
1

Chapter 16

Logic Programming

2Chapter 16: Logic Programming

Topics

Introduction
Predicate Calculus
Propositions
Clausal Form
Horn Clauses

3Chapter 16: Logic Programming

Logic Programming Paradigm

AKA Declarative Paradigm
n The programmer

Declares the goal of the computation (specification of results 
are stated).
Does not declare a detailed algorithm by which these goals 
are to be achieved. 

Application domain
n Database design
n Natural language processing
n Artificial Intelligence

Automatic theorem proving
Example language: Prolog
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Logic Programming

Instead of providing implementation, execute 
specification.
n Relieves the programmer of specifying the 

implementation.
n Express programs in a form of symbolic logic.

Declarative specification:
n Given an element x and a list L, to prove that x is in 
L, proceed as follows:

Prove that L is [x].
Otherwise, split L into L1 and L2 and prove one of the 
following:
n x is in L1 or
n x is in L2
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Logic Programming

Less effort to write, but implementation 
may be very inefficient.
n Requires that the execution engine be more 

complex.

n Use a logical inferencing (INFERENCE ENGINE)

process to produce results
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Introduction to Predicate 
Calculus

Symbolic logic can be used for the basic 
needs of formal logic:
n Express propositions
n Express relationships between propositions
n Describe how new propositions can be 

inferred from other propositions
Particular form of symbolic logic used for 
logic programming is called first-order
predicate calculus
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Introduction to Predicate 
Calculus

Proposition: a logical statement that 
may or may not be true.
n Consists of objects and relationships of 

objects to each other.
Can either assert truth (“john speaks Russian”) or 
query existing knowledge base (“does john speak 
Russian”).

Can contain variables, which can become bound
speaks(x,Russian).
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Introduction to Predicate 
Calculus

Example (English statements – Predicate Calculus)

n 0 is a natural number

natural(0).

n 2 is a natural number 

natural(2).

n For all x, if x is a natural number, then so is the successor o f x.

For all x, natural(x) à natural(successor(x)).

n -1 is a natural number

natural(-1).
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Introduction to Predicate 
Calculus

First and third logical statements are axioms for the 
natural numbers.

n Statements that are assumed to be true and from which 
all true statements about natural numbers can be proved.

Second logical statement can be proved from the 
previous axioms.
n 2 = successor(successor(0)).

n natural(0) à natural(successor(successor(0)).

Fourth logical statement cannot be proved from the 
axioms and so can be assumed to be false.
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Predicate Calculus: statements

Predicate calculus classifies the different 
parts of statements as:

1. Constants . These are usually number or names. 
Sometimes they are called atoms, since they 
cannot be broken down into subparts. 
n Example: 1, 0, true, false

2. Predicates. These are names for functions that 
are true or false, like Boolean functions in a 
program. 
n Can take any number of arguments.
n Example: the predicate natural takes one argument.
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Predicate Calculus: statements

3. Functions . Predicate calculus distinguishes 
between functions that are true or false – these are 
predicates – and all other functions, which represent 
non-Boolean values. 
n Example: successor

4. Variables . Variables stand for as yet unspecified 
quantities. 
n Example: x

5. Connectives . These include the operations and, 
or, and not, just like the operations on Boolean 
data in programming languages. Additional 
connectives are implication and equivalence
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Predicate Calculus: table of 
connectives

Logically equivalent 
to ¬a∪b

a implies b
b implies a

a ⊃ b
a ⊂ b

⊃

⊂

Implication

True if a and b are 
both true or both 
false

a is equivalent to ba ≡ b≡Equivalence

True if either a or b
(or both) is true

a or ba ∪ b∪Disjunction

True if a and b are 
both true

a and ba ∩ b∩Conjunction

True if a is false; 
otherwise false

not a¬a¬Negation

NotesMeaningExampleSymbolName



3

13Chapter 16: Logic Programming

Predicate Calculus: connectives

By convention, negation has highest precedence. 
Conjunctions, disjunctions, and equivalence have 
higher precedence than implication (in that 
order).
n Example: p ∪ q ∩ r ⊃ ¬s ∪ t is equivalent to 

((p ∪ (q ∩ r)) ⊃ ((¬s) ∪ t))
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Predicate Calculus: quantifiers

6. Quantifiers. These are operations that introduce 
variables. 
n Universal Quantifier: “for all”
n Existential Quantifier: “there exists”
n A variable introduced by a quantifier is said to be bound

by the quantifier.
n It is possible for variables also to be free (not bound by 

any quantifier).
n Quantifiers have higher precedence than any of the 

operators.
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Predicate Calculus: table of 
quantifiers

There exists a value of X such that P is true∃ X P∃Existential

For all X, P is true∀ X P∀Universal

MeaningExampleSymbolName
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Predicate Calculus: quantifiers

Examples:
n ∀x(speaks(x,Russian))

True if everyone on the planet speaks Russian; false 
otherwise.

n ∃x(speaks(x,Russian))
True if at least one person on the planet speaks Russian; 
false otherwise.

n ∀x ∃y(speaks(x,y))
True if every person x speaks some language y; false 
otherwise.

n ∃ x ∀ y(speaks(x,y))
True if at least one person on the planet speaks every 
language y; false otherwise.
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Predicate Calculus: statements

7. Punctuation Symbols . These include left and 
right parentheses the coma, and the period.
Parentheses can be left out based on common 
conventions about the precedence of connectives.

l Arguments to predicates and functions can 
only be terms, that is, combinations of 
variables, constants, and functions. Terms 
cannot contain predicates, quantifiers, or 
connectives.

18Chapter 16: Logic Programming

Predicate Calculus: examples
prime(n)
n True if the integer value of n is a prime number.

