
1

Chapter 4

Lexical and Syntax Analysis

2Chapter 4: Lexical and Syntax Analysis

Complexity of Parsing

Parsing algorithms that work for
unambiguous grammar are complex and
inefficient, with complexity O(n3).
n Too slow.

n Algorithms usually backed up and reparse
part of the sentence being analyzed.

n Trade generality for efficiency.
Algorithms that work for only subsets of the set of
all possible grammars O(n).

3Chapter 4: Lexical and Syntax Analysis

Recursive-Descent Parsing

A general form of top-down parsing that
may involve backtracking.
n Backtracking parsers are rarely needed to

parse programming languages constructs.

4Chapter 4: Lexical and Syntax Analysis

Recursive-Descent Parsing

Recursive Descent Process
n There is a subprogram for each nonterminal

in the grammar, which can parse sentences
that can be generated by that nonterminal

n EBNF is ideally suited for being the basis for a
recursive-descent parser, because EBNF
minimizes the number of nonterminals

5Chapter 4: Lexical and Syntax Analysis

Recursive-Descent Parsing

Coding process when there is only one
RHS:
n For each terminal symbol in the RHS,

compare it with the next input token; if they
match, continue, else there is an error

n For each nonterminal symbol in the RHS, call
its associated parsing subprogram

6Chapter 4: Lexical and Syntax Analysis

Recursive-Descent Parsing

Coding process when A nonterminal that
has more than one RHS:
n The correct RHS is chosen on the basis of the

next token of input (the lookahead)

n The next token is compared with the first
token that can be generated by each RHS
until a match is found

n If no match is found, there is a syntax error

2

7Chapter 4: Lexical and Syntax Analysis

Example

Consider the grammar:

<S> ::= c<A>d
<A> ::= ab | a | abc

Input string: w = cad

8Chapter 4: Lexical and Syntax Analysis

LL Grammar Class

L (left-to-right) L (leftmost derivation).
What is the problem with the following
grammar?
<NP> ::= <NP> <PP>
<VP> ::= <VP> <PP>
<S> ::= <S> and <S>

n A left-recursive nonterminal can lead to the
parser to recursively expand the same
nonterminal over again in exactly the same
way, leading to an infinite expansion of trees.

9Chapter 4: Lexical and Syntax Analysis

Left-recursive grammars

A grammar is left-recursive if it contains a
nonterminal category that has a derivation that
includes itself anywhere along its leftmost
branch.
n Indirect left-recursion

<NP> ::= <Det> <Nom>
<Det> ::= <NP> …

n These rules introduce left -recursion into the grammar
since there is a derivation for the first element of the
NP, the Det, that has an NP as its first constituent.

10Chapter 4: Lexical and Syntax Analysis

Eliminating left-recursion

Weakly equivalent non-left -recursive
grammar
n Rewrite each left-recursive rule

A ? Aβ | α ⇒ A ? αA’
A’ ? βA’ | ε

11Chapter 4: Lexical and Syntax Analysis

FIRST Set

Given a string α of terminal and
nonterminal symbols, FIRST(α) is the set
of all terminal symbols that can begin any
string derived from α
If two different production X ? α1 and X ?
α2 have the same LHS symbol (X) and
their RHS have overlapping FIRST sets,
then the grammar cannot be parsed using
predictive parsing.

12Chapter 4: Lexical and Syntax Analysis

Pairwise Disjointness Test

The other characteristic of grammars that
disallows top-down parsing is the lack of
pairwise disjointness
n The inability to determine the correct RHS on the

basis of one token of lookahead
n For each nonterminal, A, in the grammar that has

more than one RHS, for each pair of rules, A → αi
and A → αj, it must be true that
FIRST(αi) n FIRST(αj) = φ

Examples:
A → a | aB

3

13Chapter 4: Lexical and Syntax Analysis

Left Factoring

Left factoring can resolve the previous
problem:
n Original grammar:

<S> ::= if <E> then <S> else <S>
<S> ::= if <E> then <S>

n Left factoring the grammar:
<S> ::= if <E> then <S> <X>
<X> ::= ε | else <S>

14Chapter 4: Lexical and Syntax Analysis

LL(1) Grammars: Parsing Table

A predictive parsing table for the following LL(1)
grammar:

