
1

Chapter 5

Variables

2Chapter 5: Variables

Topics

Binding

Lifetime
Scope

Constants

3Chapter 5: Variables

Variables: attributes

A variable can be thought of as being completely
specified by its 6 basic attributes:

1. Name: identifier
2. Address: memory location(s)
3. Value: particular value at a moment
4. Type: range of possible values
5. Lifetime: when the variable is accessible
6. Scope: where in the program it can be accessed

4Chapter 5: Variables

Binding

The assignment statement is really an
instance of a more general phenomenon of
attaching various kinds of values to names.
The association of a name to an attribute is
called binding
n Assignment statement binds a value to a

location.

n Identifiers are bond to locations, types, and
other attributes at various points in the
translations of a program.

5Chapter 5: Variables

Binding

Binding time. Bindings happen at different
and invisible points.
Possible binding times

1. Language design time
n Bind operator symbols to operations

n Example: bind * to multiplication

2. Language implementation time
n Example: bind floating point type to a

representation (IEEE floating-point format)
n Example: the data type int in Java is bound to a

range of values.

6Chapter 5: Variables

Binding
3. Compile time
n Example: bind a variable to a type in C or Java

4. Link time
n Example: bind a call to a library function to the

function code.
5. Load time
n Example: bind a C static variable to a memory

cell.
6. Runtime
n Example: bind a nonstatic local variable to a

memory cell

2

7Chapter 5: Variables

The Concept of Binding
Consider the following:

int C;
C := C + 5;

n Some of the bindings and their binding times
are:

The type of C is bound at compiletime.
The set of possible values of C is bound at compiler design
time.
The meaning of the operator + is bound at compiletime
(when the types of its operands have been determined)
The internal representation of the literal 5 is bound at
compiler design time.
The value of C is bound at run time.

8Chapter 5: Variables

Static and Dynamic Binding

A binding is static
n it occurs before run time and
n It remains unchanged throughout program execution

A binding is dynamic
n It occurs during execution or
n It can change during execution of the program

As binding time gets earlier:
n Efficiency goes up
n Safety goes up
n Flexibility goes down

9Chapter 5: Variables

Type Bindings

A variable must be bound to a data type before
it can be referenced.
Two key issues in binding a type to an
identifier:

1. How is the type specified?
2. When does the binding take place?
How? – two kinds of declarations:

1. Explicit declarations
2. Implicit declarations
When? - three kinds of type bindings:

1. Static type binding
2. Dynamic type binding
3. Type inference

10Chapter 5: Variables

Variable Declarations

An explicit declaration is a program statement
used for declaring the types of variables.
n Example: int x;
n Advantage: safer, cheaper
n Disadvantage: less flexible

An implicit declaration is a default mechanism
for specifying types of variables (the first
appearance of the variable in the program)
n Example: in FORTRAN, variables beginning with I -N

are assumed to be of type integer.

11Chapter 5: Variables

Variable Declarations
Advantages: convenience

Disadvantage: reliability (some typographical and
programmer errors cannot be detected.

Intermediate position: Names for specific types
must begin with a given character.
n Example: in Perl, variables of type scalar, array and hash

structures begin with a $, @, or %, respectively.
n Advantages:

Different namespaces for different type variables
@apple vs. %apple vs. @apple

The type of a variable is know through its name.
12Chapter 5: Variables

Variable Declarations

Implicit declarations leave more room for
error
n Example: In FORTRAN variables left

undeclared will be implicitly declared as an
integer.

3

13Chapter 5: Variables

Dynamic Type Binding

The variable is bound to a type when it is
assigned a value in an assignment
statement.
n JavaScript and PHP
n Example: in JavaScript

list = { 2, 4, 6, 8 };
list = 17.3;

n Dynamic binding of objects.
n Advantage: flexibility (generic program units)

14Chapter 5: Variables

Dynamic Type Binding
n Disadvantages:

Compiler’s type error detection is minimized.
If RHS is not compatible with LHS, the type of LHS is changed as
opposed to generating an error.
n This issue also appears in static type binding languages like C and

C++

Must be implemented by a pure interpreter rather than a compiler
n It is not possible to create machine code instructions whose

operand types are not known at compile time.

High cost:
n Type checking must be done at runtime

n Every variable must know its current type

n A variable might have varying sizes because different type values
require different amounts of storage.

n Must be interpreted.

