
1

Chapter 5

Variables

2Chapter 5: Variables

Topics

Imperative Paradigm
Variables
Names
Address
Types
Assignment
Binding
Lifetime
Scope
Constants

3Chapter 5: Variables

Imperative Paradigm

The most widely used and well-developed
programming paradigm.
Emerged alongside the first computers and
computer programs in the 1940s.

Its elements directly mirror the architectural
characteristics of most modern computers
This chapter discusses the key programming
language features that support the imperative
paradigm.

4Chapter 5: Variables

Von Neumann Architecture

The architecture of the von Neumann
machine has a memory, which
contains both program instructions and
data values, and a processor, which
provides operations for modifying the
contents of the memory.

5Chapter 5: Variables

Von Neumann Architecture

6Chapter 5: Variables

Programming Language: Turing
Complete

Turing complete: contains integer variables,
values, and operations, assignment
statements and the control, constructs of
statement sequencing, conditionals, and
branching statements.
n Other statement forms (while and for loops, case

selections, procedure declarations and calls, etc)
and data types (strings, floating point values, etc)
are provided in modern languages only to
enhance the ease of programming various
complex applications.

2

7Chapter 5: Variables

Imperative Programming
Language

Turing complete
Also supports a number of additional
fundamental features:
n Data types for real numbers, characters, strings,

Booleans and their operands.
n Control structures, for and while loops, case (switch)

statements.
n Arrays and element assignment.
n Record structures and element assignment.
n Input and output commands.
n Pointers.
n Procedure and functions.

8Chapter 5: Variables

Variables

A variable is an abstraction of a memory
cell or collection of cells.
n Integer variables are very close to the

characteristics of the memory cells:
represented as an individual hardware
memory word.

n A 3-D array is less related to the organization
of the hardware memory: a software mapping
is needed.

9Chapter 5: Variables

Variables: attributes

A variable can be thought of as being
completely specified by its 6 basic
attributes (6-tuple of attributes).

1. Name: identifier
2. Address: memory location(s)
3. Value: particular value at a moment
4. Type: range of possible values
5. Lifetime: when the variable is accessible
6. Scope: where in the program it can be

accessed

10Chapter 5: Variables

Names

Names have broader use than simple for
variables.
Names or identifiers are used to denote
language entities or constructs.
n In most languages, variables, procedures and

constants can have names assigned by the
programmer.

Not all variables have names:
n Can have a nameless (anonymous) memory

cells.

11Chapter 5: Variables

Names

We discuss all user-defined names here.
There are some clear design issues to
consider:
n Maximum length?

n Notation?
n Are names case sensitive?

n Are special words reserved words or
keywords?

12Chapter 5: Variables

Names: length

If too short, they may not convey the meaning of
the variable.
It too long, the symbol table of the compiler might
become too large.

Language examples:
n FORTAN I: maximum 6
n COBOL: maximum 30
n FORTAN 90 and ANSI C: maximum 31
n Ada and Java: no limit and all are significant
n C++: no limit, but implementers often impose one

3

13Chapter 5: Variables

Names: notation

Variables can consist of one or more
letters, numbers (as long as a number is
not the first character), and an underscore
character (the underline key.)

<ident> ::- <letter> { <letter> | <digit> | ’_’ }

Some old languages allowed embedded
spaces which were ignored
n FORTRAN 90:

Sum Of Salaries vs. SumOfSalaries

14Chapter 5: Variables

Names: “standard” notation

Some standards can be applied to how
variables are named when one word is
used to describe a variable.
Camel notation
n Uses capital letters to indicate the break

between words.
n Camel is named such because the capital

letters separating the words look like little
camel humps

n Example: CostOfItemAtSale

15Chapter 5: Variables

Names: “standard” notation

Underscore notation
n Uses an underscore to separate words that

make up a variable.

n Example: Cost_of_item_at_sale

Some other standards are used to identify
the data type stored in the variable

16Chapter 5: Variables

Names: “standard” notation

Hungarian notation
n Uses two letters, both lower-case

First letter indicates the scope of the variable
Second letter indicates the type of the variable

n Example: l_fCostOfItemAtSale

Prefix notation
n Uses a prefix (usually three letters) to indicate

the type of variable.
n Example: floCostOtItemAtSale

17Chapter 5: Variables

Variable name Explanation

I This is a really bad variable to use. You can't tell what it contains and if anyone wants to fix
it later, a simple search and replace will be very tedious since single letters are used in
words as well.

lastname This is much better but uses no form of notation.

LastName This is camel notation

strLastName This is prefix – camel notation. Note that the prefix is in all lower case.

last_name This is underscore notation. As with camel notation, you can easily identify the two words
that make up the variable name

str _last_name This is prefix underscore notation. Again, the prefix is in lower case.

lcLastName This is Hungarian camel notation. The first two letters tell us what type of variable is
used. In this case, this variable contains a last name, is local to the function/procedure,
and is a character string.

lc _last_name This is Hungarian underscore notation.

18Chapter 5: Variables

Names: case sensitivity

FOO = Foo = foo ?
Disadvantage:

Poor readability, since names that look alike
to a human are different

Worse in some languages such as Modula-2,
C++ and Java because predefined names are
mixed case

IndexOutOfBoundsException

4

19Chapter 5: Variables

Names: case sensitivity

Advantages:
Larger namespace
Ability to use case to signify classes of
variables (e.g. make constants be in upper-
case)

C, C++, Java, and Modula-2 names are case
sensitive but the names in many other
languages are not.
Variable in Prolog have to begin with an
upper case letter.

