hand sides of rules 
for the category and replacing the syntactic category 
occurring in right-hand side with any token sequence 
belonging to that category.

14Chapter 3: Syntax

BNF: Notation

A BNF definition typically contains the 
following meta-symbols:

“::=” meaning “is defined to be”
“<>” to delimit syntactic categories
“|” meaning “or”

Strictly speaking, the symbol for “or” is not 
necessary, but it is convenient for combining multiple 
right-hand sides for the same syntactic category.

15Chapter 3: Syntax

BNF: Examples (1)

Describe the syntax of regular expressions over the 
alphabet {a,b}

<RE> ::= ∅| a| b| (<RE>+<RE}) | (<RE> ⋅<RE>) | <RE>*

n The syntactic category of regular expressions is defined to be 
either the symbol ∅, or the symbol a, or the symbol b, or an 
opening parenthesis, followed by a regular expression, 
followed by a plus sign followed by another regular expression 
followed by a closing parenthesis, and so on. The set of tokens 
used in this definition is { ∅,a,b,(,),+,⋅,*}

16Chapter 3: Syntax

BNF: Examples (2)

Describe the ALGOL 60 for construct.
<for statement> ::= <for clause> <statement>

|    <label> : <for statement>
<for clause> ::= for <variable> := <for list> do
<for list> ::= <for list element>

|    <for list> , <for list element>
<for list element> ::= <arith expr>

|    < ariht expr> step < arith expr> until <arith expr>
|    < arith expr> while < boolean exp>

Sample for statements in ALGOL 60
for i := j step 1 until n do <statement>
A: B: for k := 1 step -1 until n, i+1 while j>1 do <statement>  

17Chapter 3: Syntax

BNF: Examples (3)

Describe simple integer arithmetic expressions with 
addition and multiplication.

<exp> ::= <exp> + <exp> | <exp> * <exp>
|   (<exp>) | <number>

<number> ::= <number> <digit> | <digit>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

Lexicon of a programming language contains the 
grammatical categories:
n Identifier (variable names, function names, etc) 
n Literal or constants (integer and decimal numbers)
n Operator (+,-,*,/,etc)
n Separator (;,.,{,},etc)
n Keyword or reserved words ( int , main, if, for, etc)

18Chapter 3: Syntax

Previous categories allow the compiler to 
look at a program as a stream of tokens.
n Each one a member of a particular grammatical 

category
n Separated from the next token by whitespaces or 

a comment.

BNF: A Stream of Tokens

// compute result = the nth Fibonacci number
void main () {

int n;
n = 8;

Comment

Keyword
Identifier

Separator

Literal
Operator



4

19Chapter 3: Syntax

Variations of BNF: EBNF

Several extensions to BNF have been proposed to 
make BNF definitions more readable. 
n Improve the clarity of syntax description and the efficiency of 

syntax analysis. 
n Do not add to the expressive power of the formalism, just to the

convenience.

Extended BNF (EBNF for short) was introduced to 
simplify the specification of recursion in grammar rules 
(curly brackets), and to introduce the idea of optional 
part in a rule’s right-hand side (square brackets). 

20Chapter 3: Syntax

EBNF: Example

Describe simple integer arithmetic expressions with 
addition and multiplication.

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
<number> ::= <digit> {<digit}
<exp> ::= <term> {+ <term>} | <term> { - <term>}

The curly brackets “{ }” denote zero or more repetitions. 
The square brackets enclose a series of alternatives from which one must 

choose.

Definitions of language syntax in EBNF tend to be 
slightly clearer and briefer than BNF definitions.
EBNF does not force the use of recursive definitions 
on the reader in very instance.

21Chapter 3: Syntax

EBNF: Example

The Ada reference manual use extended BNF.
n Uses different convention to distinguish syntactic 

categories from terminals. 
n Syntactic categories are denoted by simple identifiers 

possibly containing underscores. 
n Keywords and punctuation are in bold face.

block ::= [ block_identifier: ]
[ declare {declaration} ]
begin statement {statement}
[ exception handler {handler} ]
End [ block_identifier ];

22Chapter 3: Syntax

Variations of BNF: Syntax 
Diagrams

Graphical representation that indicates the 
sequence of terminals and nonterminals
encountered in the right-hand side of the 
rule. 
n Circles or ovals for terminals 
n Squares or rectangles for nonterminals
n Connected with lines and arrows to indicate 

appropriate sequencing. 
Syntax diagrams can also condense 
several productions into one diagram.

23Chapter 3: Syntax

Syntax Diagrams (1)

digits

0

9

.

.

.

digit
number

term
exp

+

24Chapter 3: Syntax

As an example of how to express the square brackets in 
syntax diagrams: the Pascal if-statement.

Syntax diagrams are always written from the EBNF, not 
the BNF

Syntax Diagrams (2)

expression
If-statement

else

if then

statement statement



5

25Chapter 3: Syntax

Definition of a Grammar

BNF notation is slightly different form of what are 
called context-free grammars. These grammars 
and others were developed independently by 
Chomsky.
Grammar: a 4-tuple <T,N,P,S>
n T is the set of terminal symbols
n N is the set of nonterminal symbols T∩N=∅
n S, a nonterminal , is the start symbol
n P are the productions of the grammar

A production has the form a ? ß where a and ß are strings of 
terminals and nonterminals (a≠∈).