15Chapter 5: Variables

Type Inference

Rather than by assignment statement, types
are determined from the context of the
reference.
Type inferencing is used in some
programming languages including ML,
Miranda, and Haskell.
Example:
n Legal:

fun circumf(r) = 3.14159 * r * r; // infer r is real
fun time10(x) = 10 * x; // infer s is integer

16Chapter 5: Variables

Type Inference

n Illegal:
fun square(x) = x * x
// can’t deduce anything (a default value could be
assigned)

n Fixed
fun square(x : real) = x * x;
// use explicit declaration
fun square(x) = (x : real) * x;
fun square(x) : real = x * (x : real);

17Chapter 5: Variables

Storage Bindings & Lifetime

Allocation is the process of getting a cell from
some pool of available cells.
Deallocation is the process of putting a cell
back into the pool.
The lifetime of a variable is the time during
which it is bound to a particular memory cell.
n Begin: when the variable is bound to a specific

cell
n Ends: when the variable is unbound from that

cell.
18Chapter 5: Variables

Variables: lifetime

Categories of scalar variables by lifetimes:
n Static

n Stack-dynamic

n Explicit heap-dynamic
n Implicit hep-dynamic

4

19Chapter 5: Variables

Static Variables

Bound to memory cells before execution and
remains bound to the same memory cell
throughout execution
n Example: all FORTRAN 77 variables
n Example: C static variables

Advantages:
n Efficiency (direct addressing)
n No allocation/deallocation needed (which is run time

overhead)
n History-sensitive subprogram support (retain values

between separate executions of the subprogram)
20Chapter 5: Variables

Static Variables

Disadvantages:
n If a language only has static variables then

Recursion cannot be supported (lack of
flexibility).
Storage cannot be shared among variables
(more storage required)

21Chapter 5: Variables

Stack-dynamic Variables

Storage bindings are created for variables in
the run time stack when their declaration
statement are elaborated (or execution
reaches the code to which declaration is
attached), but types are statically bound.
n If scalar, all attributes except address are

statically bound
Example: local variables in C subprograms and Java
methods

22Chapter 5: Variables

Stack-dynamic Variables

Advantages:
n Allows recursion
n Conserves storage

Disadvantages:
n Run time overhead for allocation and

deallocation.
n Subprogram cannot be history sensitive
n Inefficient references (indirect addressing)
n Limited by stack size.

23Chapter 5: Variables

Explicit Heap-dynamic Variables

Allocated and deallocated by explicit
directives, specified by the programmer,
which take effect during execution.
n Referenced only through pointers or

references
Example: dynamic objects in C++ (via new/delete,
malloc/free)
Example: all objects in Java (except primitives)

Advantages:
n Provides for dynamic storage management

24Chapter 5: Variables

Explicit Heap-dynamic Variables

Disadvantages:
n Unreliable (forgetting to delete)
n Difficult of using pointer and reference variables

correctly
n Inefficient.

Example:
int *intnode; // create a pointer
…
intnode = new int // create the heap-dynamic variable
…
delete intnode; // deallocate the heap-dynamic variable

5

25Chapter 5: Variables

Implicit Heap-dynamic Variables

Allocation and deallocation caused by
assignment statements and types not
determined until assignment.
n Example: All arrays and strings in Perl and JavaScript
n Example: all variables in APL

Advantage: highest degree of flexibility
Disadvantages:
n Inefficient because all attributes are dynamic (a lot of

overhead)
n Loss of error detection

26Chapter 5: Variables

Summary Table

DynamicHeapBy assignment (run
time)

Implicit heap-
dynamic

StaticHeapBy explicit instruction
(run time)

Explicit heap-
dynamic

StaticRun-time stackWhen declaration is
elaborated (run time)

Stack-dynamic

StaticBefore executionStatic

Type
binding

Dynamic storage
from

Storage binding timeVariable
Category

27Chapter 5: Variables

Type Checking

Generalizes the concept of operands and
operators to include subprograms and
assignments:
n Subprogram is operator, parameters are

operands.
n Assignment is operator, LHS and RHS are

operands.
Type checking is the activity of ensuring
that the operands of an operator are of
compatible types.

28Chapter 5: Variables

Type Checking

A compatible type is one that is either:
n Legal for the operator, or
n Allowed under language rules to be implicitly

converted to a legal type by compiler-generated
code.

n This automatic conversion is called coercion
Example: adding an int to a float in Java is allowed,
then int is coerced.

A type error is the application of an operator
to an operand of an inappropriate type.