20Chapter 5: Variables

Names: special words

Used to make programs more readable.
Used to name actions to be performed.
Used to separate the syntactic entities of
programs.
Keyword
n A word that is special only in certain contexts .
n Example: in FORTRAN the special word Real

can be used to declare a variable, but also as
a variable itself

21Chapter 5: Variables

Names: special words

n Real TotalSale (variable TotalSale is of type Real)

n Real = 3.1416 (Real is a variable)
n Integer Real (variable Real is of type Integer)

n Real Integer (variable Integer is of type Real)

Disadvantage: poor readability
n Distinguish between names and special

words by context.

Advantage: flexibility

22Chapter 5: Variables

Names: special words

Reserved Word
n A special word that cannot be used as a

user-defined name.

n Example: C’s float can be used to declare a
variable, but not as a variable itself.

23Chapter 5: Variables

Variables: Address

The memory address with which a variable
is associated.
n Also called l-value because that is what is

required when a variable appears in the LHS
of an assignment.

A variable (identified by its name) may
have different addresses at different
places in a program
n Example: variable X is declared in two

different subprograms (functions)

24Chapter 5: Variables

Address

A variable may have different addresses
at different times during execution
n Example: variable X of a subprogram is

allocated from the runtime stack with a
different address each time the subprogram
is called (e.g. recursion).

5

25Chapter 5: Variables

#include <stdio.h>

// --------- Prototype ---------
void foo();
void bar();
// ---------- Definition ---------
void foo()

{
int x;
printf(“The address of x in foo() is: %d\n”, &x);

}
void bar()

{
printf(“Called from bar(),”);
foo();

}

// ---------- main ----------
int main()

{ The address of x in foo() is: 1244964
int i = 0; Called from bar(). The address of x in foo() is: 1244880
foo();
bar();
sleep(30000);
return 0;

}
26Chapter 5: Variables

Variables: address

A schematic representation of a variable
can be drawn as:

Name
Type
Lifetime
Scope

Value

Address

27Chapter 5: Variables

Variables: address

Concentrate on name, address and value
attributes
n Simplified representation:

Name Value

Address

28Chapter 5: Variables

Variables: address (aliases)

If two variable names can be used to access the
same memory location, they are called aliases.
Aliases are harmful to readability
n Program readers must remember all of them.
n They are useful in certain circumstances.

Example:

int i, *iptr, *jptr;
iptr = &i;
jptr = &i;

n A pointer, when de-referenced (*iptr) and the
variable's name (i) are aliases

29Chapter 5: Variables

Aliases

Aliases can occur in several ways:
n Pointers
n Reference variables
n Pascal variant record
n C and C++ unions
n FORTRAN equivalence
n Parameters

Some of the original justifications for aliases are
no longer valid; e.g. memory reuse in FORTRAN
n Replace them with dynamic allocations.

30Chapter 5: Variables

type intptr = ^integer;
var x, y: intptr;

begin
new(x);
x^ := 1;
y := x;
y^ := 2;
writeln(x^);

end;

After the assignment of x to y, y^ and x^ both refer to the same
variable, and the preceding code prints 2.

6

31Chapter 5: Variables

After the declarations, both x and y have
been allocated in the environment, but the
values of both are undefined
n Indicated in the diagram by shading in the

circles indicating values.

x

y

32Chapter 5: Variables

After the call to new(x), x^ has been
allocated, and x has been assigned a
value equal to the location of x^, but x^ is
still undefined

x

y

33Chapter 5: Variables

After the assignment x^ := 1

x

y

1

34Chapter 5: Variables

The assignment y := x now copies the
value of x to y, and so makes y^ and x^
aliases of each other (note that x and y are
not aliases of each other)

x

y

1

35Chapter 5: Variables

Finally, the assignment y^ := 2 results in

x

y

2

36Chapter 5: Variables

Variables: type

Determines the range of values of
variables
Set the operations that are defined for
values of that type
Example: in Java, int type:
n Value range of –2,147,483,648 to 2,147,483,647
n Operations: addition, subtraction, multiplication,

division, and modulus.

7

37Chapter 5: Variables

Variables: value

Contents of the location with which the
variable is associated.
Abstract memory cell
n The physical cell or collection of cells

associated with a variable
The smallest addressable cell is a byte.
But most types (system-defined or user defined)
take more.
Abstract memory cell refers to the number of cells
held by a variable.
n Example: float uses 4 bytes on most machines.

38Chapter 5: Variables

lvalue and rvalue

Are the two occurrences of a in this
expression the same?

a := a + 1;
In a sense:
n The one on the left of the assignment refers to

the location of the variable whose name is a
n The one on the right of the assignment refers to

the value of the variable whose name is a
a := a + 1;

address value

39Chapter 5: Variables

Assignment

To access an rvalue, a variable must be
determined (dereferenced) first.

x := y

y

x

40Chapter 5: Variables

Assignment

(Some languages) Different meaning to
assignment: locations are copied instead
of values.

y

x

41Chapter 5: Variables

Assignment

Assignment by sharing. An alternative is to
allocate a new location, copy the value of
y, and bind x to the new location

y

x

