
1

Chapter 1

Preliminaries

2Chapter 1: Preliminaries

Topics

Motivation
Programming Domains
Language Evaluation Criteria
Language Design Trade-Offs
Influences on Language Design
Language Categories
Implementation Methods

3Chapter 1: Preliminaries

What impacts Programming
Language Design?

Application domain

Evaluation Criteria

Computer architecture

Programming methodologies

The set of factors that are important
to the users of the programming

language

4Chapter 1: Preliminaries

♦Restricted aliasing

♦Exception handling

♦Type checking

♦♦Expressivity

♦♦Support for abstraction

♦♦♦Syntax design

♦♦♦Data type and structures

♦♦♦Control structure

♦♦♦Simplicity / orthogonality

ReliabilityWritabilityReadabilityCharacteristics

Criteria

Language Evaluation Criteria

5Chapter 1: Preliminaries

Evaluation Criteria: Writability
Writability describes the ease with which a
language can be used to create programs
for a given domain.
n Be careful not to compare things which

should not be.

Most of the features that affect readability
affects also writability.

6Chapter 1: Preliminaries

Evaluation Criteria: Writability

Simplicity and Orthogonality
n Lack of familiarity with some features leads

to misuse and disuse of those features.
Misuse could cause bizarre results.

n Too much orthogonality may produce
undetected errors.

Any combination of primitive is legal.

Factors

score = 15 / 3 * 5;

2

7Chapter 1: Preliminaries

Evaluation Criteria: Writability

Support for abstraction
n Ability to define and use complicated

structures or operations ignoring all the
details.

Important for modular programming.
Two forms of abstraction
n Process: subprograms

e.g. using a subprogram to implement a search or
sort algorithm.

n Data: data types
e.g. trees, arrays, etc.

Factors

8Chapter 1: Preliminaries

Evaluation Criteria: Writability

Expressivity
n Aids writability by make it convenient and

easy to specify things.
n e.g. count++ vs. count = count + 1

Factors

9Chapter 1: Preliminaries

Evaluation Criteria: Reliability

Reliable programs work (according to
specifications) under all conditions.
Type checking
n Earlier error detection is less expensive to

repair
n Compile-time checking is preferred.

Exception handling
n The ability of a program to intercept run-time

errors, take corrective measures, and then
continue (e.g. C++, Java, Ada).

Factors

10Chapter 1: Preliminaries

Evaluation Criteria: Reliability

Aliasing
n Having to or more distinct referencing

methods, or names, for the same memory
cell.

e.g. using pointer in C++, reference in Java

Readability and Writability
n The easiest a program is to write, the more

likely it is to be correct.
n Programs that are difficult to read are difficult

to both to write and modify.

Factors

11Chapter 1: Preliminaries

Evaluation Criteria: Cost

Cost of learning/teaching a language
(programmer training)
Cost of writing/developing a program (software
creation)

Cost of compiling the program (fast)
Cost of running the program (fast)

Cost of the compiler (for free e.g. Java)
Cost of poor reliability

Cost of maintaining the program (corrections
and modifications to add new capabilities)

12Chapter 1: Preliminaries

Evaluation Criteria: Other

Portability
n The ease with which programs can be moved

from one implementation to another.

Generality
n The applicability to a wide range of

applications.

Well-definedness
n The completeness and precision of a

language’s official defining document.

3

13Chapter 1: Preliminaries

Language Design Trade-Offs

“There are so many important but conflicting
criteria, that their reconciliation and
satisfaction is a major engineering task.”
(Tony Hoare 1973)

Writability(flexibility)vs.Reliability
Readabilityvs.Writability

Readabilityvs.Expressivity

Cost (execution)vs.Reliability

14Chapter 1: Preliminaries

Language Design Trade-Offs

Most criteria cannot be defined nor measured
precisely.
The way a language is evaluated is heavily
influenced by the point of view and background
of the evaluator.
n Language designer
n Language implementor
n Language user

A real designer understands trade-offs and make
decisions rather than skirt them.

15Chapter 1: Preliminaries

What impacts Programming
Language Design?

Application domain

Evaluation Criteria

Computer architecture

Programming methodologies

The programming language should
map well to the hardware
(computer architecture)

16Chapter 1: Preliminaries

Computer Architecture Influence

Imperative languages have been designed around
the von Neumann architecture
n Data and programs are stored in memory
n Central processing unit (CPU) executed the instructions

CPU and memory are separated
Instructions/data must be transmitted from memory to CPU
Results from operations are transmitted back to memory

Imperative languages map well to this architecture
n Variables are memory locations
n Assignments move data back and forth between CPU

and memory
n Iteration for repetition

17Chapter 1: Preliminaries

The von Neumann Architecture

18Chapter 1: Preliminaries

What impacts Programming
Language Design?