26Chapter 3: Syntax

Chomsky Hierarchy

In the mid 1950s, Chomsky described a hierarchy 
that relates the power of different types of grammars. 
n Type- 0 grammars (unrestricted grammars) include all 

formal grammars. They generate exactly all languages that 
can be recognized by a Turing Machine. 

n Type- 1 grammars (context -sensitive grammars). These 
grammars have rules of the form  αΑβ→αγβ with Α a 
nonterminal and a, ß and ? strings of terminals and 
nonterminals. The strings a and ß may be empty, but ? must 
be nonempty. The rule S→∈ is allowed if S does not 
appear on the right side of any rule. The languages 
described by these grammars are exactly all languages that 
can be recognized by a non-deterministic Turing machine 
whose tape is bounded by a constant times the length of the 
input. 

27Chapter 3: Syntax

Chomsky Hierarchy

n Type- 2 grammars (context -free grammars) generate the 
context-free languages. These are defined by rules of the 
form   Α→γ with A a nonterminal and ? a string of terminals 
and nonterminals . Context free languages are the 
theoretical basis for the syntax of most programming 
languages. 

n Type- 3 grammars (regular grammars) generate the 
regular languages. Such a grammar restricts its rules to a 
single nonterminal on the left- hand side and a right-hand 
side consisting of a single terminal, possibly followed (or 
preceded, but not both in the same grammar) by a single 
nonterminal . The rule   is also here allowed if S does not 
appear on the right side of any rule. This family of formal 
languages can be obtained by regular expressions. Regular 
languages are commonly used to define search patterns 
and the lexical structure of programming languages. 

28Chapter 3: Syntax

Parsing

Parsing problem: the interesting 
problem concerning grammars is how to 
efficiently recognize when a string is a 
sentence of a grammar. 
BNF: a simple arithmetic expression 
grammar

<exp> ::= <exp> + <exp> | <exp> * <exp>
|   (<exp>) | <number>

<number> ::= <number> <digit> | <digit>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

29Chapter 3: Syntax

Parsing: Example

Justify 352 as a Number. 
n Derive the string from the rules in a sequence of steps.
n Begin with the start symbol S=number
1. Form the string Number Digit as a particular kind of Number , from 

the first alternative in the second rule.

2. Substitute Number Digit for Number in the string, again using the 
second rule, gaining the string Number Digit Digit.

3. Substitute Digit for Number, using the second alternative in the 
second rule, gaining Digit Digit Digit.

4. Substitute 3 as a particular kind of Digit from the third rule, 
achieving 3 Digit Digit.

5. Substitute 5 for Digit in the string, achieving the string 3 5 Digit.

6. Finally, substitute 2 for Digit in the string, achieving 3 5 2

30Chapter 3: Syntax

Parse Tree

We just parse the string 352 as an instance of 
the grammatical category Integer.
Parsing process used in the design and 
analysis of programming language syntax.
n Clearer style than English for expressing a sequence 

of steps.
n Describe the parse graphically in the form of a parse 

tree.

The parse tree is labeled by nonterminals at 
interior nodes and terminals at leaves. 



6

31Chapter 3: Syntax

Parse Tree: Example

<number>

<number> <digit>

<digit>

<digit>

<number>

2

3

5

32Chapter 3: Syntax

Abstract Syntax Tree

Not all the terminals and nonterminals may be 
necessary to determine completely the 
syntactic structure of an expression.
Example: the structure of the number 352 

2

5

3

33Chapter 3: Syntax

Abstract Syntax Tree: Example

3+4*5

<number>

<exp> <exp>

<digit>

<exp>

3

+

<exp> <exp>

<number>

<digit>

4

<number>

<digit>

5

*

Parse Tree

3 *

+

4 5

Abstract Parse Tree

34Chapter 3: Syntax

Abstract Syntax Tree

Abstract syntax tree may also do away 
with terminals that are redundant once 
the structure of the tree is determined. 
Example: 
n <if-statement> ::= if <condition> then <statement> else <statement>

<if-statement>

<condition> <statement> <statement>if then else

<if-statement>

<condition> <statement> <statement>

35Chapter 3: Syntax

Ambiguity

Parsing natural languages is difficult due to the 
ambiguity of language.
Ambiguity: the sentence can be understood in 
two different ways (two or more different parse 
trees). 

Either the grammar must be revised to remove 
the ambiguity, or a disambiguating rule must be 
stated to establish which structure is meant.

36Chapter 3: Syntax

Same example: 3+4*5

Which of the two parse trees is the correct one 
for the expression 3+4*5? 

Ambiguity: Example

3 *

+

4 5 3

*

+

4

5



7

37Chapter 3: Syntax

Ambiguity: Resolution

If operations are applied in a different order then the 
resulting semantics are quite different
n First syntax tree: 23
n Second syntax tree: 35
n Meaning from mathematics: choose first tree, since 

multiplication has precedence over addition.

