
1

Chapter 6

Structured Data Types

2Chapter 6: Data Types

Topics

Vectors
Arrays
Slices
Associative Arrays
Records
Unions
Lists
Sets

3Chapter 6: Data Types

Structured Data Types

Virtually all languages have included some
mechanisms for creating complex data
objects:
n Formed using elementary data objects.

n Arrays, lists, and sets are ways to create
homogeneous collection of objects.

n Records are a mechanism for creating
nonhomogeneous collections of data objects.

4Chapter 6: Data Types

Vectors and Arrays

Vectors and arrays are the most common types
of data structures in programming languages.
A vector is a data structure composed of a fixed
number of components of the same type
organized as a simple linear sequence.
A component of a vector is selected by giving its
subscript, an integer (or enumeration value)
indicating the position of the component in the
sequence.
A vector is also called a one-dimensional array
or linear array.

5Chapter 6: Data Types

Vectors

The attributes of a vector are:
1. Number of components : usually indicated

implicitly by giving a sequence of subscript
ranges, one for each dimension.

2. Data type of each component, which is a
single data type, because the components
are all of the same type.

3. Subscript to be used to select each
component: usually given as a range of
integers, with the first integer designating
the first component, and so on.

6Chapter 6: Data Types

Vectors: subscripts

Subscripts may be either a range of values
as -5...5 or an upper bound with an implied
lower bound, as A(10).
Examples:
n In Pascal, V: array [-5 .. 5] of real;

Defines a vector of 11 components, each a real number, where
the components are selected by the subscripts, - 5, - 4, … 5.

n In C, float a[10];
Defines a vector of 10 components with subscripts ranging from
0 to 9.

2

7Chapter 6: Data Types

Vectors: subscripts

Subscript ranges need not begin at 1.

Subscript ranges need not even be a subrange
of integers; it may be any enumeration (or a
subsequence of an enumeration)

Example:
n In Pascal, type class = (Fresh, Soph, Junior, Senior);

var ClassAverage: array [class] of real;

8Chapter 6: Data Types

Vectors: operations

Subscripting: the operation that selects a
component from a vector.
n It is usually written as the vector name

followed by the subscript of the component to
be selected.

V[2] or ClassAverage[Soph]

n It may be a computed value (an expression
that computes the subscript)

V[I + 2]

9Chapter 6: Data Types

Vectors: other operations

Operations to create and destroy vectors.
Assignment to components of a vector.
Operations that perform arithmetic
operations on pairs of vectors of the same
size (i.e. addition of two vectors).
Insertions and deletions of components
are not allowed
n Only the value of a component may be

modified.

10Chapter 6: Data Types

Vectors: implementation

Storage and accessing of individual
components are straightforward:
n Homogeneity of components

The size and structure of each component is the
same.

n Fixed size
The number and position of each component of a
vector are invariant through its lifetime.

A sequential storage is appropriate.

11Chapter 6: Data Types

Vectors: implementation

Vector
LB
UB

Integer
E

Data type
Lower subscript bound
Upper subscript bound
Data type of component
Size of component
A[LB]
A[LB+1]

A[UB]

Descriptor

Storage
representation

12Chapter 6: Data Types

Vectors: access function

An access function is used to map array
subscripts to addresses.
can be addressed by skipping I-1
components.
n If E is the size of each component, then skip

(I-1) x E memory locations.
n If LB is the lower bound on the subscript

range, then the number of such components
to skip is I-LB or (I-LB) x E memory locations.

3

13Chapter 6: Data Types

Vectors: access function

n If the first element of the vector begins at location α,
the access function is:

address(A[I]) = α + (I – LB) x E

which can be rewritten as:
address(A[I]) = (α – LB x E) + (I x E)

n Once the storage for the vector is allocated, (α – LB x E)
is a constant (K) and the accessing formula reduces
to

address(A[I]) = K + I x E

n Example: access function of a C vector
address(A[I]) = address(array[0]) + i*element_size

14Chapter 6: Data Types

Multidimensional Arrays

An array is a homogeneous collection of data
elements in which an element is identified by its
position in the collection, relative to the first
element
Indexing is a mapping from indices to elements
map(array_name, index_value_list) → an element
Indexes are also known as subscripts .
Index Syntax
n FORTRAN, PL/I, Ada use parentheses
n Most other languages use brackets

