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Structured Data Types

Virtually all languages have included some 
mechanisms for creating complex data 
objects:
n Formed using elementary data objects.

n Arrays, lists, and sets are ways to create 
homogeneous collection of objects.

n Records are a mechanism for creating 
nonhomogeneous collections of data objects.
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Vectors and Arrays

Vectors and arrays are  the most common types 
of data structures in programming languages.
A vector is a data structure composed of a fixed 
number of components of the same type 
organized as a simple linear sequence.
A component of a vector is selected by giving its 
subscript, an integer (or enumeration value) 
indicating the position of the component in the 
sequence.
A vector is also called a one-dimensional array
or linear array.

5Chapter 6: Data Types

Vectors

The attributes of a vector are:
1. Number of components : usually indicated 

implicitly by giving a sequence of subscript 
ranges, one for each dimension.

2. Data type of each component, which is a 
single data type, because the components 
are all of the same type.

3. Subscript to be used to select each 
component: usually given as a range of 
integers, with the first integer designating 
the first component, and so on.
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Vectors: subscripts

Subscripts may be either a range of values 
as -5...5 or an upper bound with an implied 
lower bound, as A(10).
Examples:
n In Pascal, V: array [-5 .. 5] of real;

Defines a vector of 11 components, each a real number, where 
the components are selected by the subscripts, - 5, - 4, … 5.

n In C, float a[10];
Defines a vector of 10 components with subscripts ranging from 
0 to 9.
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Vectors: subscripts

Subscript ranges need not begin at 1.

Subscript ranges need not even be a subrange
of integers; it may be any enumeration (or a 
subsequence of an enumeration)

Example:
n In Pascal,  type class = (Fresh, Soph, Junior, Senior);

var ClassAverage: array [class] of real;
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Vectors: operations

Subscripting: the operation that selects a 
component from a vector.
n It is usually written as the vector name 

followed by the subscript of the component to 
be selected.

V[2] or ClassAverage[Soph]

n It may be a computed value (an expression 
that computes the subscript)

V[I + 2]
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Vectors: other operations

Operations to create and destroy vectors.
Assignment to components of a vector.
Operations that perform arithmetic 
operations on pairs of vectors of the same 
size (i.e. addition of two vectors).
Insertions and deletions of components 
are not allowed
n Only the value of a component may be 

modified.
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Vectors: implementation

Storage and accessing of individual 
components are straightforward:
n Homogeneity of components

The size and structure of each component is the 
same.

n Fixed size
The number and position of each component of a 
vector are invariant through its lifetime.

A sequential storage is appropriate.
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Vectors: implementation

Vector
LB
UB

Integer
E

Data type
Lower subscript bound
Upper subscript bound
Data type of component
Size of component
A[LB]
A[LB+1]

A[UB]

Descriptor

Storage
representation
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Vectors: access function

An access function is used to map array 
subscripts to addresses.
can be addressed by skipping I-1
components.
n If E is the size of each component, then skip 

(I-1) x E memory locations.
n If LB is the lower bound on the subscript 

range, then the number of such components 
to skip is I-LB or (I-LB) x E memory locations. 
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Vectors: access function

n If the first element of the vector begins at location α, 
the access function is:

address(A[I]) = α + (I – LB) x E

which can be rewritten as:
address(A[I]) = ( α – LB x E) + (I x E)

n Once the storage for the vector is allocated, (α – LB x E) 
is a constant (K) and the accessing formula reduces 
to

address(A[I]) = K + I x E

n Example: access function of a C vector
address(A[I]) = address(array[0]) + i*element_size
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Multidimensional Arrays

An array is a homogeneous collection of data 
elements in which an element is identified by its 
position in the collection, relative to the first 
element
Indexing is a mapping from indices to elements
map(array_name, index_value_list) → an element
Indexes are also known as subscripts .
Index Syntax
n FORTRAN, PL/I, Ada use parentheses
n Most other languages use brackets
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Arrays: subscript types

What type(s) are allowed for defining array 
subscripts?
n FORTRAN, C, C++, and Java allow integer 

subscripts only.

n Pascal allows any ordinal type
int, boolean, char, enum

n Ada allows integer or enumeration types
Including boolean and char
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Arrays: subscript issues

In some languages the lower bound of the 
subscript range is implicit
n C, C++, Java—fixed at 0

n FORTRAN—fixed at 1
n VB (0 by default, could be configured to 1)

