
1

Chapter 16

Logic Programming

2Chapter 16: Logic Programming

Topics

Introduction
Predicate Calculus
Propositions
Clausal Form
Horn Clauses

3Chapter 16: Logic Programming

Logic Programming Paradigm

AKA Declarative Paradigm
n The programmer

Declares the goal of the computation (specification of results
are stated).
Does not declare a detailed algorithm by which these goals
are to be achieved.

Application domain
n Database design
n Natural language processing
n Artificial Intelligence

Automatic theorem proving
Example language: Prolog

4Chapter 16: Logic Programming

Logic Programming

Instead of providing implementation, execute
specification.
n Relieves the programmer of specifying the

implementation.
n Express programs in a form of symbolic logic.

Declarative specification:
n Given an element x and a list L, to prove that x is in
L, proceed as follows:

Prove that L is [x].
Otherwise, split L into L1 and L2 and prove one of the
following:
n x is in L1 or
n x is in L2

5Chapter 16: Logic Programming

Logic Programming

Less effort to write, but implementation
may be very inefficient.
n Requires that the execution engine be more

complex.

n Use a logical inferencing (INFERENCE ENGINE)

process to produce results

6Chapter 16: Logic Programming

Introduction to Predicate
Calculus

Symbolic logic can be used for the basic
needs of formal logic:
n Express propositions
n Express relationships between propositions
n Describe how new propositions can be

inferred from other propositions
Particular form of symbolic logic used for
logic programming is called first-order
predicate calculus

2

7Chapter 16: Logic Programming

Introduction to Predicate
Calculus

Proposition: a logical statement that
may or may not be true.
n Consists of objects and relationships of

objects to each other.
Can either assert truth (“john speaks Russian”) or
query existing knowledge base (“does john speak
Russian”).

Can contain variables, which can become bound
speaks(x,Russian).

8Chapter 16: Logic Programming

Introduction to Predicate
Calculus

Example (English statements – Predicate Calculus)

n 0 is a natural number

natural(0).

n 2 is a natural number

natural(2).

n For all x, if x is a natural number, then so is the successor o f x.

For all x, natural(x) à natural(successor(x)).

n -1 is a natural number

natural(-1).

9Chapter 16: Logic Programming

Introduction to Predicate
Calculus

First and third logical statements are axioms for the
natural numbers.

n Statements that are assumed to be true and from which
all true statements about natural numbers can be proved.

Second logical statement can be proved from the
previous axioms.
n 2 = successor(successor(0)).

n natural(0) à natural(successor(successor(0)).

Fourth logical statement cannot be proved from the
axioms and so can be assumed to be false.

10Chapter 16: Logic Programming

Predicate Calculus: statements

Predicate calculus classifies the different
parts of statements as:

1. Constants . These are usually number or names.
Sometimes they are called atoms, since they
cannot be broken down into subparts.
n Example: 1, 0, true, false

2. Predicates. These are names for functions that
are true or false, like Boolean functions in a
program.
n Can take any number of arguments.
n Example: the predicate natural takes one argument.

11Chapter 16: Logic Programming

Predicate Calculus: statements

3. Functions . Predicate calculus distinguishes
between functions that are true or false – these are
predicates – and all other functions, which represent
non-Boolean values.
n Example: successor

4. Variables . Variables stand for as yet unspecified
quantities.
n Example: x

5. Connectives . These include the operations and,
or, and not, just like the operations on Boolean
data in programming languages. Additional
connectives are implication and equivalence

12Chapter 16: Logic Programming

Predicate Calculus: table of
connectives

Logically equivalent
to ¬a∪b

a implies b
b implies a

a ⊃ b
a ⊂ b

⊃

⊂

Implication

True if a and b are
both true or both
false

a is equivalent to ba ≡ b≡Equivalence

True if either a or b
(or both) is true

a or ba ∪ b∪Disjunction

True if a and b are
both true

a and ba ∩ b∩Conjunction

True if a is false;
otherwise false

not a¬a¬Negation

NotesMeaningExampleSymbolName

3

13Chapter 16: Logic Programming

Predicate Calculus: connectives

By convention, negation has highest precedence.
Conjunctions, disjunctions, and equivalence have
higher precedence than implication (in that
order).
n Example: p ∪ q ∩ r ⊃ ¬s ∪ t is equivalent to