<E> ::= <T><E’>
<E’> ::= +<T><E’> | e
<T> ::= <F><T’>
<T’> ::= *<F><T’> | e
<F> ::= (<E>) | id

A grammar whose parsing table has no multiply -
defined entries is said to be LL(1) – left to right,
leftmost derivation, one symbol of lookahead -

15Chapter 4: Lexical and Syntax Analysis

LL(1) Grammars: Sequence of
Moves

A sequence of moves for the following
LL(1) grammar:

<E> ::= <T><E’>
<E’> ::= +<T><E’> | e
<T> ::= <F><T’>
<T’> ::= *<F><T’> | e
<F> ::= (<E>) | id

With an input id + id * id

16Chapter 4: Lexical and Syntax Analysis

Bottom-up Parsing

Attempts to construct a parse tree for an input
string beginning at the leaves (the bottom) and
working up towards the root(the top).
n This process can be think as reducing a string to the

start symbol of a grammar.
n At each reduction step a particular substring matching

the RHS of a production is replaced by the symbol on
the LHS of that production.

n If the substring is chosen correctly at each step, a
rightmost derivation is traced out in reverse.

17Chapter 4: Lexical and Syntax Analysis

Example

Consider the grammar
<S> ::= a<A>e
<A> ::= <A> bc | b
 ::= d

The sentence abbcde can be reduced to S by the
following steps:

abbcde
a<A>bcde
a<A>de
a<A>e
<S>

18Chapter 4: Lexical and Syntax Analysis

Handles

A handle of a string:
n A substring that matches the RHS of a

production
n Reduction to the nonterminal on the LHS

represents one step along the reverse of a
rightmost derivation.

n Sometime the leftmost substring that matches
the RHS is not a handle because the
reduction yields a string that cannot be
reduced to the start symbol.

4

19Chapter 4: Lexical and Syntax Analysis

Example: Reduction Table

Consider the grammar:
<E> ::= <E>+<E>
<E> ::= <E>*<E>
<E> ::= (<E>)
<E> ::= id

The input string: id1 + id2 * id3

The sequence of reduction:

20Chapter 4: Lexical and Syntax Analysis

Shift-Reduce Parsing

Two problems with parsing with handles
n Locate substrings to be reduced in a right-

sentential form

n Determine what production to choose in case
there is more than one production with that
substring on the RHS

A shift-reduce parser uses a stack to hold
a grammar symbol and an input buffer to
hold the string to be parsed.

21Chapter 4: Lexical and Syntax Analysis

Shift-Reduce Parsing

n $ is used to mark the bottom of the stack and
also the right end of the input.

n Initially, the stack is empty
STACK INPUT

$ w$
n The parser shifts zero or more input symbols

onto the stack until a handle ß is on top of the
stack.

n The parser then reduces ß to the left side of
the appropriate production.

22Chapter 4: Lexical and Syntax Analysis

Shift-Reduce Parsing

n The parser repeats this cycle until it has
detected an error or until the stack contains
the start symbol and the input is empty.

STACK INPUT
$S $

n After that configuration, the parser halts and
announces successful completion of parsing.

23Chapter 4: Lexical and Syntax Analysis

Shift-Reduce Parsing

Four possible actions
1. Shift: the next input is shifted onto the top of the

stack.
2. Reduce: the parser knows the right end of the

handle is at the top of the stack. It must then locate
the left end of the handle within the stack and
decide with what nonterminal to replace the handle.

3. Accept: successful completion of parsing.
4. Error: a syntax error occurs and an error recovery

routine is called.

24Chapter 4: Lexical and Syntax Analysis

Summary

Syntax analysis is a common part of language
implementation
A lexical analyzer is a pattern matcher that isolates
small-scale parts of a program
n Detects syntax errors
n Produces a parse tree

A recursive-descent parser is an LL parser
n EBNF

Parsing problem for bottom-up parsers: find the
substring of current sentential form
The LR family of shift-reduce parsers is the most
common bottom-up parsing approach