Other languages require programmer to 
specify the subscript range.
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Arrays: 4 categories

There are 4 categories of arrays based on 
subscript range bindings and storage 
binding:
n Static

n Fixed stack-dynamic 
n Stack dynamic

n Heap-dynamic
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Static Arrays

Static arrays are those in which
n Range of subscripts is statically bound (at compile 

time).
n Storage bindings are static (initial program load time)

Examples: 
n FORTRAN77, global arrays in C, static arrays 

(C/C++), some arrays in Ada.
Advantage: 
n Execution efficiency since no dynamically 

allocation/deallocation is required
Disadvantages:
n Size must be known at compile time.
n Bindings are fixed for entire program.
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Fixed stack dynamic Arrays

Fixed stack-dynamic arrays are those in which
n Subscript ranges are statically bound.
n Allocation is done at declaration elaboration time (on 

the stack).
Examples:
n Pascal locals, most Java locals, and C locals that are 

not static.
Advantage is space efficiency
n Storage is allocated only while block in which array is 

declared is active.
n Using stack memory means the space can be reused 

when array lifetime ends.
Disadvantage
n Size must be known at compile time. 20Chapter 6: Data Types

Stack dynamic Arrays

A stack-dynamic array is one in which
n Subscript ranges are dynamically bound
n Storage allocation is done at runtime
n Both remain fixed during the lifetime of the variable

Advantage: flexibility - size need not be known until the 
array is about to be used
Disadvantge: once created, array size is fixed.
Example:
n Ada arrays can be stack dynamic:

Get(List_Len);
Declare
List : array (1..List_Len) of Integer;

Begin
…
End;
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Heap dynamic Arrays

Storage is allocated on the heap
A heap-dynamic array is one in which
n Subscript range binding is dynamic
n Storage allocation is dynamic

Examples:
n In APL, Perl and JavaScript, arrays grow and shrink 

as needed
n C and C++ allow heap-dynamic arrays using pointers 
n In Java, all arrays are objects (heap dynamic)
n C# provides both heap-dynamic and fixed-heap 

dynamic
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Summary: Array Bindings

Binding times for Array

Runtime Runtime Dynamic

Runtime but fixed 
thereafter

Runtime but fixed 
thereafter

Stack dynamic

Declaration elaboration 
time

Compile timeFixed stack dynamic

Compile timeCompile timeStatic

StorageSubscript range
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Arrays: attributes

Number of scripts
n FORTRAN I allowed up to three
n FORTRAN 77 allows up to seven
n Others languages have no limits.
n Other languages allow just one, but elements 

themselves can be arrays.

Array Initialization
n Usually just a list of values that are put in the array in 

the order in which the array elements are stored in 
memory
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Arrays: initialization

Examples of array initialization:
1. FORTRAN - uses the DATA statement, or put the 

values in / ... / on the declaration
Integer, Dimension (4) :: stuff = (/2, 4, 6, 8/)

2. Java, C and C++ - put the values in braces; can let 
the compiler count them 
e.g. 
int stuff [] = {2, 4, 6, 8};

3. For strings (which are treated as arrays in C and 
C++), an alternate form of initialization is provided.
char* names[] = {"Bob", "Mary", "Joe"};
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Arrays: initialization

3. Ada provides two mechanisms

- List in the order in which they are stored.
- Positions for the values can be specified.
stuff : array (1..4) of Integer := (2,4,6,8);
SCORE : array (1..14, 1..2) of Integer := (1 => (24, 
10), 2 => (10, 7), 3 =>(12, 30), others => (0, 0));

4. Pascal does not allow array initialization
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Arrays: implementation

A matrix is implemented by considering it 
as a vector of vectors; a three-dimensional 
arrays is a vector whose elements are 
vectors, and so on.
n All subvectors must have the same number of 

elements of the same type.

Matrix: 
n Column of rows vs. row of columns
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Arrays: implementation

Row-major order (column of rows)
n The array is first divided into a vector of 

subvectors for each element in the range of 
the first subscript, then each of these 
subvectors is subdivided into subvectors for 
each element in the range of the second 
subscript, and so on.

Column-major order (single row of 
columns)
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Arrays: Row- vs. Column-major 
order
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Arrays: storage representation

Storage representation follows directly 
from that for a vector.
n For a matrix, the data objects in the first row 

(assuming row -major order) followed by the 
data objects in the second row, and so on.

n Result: a single sequential block of memory 
containing all the components of the array in 
sequence.