15Chapter 6: Data Types

Arrays: subscript types

What type(s) are allowed for defining array
subscripts?
n FORTRAN, C, C++, and Java allow integer

subscripts only.

n Pascal allows any ordinal type
int, boolean, char, enum

n Ada allows integer or enumeration types
Including boolean and char

16Chapter 6: Data Types

Arrays: subscript issues

In some languages the lower bound of the
subscript range is implicit
n C, C++, Java—fixed at 0

n FORTRAN—fixed at 1
n VB (0 by default, could be configured to 1)

Other languages require programmer to
specify the subscript range.

17Chapter 6: Data Types

Arrays: 4 categories

There are 4 categories of arrays based on
subscript range bindings and storage
binding:
n Static

n Fixed stack-dynamic
n Stack dynamic

n Heap-dynamic

18Chapter 6: Data Types

Static Arrays

Static arrays are those in which
n Range of subscripts is statically bound (at compile

time).
n Storage bindings are static (initial program load time)

Examples:
n FORTRAN77, global arrays in C, static arrays

(C/C++), some arrays in Ada.
Advantage:
n Execution efficiency since no dynamically

allocation/deallocation is required
Disadvantages:
n Size must be known at compile time.
n Bindings are fixed for entire program.

4

19Chapter 6: Data Types

Fixed stack dynamic Arrays

Fixed stack-dynamic arrays are those in which
n Subscript ranges are statically bound.
n Allocation is done at declaration elaboration time (on

the stack).
Examples:
n Pascal locals, most Java locals, and C locals that are

not static.
Advantage is space efficiency
n Storage is allocated only while block in which array is

declared is active.
n Using stack memory means the space can be reused

when array lifetime ends.
Disadvantage
n Size must be known at compile time. 20Chapter 6: Data Types

Stack dynamic Arrays

A stack-dynamic array is one in which
n Subscript ranges are dynamically bound
n Storage allocation is done at runtime
n Both remain fixed during the lifetime of the variable

Advantage: flexibility - size need not be known until the
array is about to be used
Disadvantge: once created, array size is fixed.
Example:
n Ada arrays can be stack dynamic:

Get(List_Len);
Declare
List : array (1..List_Len) of Integer;

Begin
…
End;

21Chapter 6: Data Types

Heap dynamic Arrays

Storage is allocated on the heap
A heap-dynamic array is one in which
n Subscript range binding is dynamic
n Storage allocation is dynamic

Examples:
n In APL, Perl and JavaScript, arrays grow and shrink

as needed
n C and C++ allow heap-dynamic arrays using pointers
n In Java, all arrays are objects (heap dynamic)
n C# provides both heap-dynamic and fixed-heap

dynamic

22Chapter 6: Data Types

Summary: Array Bindings

Binding times for Array

Runtime Runtime Dynamic

Runtime but fixed
thereafter

Runtime but fixed
thereafter

Stack dynamic

Declaration elaboration
time

Compile timeFixed stack dynamic

Compile timeCompile timeStatic

StorageSubscript range

23Chapter 6: Data Types

Arrays: attributes

Number of scripts
n FORTRAN I allowed up to three
n FORTRAN 77 allows up to seven
n Others languages have no limits.
n Other languages allow just one, but elements

themselves can be arrays.

Array Initialization
n Usually just a list of values that are put in the array in

the order in which the array elements are stored in
memory

24Chapter 6: Data Types

Arrays: initialization

Examples of array initialization:
1. FORTRAN - uses the DATA statement, or put the

values in / ... / on the declaration
Integer, Dimension (4) :: stuff = (/2, 4, 6, 8/)

2. Java, C and C++ - put the values in braces; can let
the compiler count them
e.g.
int stuff [] = {2, 4, 6, 8};

3. For strings (which are treated as arrays in C and
C++), an alternate form of initialization is provided.
char* names[] = {"Bob", "Mary", "Joe"};

5

25Chapter 6: Data Types

Arrays: initialization

3. Ada provides two mechanisms

- List in the order in which they are stored.
- Positions for the values can be specified.
stuff : array (1..4) of Integer := (2,4,6,8);
SCORE : array (1..14, 1..2) of Integer := (1 => (24,
10), 2 => (10, 7), 3 =>(12, 30), others => (0, 0));

4. Pascal does not allow array initialization

26Chapter 6: Data Types

Arrays: implementation

A matrix is implemented by considering it
as a vector of vectors; a three-dimensional
arrays is a vector whose elements are
vectors, and so on.
n All subvectors must have the same number of

elements of the same type.