0 ≤ x + y
n True if the real sum of x and y is nonnegative.

speaks(x,y)
n True if the person x speaks language y.

0 ≤ x ∩ + x ≤ 1
n True if x is between 0 and 1, inclusive.

speaks(x,Russian)∩speaks(y,Russian) ⊃
talkswith(x,y)
n True if the fact that both x and y speak Russian implies that x talks with y

∀x(¬literate(x) ⊃ (¬writes(x)∩ ∃y(reads(x,y)∩
book(y))))
n True if every illiterate person x does not write and has not read any book 

y.
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Predicate Calculus: tautologies

Tautologies : Propositions that are true for all 
possible values of their variables.
n Example: q ∪ ¬q

Predicates that are true for some particular 
assignment of values to their variables are called 
satisfiable.
n Example: speaks(x,Russian)

If at least one person in the planet speaks Russian.

Predicates that are true for all possible 
assignments of values to their variables are valid.
n Example: even(y) ∪ odd(y)

It is true for all integers 
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Propositions: Summary

Objects in propositions are represented by 
simple terms: either constants or variables
Constant: a symbol that represents an 
object
Variable: a symbol that can represent 
different objects at different times
n Different from variables in imperative 

languages
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Propositions: Summary

Simplest propositions are called atomic
propositions which consist of compound 
terms
A compound term is composed of two 
parts
n Functor: function symbol that names the 

relationship.

n Ordered list of parameters (tuple)
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Propositions: Summary

Examples:
student(jon)
like(seth, OSX)
like(nick, windows)
like(jim, linux)

Propositions can be stated in two forms:
n Fact: proposition is assumed to be true
n Query: truth of proposition is to be determined

Compound proposition:
n Have two or more atomic propositions
n Propositions are connected by operators
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Clausal Form

Problem of predicate calculus:
n Too many ways to state the same thing

Solution: use a standard form for propositions
All propositions can be expressed in clausal 
form: 

B1 ∪ B2 ∪ … ∪ Bn ⊂ A1 ∩ A2 ∩ … ∩ Am
n means if all the As are true, then at least one B is true

Characteristics of clausal form:
n Existential quantifiers are not required.
n Universal quantifiers are implicit with use of variables.
n No operator other than conjunctions and disjunctions.
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Clausal Form

Antecedent: right side of proposition.
Consequent: left side of the proposition.

likes(bob,mary) ⊂ likes(bob,redheads)∩redhead(mary).

A proposition with zero or one terms in the 
consequent is called a Horn clause.

antecedentconsequent
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Horn Clauses

A Horn clause has a head h, which is a 
predicate, and a body, which is a list of 
predicates p1,p2,…pn

p1,p2,…pn à h

n In a Horn clause the head is true if every predicate of 
the body is true (simultaneously).

body head
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Horn Clauses: facts and queries

Fact: a Horn clause without body.
n They are called headless Horn clauses.

à h or just h
n It means that h is always true.

Example: à mammal(human).

Query: a Horn clause without a head.
n The “opposite” of a fact.

Example: mammal(human) à
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From Predicates to Horn 
Clauses

There is a limited correspondence between 
Horn clauses and predicates.
n Horn clauses can be written equivalently as a 

predicate
HC: snowing(C) ß precipitation(C),freezing(C).

PC: snowing(C) ⊂ precipitation(C)∩freezing(C).

n Not all predicates can be translated into Horn 
clauses.
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Properties of Predicate Logic 
Expressions

¬ ∃x P(x) ≡ ∀ x ¬P(x)¬∀x P(x) ≡ ∃x ¬P(x)Quantification

p ⊃ q ≡ ¬p ∨ qImplication

¬ (p ∧ q ) ≡ ¬p ∨ ¬ q¬ (p ∨ q ) ≡ ¬p ∧ ¬ qdeMorgan

p ∧ ¬p ≡ falsep ∨ ¬p ≡ trueIdentity

p ∧ p ≡ pp ∨ p ≡ pIdempotence

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)p ∨ q ∧ r ≡ (p ∨ q) ∧ (p ∨ r)Distributivity

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)Associativity

p ∧ q ≡ q  ∧ p p ∨ q ≡ q  ∨ pCommutativity

MeaningProperty
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From Predicates to Horn 
Clauses

Six-step procedure that will, whenever possible, 
translate a predicate p into a Horn clause.

1. Eliminate implications from p, using the implication 
property.

2. Move negation inward in p, using the deMorgan and 
quantification properties, so that only individual terms 
are negated.

3. Eliminate existential quantifiers from p, using a 
technique called skolemization. Here, the existentially 
quantified variable is replaced by a unique constant. 
n For example, the expression ∃xP(x) is replaced by P(c),  

where c is an arbitrarily chosen constant in the domain of x.
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From Predicates to Horn 
Clauses

4. Move all universal quantifiers to the beginning of 
p; as long as there are no naming conflicts, this 
step does not change the meaning of p. Assuming 
that all variables are universally quantified, we can 
drop the quantifiers without changing the meaning 
of the predicates.

5. Use the distributive, associative, and commutative 
properties to convert p to conjunctive normal form. 
In this form, the conjunction and disjunction 
operators are nested no more than two level deep, 
with conjunctions at the highest level.
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From Predicates to Horn 
Clauses

6. Convert the embedded disjunctions to implications, 
using the implication property. If each of these 
implications has a single term on its right, then each 
can be rewritten as a series of Horn clauses 
equivalent to p.

l Example:
∀x(¬literate(x)⊃(¬writes(x)∧¬∃y(reads(x,y)∧book(y))))

l Example:
∀x(literate(x)⊃reads(x)∨writes(x))