The descriptor is the same as that for the vector, 
except that an upper and lower bound for the 
subscript range of each dimension are needed.
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Arrays: implementation
VO

LB 1 (= 1) 
UB 1 (= 3) 
LB 2 (= -1)

UB 2 (= 1)

Virtual Origin
Lower bound on subscript 1
Upper bound on subscript 1
Lower bound on subscript 2
Upper bound on subscript 2
Size of component

M[1,-1]

Descriptor

Storage
representation

E (= 1)

M[1,0]
M[1,1]
M[2,-1]
M[2,0]
M[2,1]
M[3,-1]
M[3,0]
M[3,1]

First row

Second row

Third row
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Arrays: accessing function

The accessing function is similar to that for 
vectors:
n Determine the number of rows to skip over   

(I-LB1)

n Multiply by the length of a row to get the 
location of the start of the Ith row

n Find the location of the Jth component in that 
row, as for a vector
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Arrays: accessing function

If A is a matrix with M rows and N columns, the 
location of element A[I,J] is given by:
n A is stored in row-major order

location(A[I,J]) = α + (I - LB1) x S + (J - LB2) x E 
where  S = length of a row = (UB2 - LB2 + 1) x E 

n A is stored in column-major order

location(A[I,J]) = α + (J - LB2) x S + (I - LB1) x E 
where  S = length of a row = (UB1 - LB1 + 1) x E 

where α = base address
LB1 = lower bound on first subscript
LB2, UB2 = lower and upper bounds on the second subscript

33Chapter 6: Data Types

Arrays: Row-major access 
function

location(A[I,J]) = α + (I - LB1) x S + (J - LB2) x E 
S = (UB2 - LB2 + 1) x E
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Arrays: Column-major access 
function

location(A[I,J]) = α + (J - LB2) x S + (I - LB1) x E 
S = length of a row = (UB1 - LB1 + 1) x E 
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Slices
A slice is some substructure of an array
n Nothing more than a referencing 

mechanism
n A way of designating a part of the array

Slices are only useful in languages for 
operations  that can be done on a whole 
array.

1. In FORTRAN 90
INTEGER MAT (1:4, 1:4)
MAT(1:4, 1) - the first column
MAT(2, 1:4) - the second row
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Example Slices in FORTRAN 90
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Slices: examples

2. Ada - single-dimensioned arrays only
LIST(4..10)

3. Java has something like slices for  multi-
dimensioned arrays

int [][]array = array[1] - gets the second row

PL/I was one of the earliest languages to 
implement slices.
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Associative Arrays

An associative array is an unordered 
collection of data elements that are 
indexed by an equal number of values 
called keys
The keys are stored in the structure
Thus, element is a (key, value) pair
Design Issues:
1. What is the form of references to elements?
2. Is the size static or dynamic?
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Associative Arrays

Structure and Operations in Perl
n Names begin with %
%hi_temps = ("Monday" => 77, 

"Tuesday" => 79,
"Wednesday" => 83);

n Alternative notation
%hi_temps = ("Monday", 77, 

"Tuesday", 79,
"Wednesday", 83);
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Associative Arrays

Structure and Operations in Perl
n Subscripting is done using braces and keys
$hi_temps{"Wednesday"}; 
#returns the value 83 
n A new elements is added by
$hi_temps{"Thursday"} = 91;
n Elements can be removed with delete
delete $hi_temps{"Thursday"};
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Records

A data structure composed of a fixed 
number of components of different types.
Vectors vs. Records

1. The components of records may be 
heterogeneous , of mixed data types, rather 
than homogeneous.

2. The components of records are named with 
symbolic names (identifiers) rather than 
indexed with subscripts.
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Records: attributes

Records have 3 main attributes:
1. The number of components
2. The data type of each component
3. The selector used to name each component

n The components of a records are often 
called fields , and the component names 
then are field names . 

n Records are sometimes called structures (as 
in C).
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Records: definition syntax

1. COBOL uses level numbers to show 
nested records

01 EMPLOYEE-RECORD
02 EMPLOYEE-NAME

05 FIRST       PICTURE IS X(20).
05 MIDDLE  PICTURE IS X(10).
05 LAST        PICTURE IS X(20).

02 HOURLY-RATE PICTURE IS 99V99
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Records: definition syntax

2. Other languages use recursive definitions 
type Employee_Name_Type is record

First   :   String(1..20);
Middle: String (1..10);
Last :      String (1..20);

end record;
type Employee_Record_Type is record

Employee_Name: Employee_Name_Type;
Hourly_Rate: Float;

end record;
Employee_record: Employee_Record_Type;
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Record Field References