((p ∪ (q ∩ r)) ⊃ ((¬s) ∪ t))

14Chapter 16: Logic Programming

Predicate Calculus: quantifiers

6. Quantifiers. These are operations that introduce
variables.
n Universal Quantifier: “for all”
n Existential Quantifier: “there exists”
n A variable introduced by a quantifier is said to be bound

by the quantifier.
n It is possible for variables also to be free (not bound by

any quantifier).
n Quantifiers have higher precedence than any of the

operators.

15Chapter 16: Logic Programming

Predicate Calculus: table of
quantifiers

There exists a value of X such that P is true∃ X P∃Existential

For all X, P is true∀ X P∀Universal

MeaningExampleSymbolName

16Chapter 16: Logic Programming

Predicate Calculus: quantifiers

Examples:
n ∀x(speaks(x,Russian))

True if everyone on the planet speaks Russian; false
otherwise.

n ∃x(speaks(x,Russian))
True if at least one person on the planet speaks Russian;
false otherwise.

n ∀x ∃y(speaks(x,y))
True if every person x speaks some language y; false
otherwise.

n ∃ x ∀ y(speaks(x,y))
True if at least one person on the planet speaks every
language y; false otherwise.

17Chapter 16: Logic Programming

Predicate Calculus: statements

7. Punctuation Symbols . These include left and
right parentheses the coma, and the period.
Parentheses can be left out based on common
conventions about the precedence of connectives.

l Arguments to predicates and functions can
only be terms, that is, combinations of
variables, constants, and functions. Terms
cannot contain predicates, quantifiers, or
connectives.

18Chapter 16: Logic Programming

Predicate Calculus: examples
prime(n)
n True if the integer value of n is a prime number.

0 ≤ x + y
n True if the real sum of x and y is nonnegative.

speaks(x,y)
n True if the person x speaks language y.

0 ≤ x ∩ + x ≤ 1
n True if x is between 0 and 1, inclusive.

speaks(x,Russian)∩speaks(y,Russian) ⊃
talkswith(x,y)
n True if the fact that both x and y speak Russian implies that x talks with y

∀x(¬literate(x) ⊃ (¬writes(x)∩ ∃y(reads(x,y)∩
book(y))))
n True if every illiterate person x does not write and has not read any book

y.

4

19Chapter 16: Logic Programming

Predicate Calculus: tautologies

Tautologies : Propositions that are true for all
possible values of their variables.
n Example: q ∪ ¬q

Predicates that are true for some particular
assignment of values to their variables are called
satisfiable.
n Example: speaks(x,Russian)

If at least one person in the planet speaks Russian.

Predicates that are true for all possible
assignments of values to their variables are valid.
n Example: even(y) ∪ odd(y)

It is true for all integers
20Chapter 16: Logic Programming

Propositions: Summary

Objects in propositions are represented by
simple terms: either constants or variables
Constant: a symbol that represents an
object
Variable: a symbol that can represent
different objects at different times
n Different from variables in imperative

languages

21Chapter 16: Logic Programming

Propositions: Summary

Simplest propositions are called atomic
propositions which consist of compound
terms
A compound term is composed of two
parts
n Functor: function symbol that names the

relationship.

n Ordered list of parameters (tuple)

22Chapter 16: Logic Programming

Propositions: Summary

Examples:
student(jon)
like(seth, OSX)
like(nick, windows)
like(jim, linux)

Propositions can be stated in two forms:
n Fact: proposition is assumed to be true
n Query: truth of proposition is to be determined

Compound proposition:
n Have two or more atomic propositions
n Propositions are connected by operators

23Chapter 16: Logic Programming

Clausal Form

Problem of predicate calculus:
n Too many ways to state the same thing

Solution: use a standard form for propositions
All propositions can be expressed in clausal
form:

B1 ∪ B2 ∪ … ∪ Bn ⊂ A1 ∩ A2 ∩ … ∩ Am
n means if all the As are true, then at least one B is true

Characteristics of clausal form:
n Existential quantifiers are not required.
n Universal quantifiers are implicit with use of variables.
n No operator other than conjunctions and disjunctions.