29Chapter 5: Variables

Type Checking

If all type bindings are
n Static: nearly all type checking can be static
n Dynamic: type checking must be dynamic

Static type checking is less costly (it is better to
catch errors at compile time) but it is also less
flexible (fewer shortcuts and tricks).
Static type checking is difficult when the
language allows a cell to store a value of
different types at different time, such as C
unions, Fortran Equivalences or Ada variant
records.

30Chapter 5: Variables

Strong Typing

A programming language is strongly typed if
n Type errors are always detected.
n There is strict enforcement of type rules with no

exceptions.
n All types are known at compile time, i.e. are statically

bound.
n With variables that can store values of more than one

type, incorrect type usage can be detected at run time.

Advantages:
n Strong typing catches more errors at compile time than

weak typing, resulting in fewer run time exceptions.
n Detects misuses of variables that result in type errors.

6

31Chapter 5: Variables

Which languages have strong
typing?

FORTRAN 77 is not because it does not check
parameters and because of variable equivalence
statements.
Ada is almost strongly typed but UNCHECKED
CONVERSIONS is a loophole.
Haskell is strongly typed.
Pascal is (almost) strongly typed, but variant records
screw it up.
C and C++ are sometimes described as strongly typed,
but are perhaps better described as weakly typed
because parameter type checking can be avoided and
unions are not type checked.

32Chapter 5: Variables

Strong Typing vs. No Type

Coercion rules strongly affect strong typing
n They can weaken it considerably
n Although Java has just half the assignments

coercions of C++, its strong typing is still weak (less
effective than Ada).

n Languages such as Fortran, C and C++ have a great
deal of coercion and are less reliable than those with
little coercion, such as Ada, Java, and C#.

In practice, languages fall on between strongly
typed and untyped.

33Chapter 5: Variables

Type Compatibility

There are 2 different types of compatibility
methods for structure (nonscalar) variables:
n Name type compatibility
n Structure type compatibility

Name type compatibility (“name
equivalence”) means that two variables
have compatible types if
n They are defined in the same declaration or
n They are defined in declarations that uses the

same type name.
34Chapter 5: Variables

Name Type Compatibility

Easy to implement but highly restrictive:
n Subranges of integer types are not compatible

with integer types.
Example: count cannot be assigned to index

type IndexType is 1..100;
count: Integer;
index: Indextype;

n Only two type names will be compared to
determine compatibility.

35Chapter 5: Variables

Structure Type Compatibility

Type compatibility by structure (“structural
equivalence) means that two variables have
compatible types if their types have identical
structures.
More flexible, but harder to implement.
n The entire structures of two types must be compared.
n May create types that are, but should not be

compatible
Example: Celsius vs. Fahrenheit

type celsius = float;
Fahrenheit = float;

36Chapter 5: Variables

Type Compatibility

Consider the problem of two structured types:
n Are two record types compatible if they are structurally

the same but use different field names?
n Are two array types compatible if they are the same

except that the subscripts are different (e.g. [1..10] and
[0..9])?

n Are two enumeration types compatible if their
components are spelled differently?

n With structural type compatibility, you cannot
differentiate between types of the same structure (e.g.
different units of speed, both float).

7

37Chapter 5: Variables

Scope
The scope of a variable is the range of statements in a
program over which it is visible.
n A variable is visible if it ca be referenced in a statement.

Typical cases:
n Explicitly declared ⇒ local variables
n Explicitly passed to a subprogram ⇒ parameters
n The nonlocal variables of a program unit are those that are visible

but not declared
n Global variables ⇒ visible everywhere

The scope rules of a language determine how references to
names are associated with variables.
The two major schemes are static scoping and dynamic
scoping.

38Chapter 5: Variables

Static Scope

Also known as “lexical scope”
In static scoping, the scope of a variable can be
determined at compile time, based on the text of
a program.
To connect a name reference to a variable, the
compiler must find the declaration
n Search process: search declarations, first locally, then

in increasingly larger enclosing scopes, until one is
found for the given name.

n Enclosing static scopes to a specific scope are called
its static ancestors; the nearest static ancestor is
called a static parent.

39Chapter 5: Variables

Blocks

A block is a section of code in which local
variables are allocated/deallocated at the
start/end of the block.
Provides a method of creating static
scopes inside program units.
Introduced by ALGOL 60 and found in
most PLs.

