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Variables: attributes

A variable can be thought of as being completely 
specified by its 6 basic attributes:

1. Name: identifier
2. Address: memory location(s)
3. Value: particular value at a moment
4. Type: range of possible values
5. Lifetime: when the variable is accessible
6. Scope: where in the program it can be accessed
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Binding

The assignment statement is really an 
instance of a more general phenomenon of 
attaching various kinds of values to names.
The association of a name to an attribute is 
called binding
n Assignment statement binds a value to a 

location.

n Identifiers are bond to locations, types, and 
other attributes at various points in the 
translations of a program.
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Binding

Binding time. Bindings happen at different 
and invisible points.
Possible binding times

1. Language design time
n Bind operator symbols to operations 

n Example: bind * to multiplication

2. Language implementation time
n Example: bind floating point type to a 

representation (IEEE floating-point format)
n Example: the data type int in Java is bound to a 

range of values.
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Binding
3. Compile time
n Example: bind a variable to a type in C or Java

4. Link time
n Example: bind a call to a library function to the 

function code.
5. Load time
n Example: bind a C static variable to a memory 

cell.
6. Runtime
n Example: bind a nonstatic local variable to a 

memory cell
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The Concept of Binding
Consider the following:

int C; 
C := C + 5;

n Some of the bindings and their binding times 
are:

The type of C is bound at compiletime.
The set of possible values of C is bound at compiler design
time.
The meaning of the operator + is bound at compiletime 
(when the types of its operands have been determined)
The internal representation of the literal 5 is bound at 
compiler design time.
The value of C is bound at run time.
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Static and Dynamic Binding

A binding is static
n it occurs before run time and
n It remains unchanged throughout program execution

A binding is dynamic
n It occurs during execution or
n It can change during execution of the program

As binding time gets earlier:
n Efficiency goes up
n Safety goes up
n Flexibility goes down
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Type Bindings

A variable must be bound to a data type before 
it can be referenced.
Two key issues in binding a type to an 
identifier:

1. How is the type specified?
2. When does the binding take place?
How? – two kinds of declarations:

1. Explicit declarations
2. Implicit declarations
When? - three kinds of type bindings:

1. Static type binding
2. Dynamic type binding
3. Type inference
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Variable Declarations

An explicit declaration is a program statement 
used for declaring the types of variables.
n Example: int x;
n Advantage: safer, cheaper
n Disadvantage: less flexible

An implicit declaration is a default mechanism 
for specifying types of variables (the first 
appearance of the variable in the program)
n Example: in FORTRAN, variables beginning with I -N 

are assumed to be of type integer.
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Variable Declarations
Advantages: convenience

Disadvantage: reliability (some typographical and 
programmer errors cannot be detected.

Intermediate position: Names for specific types 
must begin with a given character.
n Example: in Perl, variables of type scalar, array and hash 

structures begin with a $, @, or %, respectively.
n Advantages:

Different namespaces for different type variables
@apple vs. %apple vs. @apple

The type of a variable is know through its name.
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Variable Declarations

Implicit declarations leave more room for 
error
n Example: In FORTRAN variables left 

undeclared will be implicitly declared as an 
integer.
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Dynamic Type Binding

The variable is bound to a type when it is 
assigned a value in an assignment 
statement.
n JavaScript and PHP
n Example: in JavaScript

list = { 2, 4, 6, 8 };
list = 17.3;

n Dynamic binding of objects.
n Advantage: flexibility (generic program units)
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Dynamic Type Binding
n Disadvantages: 

Compiler’s type error detection is minimized.
If RHS is not compatible with LHS, the type of LHS is changed as
opposed to generating an error.
n This issue also appears in static type binding languages like C and 

C++

Must be implemented by a pure interpreter rather than a compiler
n It is not possible to create machine code instructions whose 

operand types are not known at compile time.