State a disambiguation rule separately from the 
grammar or revise the grammar. 
n Usual way to revise the grammar is to write a new grammar 

rule that establishes a “precedence cascade” to force the 
matching of the “*” at a lower point in the parse tree.

n <exp> ::= <exp> + <exp> | <term>
n <term> ::= <term> * <term> | (<exp>) | <number>

38Chapter 3: Syntax

Associativity

There is still some ambiguity problem: 
n Rule for <exp> still allows to parse 3+4+5 as 

either (3+4)+5 or 3+(4+5).
Addition is either right or left-associative.

3 +

+

4 5 3

+

+

4

5

39Chapter 3: Syntax

Associativity: Example (1)

In the case of addition this does not affect 
the result.
In the case of subtraction it surely would: 
8-4-2=2 if minus is left-associative, but 8-
4-2=6 if minus is right-associative. 
Replace rule

<exp> ::= <exp> + <exp>

with <exp> ::= <exp> + <term> or <exp> ::= <term> + <exp> 
The first rule is left-recursive while the second is right-recursive.

40Chapter 3: Syntax

Associativity: Example (2)

A left recursive rule for an operation 
causes it to left associate, while a right -
recursive rule causes it to right-associate.

5 +

+

3 43

+

+

4

5

41Chapter 3: Syntax

Ambiguity

The BNF for simple arithmetic expressions 
is now unambiguous. 
Sometimes the process of rewriting a 
grammar to eliminate ambiguity causes 
the grammar to become extremely 
complex, and in such cases we prefer to 
state a disambiguation rule.

42Chapter 3: Syntax

Dangling else problem

A classical example of ambiguity in 
programming languages.
Occurs when two adjacent if statements 
are followed by an else statement.

if (x<0)
if (y<0) y = y-1;
else y=0;

Parse attaches the else clause to the second if statement
n y will become 0 whenever x<0 and y>=0. 

Parse attaches the else clause to the first if statement
n y will become 0 whenever x>=0.



8

43Chapter 3: Syntax

Dangling else problem

ALGOL 60 introduced the if-then and the 
if-then-else statements 

S ? if C then S | if C then S else S | S’
n Sequence of tokens:  if C1 then S1 else if C2 then S2 else S3

has only one interpretation.
n Sequence of tokens:  if C1 then if C2 then S1 else S2 has two 

interpretations,

If   C2   then   S1 else S2

S

If   C1   then         S

If   C2   then   S1

S

If   C1   then    S    else  S2

44Chapter 3: Syntax

Dangling else problem: 
Solutions

ALGOL 60:
n Prohibited the nested if statement, as it could always 

be avoided by using the begin/end statement.
PL/I and Pascal:
n Adopted the solution of matching dangling else to the 

nearest unmatched if statement.
ALGOL 68:
n introduced the keyword fi .
n Ada solves the problem with end if. 

“Terminating keyword” solution appears to be 
generally favored over the “nearest unmatched”
solution in more recent programming languages.

45Chapter 3: Syntax

Dangling else problem: 
Solutions

Java solves the problem by expanding the BNF 
grammar for if statements in a rather bizarre 
way. 
n Separates the definition into two different syntactic 

categories, (IfThenStatement,IfThenElseStatement), 
each which is a subcategory of the general category 
Statement.

IfThenStatement ? if (Expression) Statement

IfThenElseStatement ? if (Expression) StatementNoShortIf else 
Statement

46Chapter 3: Syntax

Variations on BNF and EBNF

In place of the arrow, a colon is used and the 
RHS is placed on the next line.
Instead of a vertical bar to separate alternative
RHSs , they are simply placed on separate lines.
In place of square brackets to indicate 
something being optional, the subscript opt is 
used. 
Rather than using the | symbol in a 
parenthesized list of elements to indicate a 
choice, the words “one of” are used.

47Chapter 3: Syntax

Derivation

Method for describing the parse of a 
string.
A derivation is a simple linear 
representation of a parse tree
n more helpful when the string being derived 

has a simple grammatical structure

Example: derivation of 352
Number ⇒ Number Digit ⇒ Number Digit Digit ⇒ Digit Digit Digit 

⇒ 3 Digit Digit ⇒ 3 5 Digit ⇒ 3 5 2

48Chapter 3: Syntax

Derivation

Sentential form: each string on the right of a 
double arrow.
n Contains terminal and nonterminals symbols.
n Left end of the derivation is the start symbol S
n Each intermediate step creates a sentential form

Results from replacing the left-most nonterminal symbol 
by a string of terminals and nonterminals that appears 
on the right-hand side of some rule that has the same 
symbol on its left-hand side. 

n Derivations that use this order of replacement are 
called leftmost derivations.



9

49Chapter 3: Syntax

Derivation

In addition to leftmost, a derivation may be 
rightmost or in an order that is neither leftmost 
nor rightmost. 
Derivation order has no effect on the language 
generated by a grammar.
Different sentences in the language can be 
generated. 
n Alternative RHSs of rules with which to replace

nonterminals in the derivation,
The language defined by a BNF grammar is the 
set of all strings that can be parsed, or derived, 
using the rules of the grammar.