40Chapter 5: Variables

Blocks

Variables can be hidden from a unit by
having a “closer” variable with the same
name.
C++ allows access to “hidden” variables
with the use of :: scope operator.
n Example: if x is a global variable hidden in a

subprogram by a local variable named x, the
global could be reference as class_name::x

n Ada: unit.x

41Chapter 5: Variables

Example of Blocks

C and C++
for (…) {

int index;
…
}

Ada
Declare LCL:

FLOAT;
begin
…
end

Common Lisp
(let ((a 1)

(b foo)
(c))

(setq a (* a a))
(bar a b))

42Chapter 5: Variables

Scope

Consider the example:
Assume MAIN calls A and B

A calls C and D
B calls A and E

8

43Chapter 5: Variables

Static Scope Example

MAINMAIN

E

A

C

D

B

A B

C D E

44Chapter 5: Variables

Static Scope Example

MAIN

A B

C D E

The desired call graph

MAIN

A

C

B

ED

The potential call graph

45Chapter 5: Variables

Static Scope Evaluation

Suppose now that E() needs to get access to a
variable in D()
One solution is to move E() inside the scope of D()
n But then E can no longer access the scope of B

Another solution is to move the variables defined in
D to main
n Suppose x was moved from D to main, and another x

was declared in A, the latter will hide the former.
n Also having variable declared very far from where they

are used is not good for readability.
Overall: static scope often encourages many global
variables.

46Chapter 5: Variables

Dynamic Scope

Based on calling sequences of program units,
not their textual layout.
Reference to variables are connected to
declarations by searching back through the
chain of subprogram calls that forced execution
at this point.
Used in APL, Snobol and LISP
n Note that these languages were all (initially)

implemented as interpreters rather than compilers.
Consensus is that PLs with dynamic scoping
lead to programs which are difficult to read and
maintain.

47Chapter 5: Variables

Scope Example

MAIN
- declaration of x

SUB1
- declaration of x -
...
call SUB2
...

SUB2
...
- reference to x -
...

. . .
call SUB1
…

MAIN calls SUB1
SUB1 calls SUB2
SUB2 uses x

•Static scoping
•reference to x is to MAIN’s x

•Dynamic scoping
•reference to x is to SUB1’s x

48Chapter 5: Variables

Static vs. Dynamic Scoping

Advantages of Static Scoping:
n Readability
n Locality of reasoning
n Less run time overhead

Disadvantages:
n Some loss of flexibility

Advantages of Dynamic Scoping
n Some extra convenience

Disadvantages
n Loss of readability
n Unpredictable behavior (minimal parameter passing)
n More run-time overhead.

9

49Chapter 5: Variables

Scope vs. Lifetime

While these two issues seem related, they can
differ.
In Pascal, the scope of a local variable and the
lifetime of the local variable seem the same.

In C/C++, a local variable in a function might
be declared static but its lifetime extends over
the entire execution of the program and
therefore, even through it is inaccessible, it is
still memory.

50Chapter 5: Variables

Referencing Environment

The referencing environment of a
statement is the collection of all names
that are visible in the statement.
In a static-scoped language, it is the local
variables plus all of the variables in all the
enclosing scopes.
In a dynamic-scoped language, the
referencing environment is the local
variable plus all visible variables in all
active subprograms.

51Chapter 5: Variables

Named Constants

A named constant is a variable that is
bound to a value only when it is bound to
storage.
The value of a named constant can not
change while the program is running.

Name
Type
Lifetime
Scope

Value

52Chapter 5: Variables

Named Constants

Advantages:
n Readability
n Maintenance

The binding of values to named constants
can be either static of dynamic
n const int length = 5 * x;
n final flow rate = 1.5*values;

53Chapter 5: Variables

Named Constants

Languages
n Pascal: literals only
n Modula-2 and FORTRAN 90: constant-

value expressions
n Ada, C++, and Java: expressions of any

kind

Advantages
n Increases readability without loss of

effective.

54Chapter 5: Variables

Variable Initialization

The binding of a variable to a value at the
time it is bound to storage is called
initialization.
Initialization is often done on the
declaration statement
n Example: In Java

int sum = 0;

10

55Chapter 5: Variables

Summary

Case sensitivity and the relationship of names to
special words represent design issues of names
Variables are characterized by the sextuples:
name, address, value, type, lifetime, scope
Binding is the association of attributes with
program entities
Scalar variables are categorized as: static, stack
dynamic, explicit heap dynamic, implicit heap
dynamic
Strong typing means detecting all type errors