High cost:
n Type checking must be done at runtime

n Every variable must know its current type

n A variable might have varying sizes because different type values 
require different amounts of storage.

n Must be interpreted.
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Type Inference

Rather than by assignment statement, types 
are determined from the context of the 
reference.
Type inferencing is used in some 
programming languages including ML, 
Miranda, and Haskell.
Example:
n Legal:

fun circumf(r) = 3.14159 * r * r; // infer r is real
fun time10(x) = 10 * x; // infer s is integer

16Chapter 5: Variables

Type Inference

n Illegal:
fun square(x) = x * x 
// can’t deduce anything ( a default value could be 
assigned)

n Fixed
fun square(x : real) = x * x;
// use explicit declaration
fun square(x) = (x : real) * x;
fun square(x) : real = x * (x : real);
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Storage Bindings & Lifetime

Allocation is the process of getting a cell from 
some pool of available cells.
Deallocation is the process of putting a cell 
back into the pool.
The lifetime of a variable is the time during 
which it is bound to a particular memory cell.
n Begin: when the variable is bound to a specific 

cell
n Ends: when the variable is unbound from that 

cell.
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Variables: lifetime

Categories of scalar variables by lifetimes:
n Static

n Stack-dynamic

n Explicit heap-dynamic
n Implicit hep-dynamic
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Static Variables

Bound to memory cells before execution and 
remains bound to the same memory cell 
throughout execution
n Example: all  FORTRAN 77 variables
n Example: C static variables

Advantages:
n Efficiency (direct addressing)
n No allocation/deallocation needed (which is run time 

overhead)
n History-sensitive subprogram support (retain values 

between separate executions of the subprogram)
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Static Variables

Disadvantages:
n If a language only has static variables then

Recursion cannot be supported (lack of 
flexibility).
Storage cannot be shared among variables 
(more storage required)

21Chapter 5: Variables

Stack-dynamic Variables

Storage bindings are created for variables in 
the run time stack when their declaration 
statement are elaborated (or execution 
reaches the code to which declaration is 
attached), but types are statically bound.
n If scalar, all attributes except address are 

statically bound
Example: local variables in C subprograms and Java 
methods
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Stack-dynamic Variables

Advantages:
n Allows recursion
n Conserves storage

Disadvantages:
n Run time overhead for allocation and 

deallocation.
n Subprogram cannot be history sensitive
n Inefficient references (indirect addressing)
n Limited by stack size.
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Explicit Heap-dynamic Variables

Allocated and deallocated by explicit 
directives, specified by the programmer, 
which take effect during execution.
n Referenced only through pointers or 

references
Example: dynamic objects in C++ (via new/delete, 
malloc/free)
Example: all objects in Java (except primitives)

Advantages:
n Provides for dynamic storage management
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Explicit Heap-dynamic Variables

Disadvantages:
n Unreliable (forgetting to delete)
n Difficult of using pointer and reference variables 

correctly
n Inefficient.

Example:
int *intnode; // create a pointer
…
intnode = new int   // create the heap-dynamic variable
…
delete intnode; // deallocate the heap-dynamic variable
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Implicit Heap-dynamic Variables

Allocation and deallocation caused by 
assignment statements and types not 
determined until assignment.
n Example: All arrays and strings in Perl and JavaScript
n Example: all variables in APL

Advantage: highest degree of flexibility
Disadvantages:
n Inefficient because all attributes are dynamic (a lot of 

overhead)
n Loss of error detection

26Chapter 5: Variables

Summary Table

DynamicHeapBy assignment (run 
time)

Implicit heap-
dynamic

StaticHeapBy explicit instruction 
(run time)

Explicit heap-
dynamic

StaticRun-time stackWhen declaration is 
elaborated (run time)

Stack-dynamic

StaticBefore executionStatic

Type 
binding

Dynamic storage 
from 

Storage binding timeVariable
Category
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Type Checking

Generalizes the concept of operands and 
operators to include subprograms and 
assignments:
n Subprogram is operator, parameters are 

operands.
n Assignment is operator, LHS and RHS are 

operands.
Type checking is the activity of ensuring 
that the operands of an operator are of 
compatible types.
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Type Checking

A compatible type is one that is either:
n Legal for the operator, or
n Allowed under language rules to be implicitly 

converted to a legal type by compiler-generated 
code.

n This automatic conversion is called coercion
Example: adding an int to a float in Java is allowed, 
then int is coerced.