1. COBOL
field_name OF record_name_1 OF ... OF record_name_n

Example:

MIDDLE OF EMPLOYEE-NAME OF EMPLOYEE-RECORD

2. Others (dot notation)
record_name_1.record_name_2. ... record_name_n.field_name

Example:

Employee_Record.Employee_Name.Middle
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Records

Fully qualified references must include all 
record names
Elliptical references allow leaving out 
record names as long as the reference is 
unambiguous (Cobol only)
Pascal and Modula-2 provide a with
clause to abbreviate references
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Records: operations

Assignment
n Pascal, Ada, and C++ allow it if the types are 

identical. 
Initialization
n Allowed in Ada, using an aggregate.

Comparison
n In Ada, = and /=; one operand can be an aggregate

Move Corresponding
n In COBOL: it moves all fields in the source record to 

fields with the same names in the destination record.
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Records: initialization

Define & initialize with 
list of variables

Define & initialize 
using the dot operator 
(structure member 
operator)

struct student s1 = 
{"Ted","Tanaka", 
22, 2.22};

struct student s2;
strcpy(s.first,

"Sally");
s.last="Suzuki";
s.age = 33;
s.gpa = 3.33;
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Records: implementation

The storage representation for a record 
consists of a single sequential block of 
memory in which the components are 
stored in sequence.
Individual components may need 
descriptors to indicate their data type and 
other attributes.
n No runtime descriptor for the record is 

required.
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Records: descriptors
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Unions

A union is a type whose variables are 
allowed to store different type values at 
different times during execution
Design Issues for unions:
1. What kind of type checking, if any, must be 

done?
2. Should unions be integrated with records?
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Unions: examples
1. FORTRAN - with EQUIVALENCE

EQUIVALENCE (A, B, C, D), (X(1), Y(1))

n Free Unions: 
No tag variable is required.
No type checking
C/C++ have free unions

2. Pascal: variant records
Contain one or more components that are common 
to all variants.
Each variant has several other components with 
names and data types that are unique to each 
variant.
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Unions: examples
type PayType = (Salaried, Hourly);
var Employee: record

ID: integer;
Dept: array [1..3] of char;
Age: integer;
case PayClass: PayType of

Salaried: (MontlyRate: real;
StartDate: integer):

Hourly: (HourRate: real;
Reg: integer;
Overtime: integer)

end

The component PayClass is called the tag (Pascal) or discriminant
(Ada) because it serves to indicate which variant of the record exists 
at a given point during program execution.
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Unions: type checking issues

System must check value of flag before each 
variable access

Employee. PayClass := Salaried;
Employee. MontlyRate := 1973.30;
…
print(Employee.Overtime); -- error

Still not good enough!
Employee. PayClass := Salaried;
Employee. MontlyRate := 1973.30;
Employee. StartDate := 626;

Employee. PayClass := Hourly;
print(Employee.Overtime); -- this should be an error
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Unions: selection operation

Selection operation: same as that for an 
ordinary record.
n For ordinary records: each component exists 

throughout the lifetime of the record.
n For variant records/unions: the component 

may exist at one point during execution (when 
the tag component has a particular value), 
may later cease of exist (when the value of 
the tag changes to indicate a different 
variant), and later may reappear (if the tag 
changes back to its original value).
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Ada Union Types

Similar to Pascal, except
n No free union

Tag must be specified with union declaration
n When tag is changed, all appropriate fileds 

must be set too.
Employee.PayClass := Hourly;
Employee.HourRate := 8.75;
Employee. Reg := 8;
Employee.Overtime := 2;

n Ada union types are safe
Ada systems required to check the tag of all 
references to variants.
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Unions: type checking

Problem with Pascal’s design
n Type checking is ineffective.
n User can create inconsistent unions (because the tag 

can be individually assigned)
n Also, the tag is optional (free union).