24Chapter 16: Logic Programming

Clausal Form

Antecedent: right side of proposition.
Consequent: left side of the proposition.

likes(bob,mary) ⊂ likes(bob,redheads)∩redhead(mary).

A proposition with zero or one terms in the
consequent is called a Horn clause.

antecedentconsequent

5

25Chapter 16: Logic Programming

Horn Clauses

A Horn clause has a head h, which is a
predicate, and a body, which is a list of
predicates p1,p2,…pn

p1,p2,…pn à h

n In a Horn clause the head is true if every predicate of
the body is true (simultaneously).

body head

26Chapter 16: Logic Programming

Horn Clauses: facts and queries

Fact: a Horn clause without body.
n They are called headless Horn clauses.

à h or just h
n It means that h is always true.

Example: à mammal(human).

Query: a Horn clause without a head.
n The “opposite” of a fact.

Example: mammal(human) à

27Chapter 16: Logic Programming

From Predicates to Horn
Clauses

There is a limited correspondence between
Horn clauses and predicates.
n Horn clauses can be written equivalently as a

predicate
HC: snowing(C) ß precipitation(C),freezing(C).

PC: snowing(C) ⊂ precipitation(C)∩freezing(C).

n Not all predicates can be translated into Horn
clauses.

28Chapter 16: Logic Programming

Properties of Predicate Logic
Expressions

¬ ∃x P(x) ≡ ∀ x ¬P(x)¬∀x P(x) ≡ ∃x ¬P(x)Quantification

p ⊃ q ≡ ¬p ∨ qImplication

¬ (p ∧ q) ≡ ¬p ∨ ¬ q¬ (p ∨ q) ≡ ¬p ∧ ¬ qdeMorgan

p ∧ ¬p ≡ falsep ∨ ¬p ≡ trueIdentity

p ∧ p ≡ pp ∨ p ≡ pIdempotence

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)p ∨ q ∧ r ≡ (p ∨ q) ∧ (p ∨ r)Distributivity

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)Associativity

p ∧ q ≡ q ∧ p p ∨ q ≡ q ∨ pCommutativity

MeaningProperty

29Chapter 16: Logic Programming

From Predicates to Horn
Clauses

Six-step procedure that will, whenever possible,
translate a predicate p into a Horn clause.

1. Eliminate implications from p, using the implication
property.

2. Move negation inward in p, using the deMorgan and
quantification properties, so that only individual terms
are negated.

3. Eliminate existential quantifiers from p, using a
technique called skolemization. Here, the existentially
quantified variable is replaced by a unique constant.
n For example, the expression ∃xP(x) is replaced by P(c),

where c is an arbitrarily chosen constant in the domain of x.
30Chapter 16: Logic Programming

From Predicates to Horn
Clauses

4. Move all universal quantifiers to the beginning of
p; as long as there are no naming conflicts, this
step does not change the meaning of p. Assuming
that all variables are universally quantified, we can
drop the quantifiers without changing the meaning
of the predicates.

5. Use the distributive, associative, and commutative
properties to convert p to conjunctive normal form.
In this form, the conjunction and disjunction
operators are nested no more than two level deep,
with conjunctions at the highest level.

6

31Chapter 16: Logic Programming

From Predicates to Horn
Clauses

6. Convert the embedded disjunctions to implications,
using the implication property. If each of these
implications has a single term on its right, then each
can be rewritten as a series of Horn clauses
equivalent to p.

l Example:
∀x(¬literate(x)⊃(¬writes(x)∧¬∃y(reads(x,y)∧book(y))))

l Example:
∀x(literate(x)⊃reads(x)∨writes(x))