Application domain

Evaluation Criteria

Computer architecture

Programming methodologies

Programming languages respond
to different ways of thinking

about programs

4

19Chapter 1: Preliminaries

Programming Methodologies
Influence

People’s needs affect the design of
programming languages and paradigms.
n 1950’s and early 1960’s

Worry about machine efficiency
Simple applications

n Late 1960’s
Worry about people efficiency
Better control structures and improved readability
n Structured programming
n Top- down design and step- wise refinement

20Chapter 1: Preliminaries

Programming Methodologies
Influence

n Mid-late 1970’s
Worry about reuse and maintenance
Shift from process-oriented to data-oriented
n Data abstraction

n 1980’s
Rising complexity and costs
Introduction of object-oriented programming
n Data abstraction + inheritance + polymorphism

n 1990’s
The Internet
n Data + network issues + interoperability

21Chapter 1: Preliminaries

Programming Paradigms

Paradigms are programming styles (a special
way to express an idea or algorithm) that
embody programming design technology

C

Pascal

SmalltalkAlgol

ObjectsWith blocks

Scheme
LispJavaJava

MLCAMLEiffel

SQLHaskellPrologOccamC++Fortran

DatabaseFunctionalLogicalParallelOOProcedural

DeclarativeImperative

22Chapter 1: Preliminaries

Programming Paradigms:
Imperative

Central features are variables, assignment
statements, and iterative form of repetition.
Specific order of execution of the
instruction
n Program = order series of steps

Separation of data and algorithm
C, Pascal, Cobol, Fortran

Example

23Chapter 1: Preliminaries

Programming Paradigms: Object-
Oriented

Closely related to imperative
Program = a set of definitions (data and
code that operates on the data
encapsulated together)
n Objects interact with each other by passing

messages back and forth

Other features: inheritance, dynamic
binding
Java, C++, Python, Smalltalk, Eiffel Example

24Chapter 1: Preliminaries

Programming Paradigms:
Functional

Central features are functions (applied to
given parameters)
n Program = a set of mathematical functions

each with an input (domain) and an output
(range)

n No assignments, tons of recursion, and less
focus on order

Lazy evaluation: postpone operand
evaluation until operation.
Lisp, Scheme, Haskell, ML Example

5

25Chapter 1: Preliminaries

Programming Paradigms: Logic

What vs. How

Rule-based language
Rules are specified in no particular order

Program = collection of logical declarations that
describe the problem to be solved
n An inference engine then finds the solution

It is also called declarative
n Declare or make assertions
n No sequence

Prolog
Example

26Chapter 1: Preliminaries

Greatest Common Denominator (gcd)
Programming Example

intgcd(intx, inty)
{

int remainder;
do {

remainder = a%b;
if (remainder != 0) {

a = b;
b = remainder;

}
} while (remainder);
return b;

}

C (define (gcd u v)
(if (= v 0) u

(gcd v (modulo u v))))

Scheme

gcd(U, V, U) :- V=0
gcd(U, V, X) :- not(V=0)

Y is U mod V,
gcd(V, Y, X)

Prolog

public class IntGcd
{

private intvalue;

public intIntGcd(intval) {
value = val; }

public intGetValue() {
return value; }

public intgcd(intv) {
intz = value;
inty = v ;
while (y != 0) {

int t = y;
y = z%y;
z = t; }

return z; }
}

Java

27Chapter 1: Preliminaries

Programming Paradigms:
Comparison

Learning cost
Compilation cost
Running cost

Maintenance cost
Reliability
Abstraction

Object-oriented

Running cost
Compilation cost

Writability (asbtract)
Readability
Reliability
Verification

Functional

Reliability
Readability

Running cost
Compilation cost

Imperative

DisadvantageAdvantage

28Chapter 1: Preliminaries

Language Implementation

There are three possible approaches to
translating human readable code to
machine code

1. Compilation

2. Interpretation
3. Hybrid

29Chapter 1: Preliminaries

Compilation

Translate high-level
program to machine
code
Slow translation
Fast execution
Optimization (improve
program by making it
smaller or faster)
Slow for development
Difficult dealing with
runtime errors

30Chapter 1: Preliminaries

Interpretation

No translation
Easier implementation
Slower execution
Often requires more
space
Easy run-time error
handling
Becoming rare on
high-level languages
Significant comeback
with some Web
scripting languages
(e.g. JavaScript)

6

31Chapter 1: Preliminaries

Hybrid

A compromise between
compilers and pure
interpreters
Faster than pure
interpretation (medium
execution speed)
A high-level language
program is translated to
an intermediate language
that allows easy
interpretation (small
translation cost)

32Chapter 1: Preliminaries

Language Implementation:
Comparison

++
additional checks

++
additional checks

--
no checks

Reliability

++
intermediate
language

reusable backend

Portability

source, symbol
table

++Memory needed

complex
statements

++
simple
instructions

Speed (runtime)

HybridInterpreterCompiler

33Chapter 1: Preliminaries

Summary

Reasons to study concepts of PLs
n Increase our capacity to use different constructs
n Enables us to choose languages more intelligently
n Makes learning new languages easier

Most important criteria for evaluating PLs
n Readability, writability, reliability, and cost

Major influences on language design
n Machine architecture and software development

methodologies
Major methods of implementing languages
n Compilation, pure interpretation, and hybrid

implementation