Ada discriminant union
n Tag must be present
n All assignments to the union must include the tag 

value –tag cannot be assigned by itself.
n It is impossible for the user to create an inconsistent 

union.
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Unions: implementation

During translation, the amount of storage 
required for the components of each variant is 
determined
n Storage is allocated in the record for the largest

possible variant.
n Each variant describes a different layout for the block 

in terms of number and types of components.
During execution, no special descriptor is 
needed for a variant record because the tag 
component is considered just another 
component of the record.
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Unions: storage representation

ID

Dept

Age

PayClass

MontlyRate

StartDate

HourRate

Reg

Overtime

Storage if
PayClass = Salaried

Storage if
PayClass = Hourly
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Unions: storage representation
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Union: evaluation

Useful
Potentially unsafe in most languages
Ada, Algol 68 provide safe versions
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Pointers: problems

1. Dangling pointers (dangerous)
n A pointer points to a heap-dynamic variable 

that has been deallocated
n Creating one (with explicit deallocation):

a. Allocate a heap-dynamic variable and set 
a pointer to point at it
b. Set a second pointer to the value of the 

first pointer
c. Deallocate the heap-dynamic variable, 

using the first pointer
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Pointers: problems

n Dangling pointers
int *p, *q;
p = (int*)malloc(sizeof(int* 5);
q = p;
free (p);

2. Lost Heap-Dynamic Variables ( wasteful)
n A heap-dynamic variable that is no longer referenced by 

any program pointer
n Creating one:

a. Pointer p1 is set to point to a newly created heap-
dynamic variable
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Pointers: problems

b. p1 is later set to point to another newly created heap-
dynamic variable

n The process of losing heap-dynamic variables is 
called memory leakage

n Lost heap-dynamic variables (garbage)
p = (int*)malloc(5*sizeof(int)); 
p = new int(20);

The process of losing heap-dynamic variables is 
called memory leakage . (cannot free the first chunk 
of memory)
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Pointers: examples

C and C++ pointers
n Used for dynamic storage management and 

addressing
n Explicit dereferencing (*) and address-of operator (&)
n Can do pointer arithmetic

float arr[100];
float *p = arr;
*(p+5) ≡ arr[5] ≡ p[5]
*(p+i) ≡ arr[i] ≡ p[i]

n void* can point to any data type but cannot be 
dereferenced
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Pointers: examples

C++ reference types
n Constant pointers that are implicitly

dereferenced:
float x = 1.0;
float &y = x;
y = 2.2; à sets x to 2.2

n Used for reference parameters:
Advantages of both pass-by-reference and pass-
by-value
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Pointers: examples

Java - Only references (no pointers)
n No pointer arithmetic
n Can only point at objects (which are all on the 

heap)
n No explicit deallocator (garbage collection is 

used)

n Means there can be no dangling references
n Dereferencing is always implicit
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Lists
A data structure composed of an ordered 
sequence of data structures.
List are similar to vectors in that they consist of an 
ordered sequence of objects.
Lists vs. Vectors

1. Lists are rarely of fixed length. Lists are often used to 
represent arbitrary data structures, and typically lists 
grow and shrink during program execution.

2. Lists are rarely homogeneous. The data type of each 
member of a list may differ from its neighbour.

3. Languages that use lists typically declares such data 
implicitly without explicit attributes for list members.
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Variations on Lists

Stacks and queues
n A stack is a list in which component selection, 

insertion, and deletion are restricted to one 
end.

n A queue is a list in which component selection 
and deletion are restricted to one end and 
insertion is restricted to the other end. 

n Both sequential and linked storage 
representations for stacks and queues are 
common.
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Variations on Lists

Trees
n A list in which the components may be lists as 

well as elementary data objects, provided that 
each list is only a component of at most one 
other list.

Directed graphs
n A data structure in which the components 

may be linked together using arbitrary linkage 
patterns (rather than just linear sequences of 
components).
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Variations on Lists

Property lists
n A record with a varying number of 

components, if the number of components 
may vary without restriction

n The component names (property names) and 
their values (property values) must be stored.

n A common representation is an ordinary 
linked list with the property names and their 
values alternating in a single long sequence.
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Sets

A set is a data object containing an 
unordered collection of distinct values.
Basic operations on sets:

1. Membership. 

2. Insertion and deletion of single values. 
3. Union of sets

4. Intersection of sets
5. Difference of sets
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Programming Language 
Problem

Find the right mechanisms to allow the 
programmer to create and manipulate object 
appropriate to the problem at hand.
n Language design: simplicity, efficiency, generality, 

etc.
A PL is strongly typed if all type checking can be 
done at compile time.
A PL is type complete if all objects in the 
language have equal status.
n In some languages objects of certain types are 

restricted.


