Chapter 1

Preliminaries

Topics

@Motivation

@Programming Domains
@Language Evaluation Criteria
@Language Design Trade-Offs
#Influences on Language Design
@Language Categories
@Implementation Methods

Chapter 1: Preliminaries 2

What impacts Programming
Language Design?

@Application domain

@Evaluation Criteria -

@Computer architecture

@Programming methodologies

Chapter 1: Preliminaries

Language Evaluation Criteria

Characteristies Readabiit itabilit Hrab it
4 4 Y

T
JHRPHERY)

Cantrol structure

om - m
B
J

Chapter 1: Preliminaries 4

Evaluation Criteria: Writability

@Writability describes the ease with which a
language can be used to create programs
for a given domain.
= Be careful not to compare things which

should not be.

@Most of the features that affect readability
affects also writability.

Chapter 1: Preliminaries 5

Evaluation Criteria: Writability
Factors
@ Simplicity and Orthogonality
= Lack of familiarity with some features leads
to misuse and disuse of those features.
@Misuse could cause bizarre results.
= Too much orthogonality may produce
undetected errors.
2Any combination of primitive is legal.

Chapter 1: Preliminaries 6

Evaluation Criteria: Writability

Factors

@Support for abstraction

= Ability to define and use complicated
structures or operations ignoring all the
details.
@Important for modular programming.
@Two forms of abstraction
= Process: subprograms
@ e.g. using a subprogram to implement a search or
sort algorithm.
= Data: data types
@ e.g. trees, arrays, etc.

Chapter 1: Preliminaries 7

Evaluation Criteria: Writability

Factors

@Expressivity

= Aids writability by make it convenient and
easy to specify things.
= €.g. count++ vs. count = count + 1

Chapter 1: Preliminaries 8

Evaluation Criteria: Reliability

Factors

@Reliable programs work (according to

specifications) under all conditions.
@Type checking

. Earli_er error detection is less expensive to

repair

= Compile-time checking is preferred.

@Exception handling

= The ability of a program to intercept run-time
errors, take corrective measures, and then
continue (e.g. C++, Java, Ada).

Chapter 1: Preliminaries 9

Evaluation Criteria: Reliability
Factors
@Aliasing
= Having to or more distinct referencing
methods, or names, for the same memory
cell.
@e.g. using pointer in C++, reference in Java
@Readability and Writability
= The easiest a program is to write, the more
likely it is to be correct.
= Programs that are difficult to read are difficult
to both to write and modify.

Chapter 1: Preliminaries 10

Evaluation Criteria; Cost

@ Cost of learning/teaching a language
(programmer training)

@ Cost of writing/developing a program (software
creation)

& Cost of compiling the program (fast)

& Cost of running the program (fast)

@ Cost of the compiler (for free e.g. Java)

@ Cost of poor reliability

@ Cost of maintaining the program (corrections
and modifications to add new capabilities)

Chapter 1: Preliminaries 11

Evaluation Criteria; Other

@Portability

= The ease with which programs can be moved
from one implementation to another.

@Generality

= The applicability to a wide range of
applications.

aWell-definedness

= The completeness and precision of a
language’s official defining document.

Chapter 1: Preliminaries 12

Language Design Trade-Offs

“There are so many important but conflicting
criteria, that their reconciliation and

satisfaction is a major engineering task.”
(Tony Hoare 1973)

Reliability vs. |Cost (execution)

Expressivity |vs. |Readability
\Writability vs. |Readability
Reliability vs. |Writability(flexibility)

Chapter 1: Preliminaries 13

Language Design Trade-Offs

@ Most criteria cannot be defined nor measured
precisely.

@ The way a language is evaluated is heavily
influenced by the point of view and background
of the evaluator.
= Language designer
= Language implementor
= Language user

A real designer understands trade-offs and make
decisions rather than skirt them.

Chapter 1: Preliminaries 14

What impacts Programming
Language Design?

@Application domain
@Evaluation Criteria

@Computer architecture -

@Programming methodologies

Chapter 1: Preliminaries 15

Computer Architecture Influence

@ Imperative languages have been designed around
the von Neumann architecture
= Data and programs are stored in memory
= Central processing unit (CPU) executed the instructions
@ CPU and memory are separated
& Instructions/data must be transmitted from memory to CPU
& Results from operations are transmitted back to memory
@ Imperative languages map well to this architecture
= Variables are memory locations

= Assignments move data back and forth between CPU
and memory

= Iteration for repetition

Chapter 1: Preliminaries 16

The von Neumann Architecture

Renory [Sones Dot PSITUCHOTS and oot

Rreiis o
oparalirn

Insbrpciiony and dabs

frithimestic and Coro

g - i A Fiyul i aulpul désicis

Coriral procesent uni
Chapter 1: Preliminaries 17

What impacts Programming
Language Design?