A type error is the application of an operator 
to an operand of an inappropriate type.
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Type Checking

If all type bindings are 
n Static: nearly all type checking can be static
n Dynamic: type checking must be dynamic

Static type checking is less costly (it is better to 
catch errors at compile time) but it is also less 
flexible (fewer shortcuts and tricks).
Static type checking is difficult when the 
language allows a cell to store a value of 
different types at different time, such as C 
unions, Fortran Equivalences or Ada variant 
records.
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Strong Typing

A programming language is strongly typed if
n Type errors are always detected.
n There is strict enforcement of type rules with no 

exceptions.
n All types are known at compile time, i.e. are statically 

bound.
n With variables that can store values of more than one 

type, incorrect type usage can be detected at run time.

Advantages:
n Strong typing catches more errors at compile time than 

weak typing, resulting in fewer run time exceptions.
n Detects misuses of variables that result in type errors.
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Which languages have strong 
typing?

FORTRAN 77 is not because it does not check 
parameters and because of variable equivalence
statements.
Ada is almost strongly typed but UNCHECKED 
CONVERSIONS is a loophole.
Haskell is strongly typed.
Pascal is (almost) strongly typed, but variant records 
screw it up.
C and C++ are sometimes described as strongly typed, 
but are perhaps better described as weakly typed 
because parameter type checking can be avoided and 
unions are not type checked.
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Strong Typing vs. No Type

Coercion rules strongly affect strong typing
n They can weaken it considerably
n Although Java has just half the assignments 

coercions of C++, its strong typing is still weak (less 
effective than Ada).

n Languages such as Fortran, C and C++ have a great 
deal of coercion and are less reliable than those with 
little coercion, such as Ada, Java, and C#.

In practice, languages fall on between strongly 
typed and untyped.
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Type Compatibility

There are 2 different types of compatibility 
methods for structure (nonscalar) variables:
n Name type compatibility
n Structure type compatibility

Name type compatibility (“name 
equivalence”) means that two variables 
have compatible types if
n They are defined in the same declaration or
n They are defined in declarations that uses the 

same type name.
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Name Type Compatibility

Easy to implement but highly restrictive:
n Subranges of integer types are not compatible 

with integer types.
Example: count cannot be assigned to index

type IndexType is 1..100;
count: Integer;
index: Indextype;

n Only two type names will be compared to 
determine compatibility.
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Structure Type Compatibility

Type compatibility by structure (“structural 
equivalence) means that two variables have 
compatible types if their types have identical 
structures.
More flexible, but harder to implement.
n The entire structures of two types must be compared.
n May create types that are, but should not be 

compatible 
Example: Celsius vs. Fahrenheit

type celsius = float;
Fahrenheit = float;
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Type Compatibility

Consider the problem of two structured types:
n Are two record types compatible if they are structurally 

the same but use different field names?
n Are two array types compatible if they are the same 

except that the subscripts are different (e.g. [1..10] and 
[0..9])?

n Are two enumeration types compatible if their 
components are spelled differently?

n With structural type compatibility, you cannot 
differentiate between types of the same structure (e.g. 
different units of speed, both float).
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Scope
The scope of a variable is the range of statements in a 
program over which it is visible.
n A variable is visible if it ca be referenced in a statement. 

Typical cases:
n Explicitly declared ⇒ local variables
n Explicitly passed to a subprogram ⇒ parameters
n The nonlocal variables of a program unit are those that are visible 

but not declared
n Global variables ⇒ visible everywhere

The scope rules of a language determine how references to 
names are associated with variables.
The two major schemes are static scoping and dynamic 
scoping.
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Static Scope

Also known as “lexical scope”
In static scoping, the scope of a variable can be 
determined at compile time, based on the text of 
a program.
To connect a name reference to a variable, the 
compiler must find the declaration
n Search process: search declarations, first locally, then 

in increasingly larger enclosing scopes, until one is 
found for the given name.

n Enclosing static scopes to a specific scope are called 
its static ancestors; the nearest static ancestor is 
called a static parent.
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Blocks

A block is a section of code in which local 
variables are allocated/deallocated at the 
start/end of the block.
Provides a method of creating static 
scopes inside program units.
Introduced by ALGOL 60 and found in 
most PLs.
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Blocks