@Application domain
@Evaluation Criteria

2@Computer architecture

@#Programming methodologies

Chapter 1: Preliminaries 18

Programming Methodologies
Influence

@People’s needs affect the design of
programming languages and paradigms.
= 1950’s and early 1960’s
#Worry about machine efficiency
@Simple applications
= Late 1960’s
#Worry about people efficiency

@Better control structures and improved readability
= Structured programming
= Top-down design and step-wise refinement

Chapter 1: Preliminaries 19

Programming Methodologies
Influence

= Mid-late 1970’s
@Worry about reuse and maintenance
@Shift from process-oriented to data-oriented
» Data abstraction
= 1980’s
#Rising complexity and costs
#Introduction of object-oriented programming
= Data abstraction + inheritance + polymorphism
= 1990's

#The Internet
« Data + network issues + interoperability

Chapter 1: Preliminaries 20

Programming Paradigms

@ Paradigms are programming styles (a special
way to express an idea or algorithm) that
embody programming design technology

tmpeTative Dectaratt
Procetura— o Paratter—[togica—F Datapase
Fortran TFF Occam _[Prolog [Haskel o)n

ETeT CTANT ™

TaVE TaVE TP

cheTe

Mithbtocks—Obrect
alsjo STITaaR
Pascar

T

Chapter 1: Preliminaries 21

Programming Paradigms:
Imperative
<Central features are variables, assignment
statements, and iterative form of repetition.

@Specific order of execution of the
instruction

= Program = order series of steps
@ Separation of data and algorithm
2C, Pascal, Cobol, Fortran

Chapter 1: Preliminaries 22

Programming Paradigms: Object-
Oriented

@Closely related to imperative

@Program = a set of definitions (data and
code that operates on the data
encapsulated together)
= Objects interact with each other by passing

messages back and forth

@Other features: inheritance, dynamic
binding

@Java, C++, Python, Smalltalk, Eiffel Example |

Chapter 1: Preliminaries 23

Programming Paradigms:
Functional

@Central features are functions (applied to
given parameters)

= Program = a set of mathematical functions
each with an input (domain) and an output
(range)

= No assignments, tons of recursion, and less
focus on order

@Lazy evaluation: postpone operand
evaluation until operation.
@Lisp, Scheme, Haskell, ML Example |

Chapter 1: Preliminaries 24

Programming Paradigms: Logic

@ What vs. How
@ Rule-based language
@ Rules are specified in no particular order
@ Program = collection of logical declarations that
describe the problem to be solved
= An inference engine then finds the solution
@ Itis also called declarative
= Declare or make assertions
= No sequence

2 Prolog =T

Chapter 1: Preliminaries 25

Programming Example

Greatest Common Denominator (gcd)

(I
{
}

Chapter 1: Preliminaries 26

Programming Paradigms:

Language Implementation

& There are three possible approaches to
translating human readable code to
machine code

1 Compilation
> Interpretation
s Hybrid

Chapter 1: Preliminaries 28

|Advantage Disadvantage
Imperative [Running cost Reliability
[Compilation cost Readability
Functional [Writability (asbtract) | Running cost
[Readability Compilation cost
Reliability
erificatior
[Object-oriented Maintenance cost Learning cost
Reliability Compilation cost
) Running cost.
Chapter 1: Preliminaries 27

@ Translate high-level '
program to machine .
code

@ Slow translation

@ Fast execution

@ Optimization (improve

program by making it

smaller or faster)

Slow for development

@ Difficult dealing with
runtime errors

Chapter 1: Preliminaries 29

Interpretation

No translation

Easier implementation
Slower execution
g;;iré requires more p — o inputsta
@ Easy run-time error A
handling |

@ Becoming rare on \
high-level languages ~ r,
@ Significant comeback p
with some Web I

= =N <]

scripting languages
(e.g. JavaScript)

Chapter 1: Preliminaries 30

Comparison
@A compromise between 1 ompiler Ipterpreter Hybrid
pompllers and pure] eed (runtime) 4+ |]
interpreters gmple mplex
@ Faster than pure ced 4+
interpretation (medium . emery neede %ﬁume‘ symbol
execution speed) | e
i g Hortability i i N
@A hlgh—le_/ell langlufgdet s reusable backend iptermediate
program is translated to ldnguage
an intermediate language . Reliability p A+ A+
that allows easy s 1o checks ditional check: ditional check;
interpretation (small X
translation cost)
Chapter 1: Preliminaries 31 Chapter 1: Preliminaries

Summary

@ Reasons to study concepts of PLs
= Increase our capacity to use different constructs
= Enables us to choose languages more intelligently
= Makes learning new languages easier
& Most important criteria for evaluating PLs
= Readability, writability, reliability, and cost
& Major influences on language design

= Machine architecture and software development
methodologies

@ Major methods of implementing languages

=« Compilation, pure interpretation, and hybrid
implementation

Chapter 1: Preliminaries 33