Variables can be hidden from a unit by 
having a “closer” variable with the same 
name.
C++ allows access to “hidden” variables 
with the use of :: scope operator.
n Example: if x is a global variable hidden in a 

subprogram by a local variable named x, the 
global could be reference as class_name::x

n Ada: unit.x
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Example of Blocks

C and C++
for (…) {

int index;
…
}

Ada
Declare LCL:

FLOAT;
begin
…
end

Common Lisp
(let ((a 1)

(b foo)
(c))

(setq a (* a a ))
(bar a b ) )
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Scope

Consider the example:
Assume MAIN calls A and B

A calls C and D
B calls A and E
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Static Scope Example

MAINMAIN

E

A

C

D

B

A B

C D E
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Static Scope Example

MAIN

A B

C D E

The desired call graph

MAIN

A

C

B

ED

The potential call graph
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Static Scope Evaluation

Suppose now that E() needs to get access to a 
variable in D()
One solution is to move E() inside the scope of D()
n But then E can no longer access the scope of B

Another solution is to move the variables defined in 
D to main
n Suppose x was moved from D to main, and another x

was declared in A, the latter will hide the former.
n Also having variable declared very far from where they 

are used is not good for readability.
Overall: static scope often encourages many global 
variables.
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Dynamic Scope

Based on calling sequences of program units, 
not their textual layout.
Reference to variables are connected to 
declarations by searching back through the 
chain of subprogram calls that forced execution 
at this point.
Used in APL, Snobol and LISP
n Note that these languages were all (initially) 

implemented as interpreters rather than compilers.
Consensus is that PLs with dynamic scoping 
lead to programs which are difficult to read and 
maintain.
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Scope Example

MAIN
- declaration of x

SUB1
- declaration of x -
...
call SUB2
...

SUB2
...
- reference to x -
...  

. . .
call SUB1
…

MAIN calls SUB1
SUB1 calls SUB2
SUB2 uses x

•Static scoping 
•reference to x is to MAIN’s x

•Dynamic scoping 
•reference to x is to SUB1’s x
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Static vs. Dynamic Scoping

Advantages of Static Scoping:
n Readability
n Locality of reasoning
n Less run time overhead

Disadvantages:
n Some loss of flexibility

Advantages of Dynamic Scoping
n Some extra convenience

Disadvantages
n Loss of readability
n Unpredictable behavior (minimal parameter passing)
n More run-time overhead.
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Scope vs. Lifetime

While these two issues seem related, they can 
differ.
In Pascal, the scope of a local variable and the 
lifetime of the local variable seem the same.

In C/C++, a local variable in a function might 
be declared static but its lifetime extends over 
the entire execution of the program and 
therefore, even through it is inaccessible, it is 
still memory.

50Chapter 5: Variables

Referencing Environment

The referencing environment of a 
statement is the collection of all names 
that are visible in the statement.
In a static-scoped language, it is the local 
variables plus all of the variables in all the 
enclosing scopes.
In a dynamic-scoped language, the 
referencing environment is the local 
variable plus all visible variables in all 
active subprograms.

51Chapter 5: Variables

Named Constants

A named constant is a variable that is 
bound to a value only when it is bound to 
storage.
The value of a named constant can not 
change while the program is running.

Name
Type
Lifetime
Scope

Value

52Chapter 5: Variables

Named Constants

Advantages: 
n Readability 
n Maintenance

The binding of values to named constants 
can be either static of dynamic 
n const int length = 5 * x;
n final flow rate = 1.5*values;
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Named Constants

Languages
n Pascal: literals only
n Modula-2 and FORTRAN 90: constant-

value expressions
n Ada, C++, and Java: expressions of any 

kind

Advantages
n Increases readability without loss of 

effective.
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Variable Initialization

The binding of a variable to a value at the 
time it is bound to storage is called 
initialization.
Initialization is often done on the 
declaration statement
n Example: In Java

int sum = 0;
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Summary

Case sensitivity and the relationship of names to 
special words represent design issues of names
Variables are characterized by the sextuples: 
name, address, value, type, lifetime, scope
Binding is the association of attributes with 
program entities
Scalar variables are categorized as: static, stack 
dynamic, explicit heap dynamic, implicit heap 
dynamic
Strong typing means detecting all type errors