Matrix:
n Column of rows vs. row of columns

27Chapter 6: Data Types

Arrays: implementation

Row-major order (column of rows)
n The array is first divided into a vector of

subvectors for each element in the range of
the first subscript, then each of these
subvectors is subdivided into subvectors for
each element in the range of the second
subscript, and so on.

Column-major order (single row of
columns)

28Chapter 6: Data Types

Arrays: Row- vs. Column-major
order

29Chapter 6: Data Types

Arrays: storage representation

Storage representation follows directly
from that for a vector.
n For a matrix, the data objects in the first row

(assuming row -major order) followed by the
data objects in the second row, and so on.

n Result: a single sequential block of memory
containing all the components of the array in
sequence.

The descriptor is the same as that for the vector,
except that an upper and lower bound for the
subscript range of each dimension are needed.

30Chapter 6: Data Types

Arrays: implementation
VO

LB 1 (= 1)
UB 1 (= 3)
LB 2 (= -1)

UB 2 (= 1)

Virtual Origin
Lower bound on subscript 1
Upper bound on subscript 1
Lower bound on subscript 2
Upper bound on subscript 2
Size of component

M[1,-1]

Descriptor

Storage
representation

E (= 1)

M[1,0]
M[1,1]
M[2,-1]
M[2,0]
M[2,1]
M[3,-1]
M[3,0]
M[3,1]

First row

Second row

Third row

6

31Chapter 6: Data Types

Arrays: accessing function

The accessing function is similar to that for
vectors:
n Determine the number of rows to skip over

(I-LB1)

n Multiply by the length of a row to get the
location of the start of the Ith row

n Find the location of the Jth component in that
row, as for a vector

32Chapter 6: Data Types

Arrays: accessing function

If A is a matrix with M rows and N columns, the
location of element A[I,J] is given by:
n A is stored in row-major order

location(A[I,J]) = α + (I - LB1) x S + (J - LB2) x E
where S = length of a row = (UB2 - LB2 + 1) x E

n A is stored in column-major order

location(A[I,J]) = α + (J - LB2) x S + (I - LB1) x E
where S = length of a row = (UB1 - LB1 + 1) x E

where α = base address
LB1 = lower bound on first subscript
LB2, UB2 = lower and upper bounds on the second subscript

33Chapter 6: Data Types

Arrays: Row-major access
function

location(A[I,J]) = α + (I - LB1) x S + (J - LB2) x E
S = (UB2 - LB2 + 1) x E

34Chapter 6: Data Types

Arrays: Column-major access
function

location(A[I,J]) = α + (J - LB2) x S + (I - LB1) x E
S = length of a row = (UB1 - LB1 + 1) x E

35Chapter 6: Data Types

Slices
A slice is some substructure of an array
n Nothing more than a referencing

mechanism
n A way of designating a part of the array

Slices are only useful in languages for
operations that can be done on a whole
array.

1. In FORTRAN 90
INTEGER MAT (1:4, 1:4)
MAT(1:4, 1) - the first column
MAT(2, 1:4) - the second row

36Chapter 6: Data Types

Example Slices in FORTRAN 90

7

37Chapter 6: Data Types

Slices: examples

2. Ada - single-dimensioned arrays only
LIST(4..10)

3. Java has something like slices for multi-
dimensioned arrays

int [][]array = array[1] - gets the second row

PL/I was one of the earliest languages to
implement slices.

38Chapter 6: Data Types

Associative Arrays

An associative array is an unordered
collection of data elements that are
indexed by an equal number of values
called keys
The keys are stored in the structure
Thus, element is a (key, value) pair
Design Issues:
1. What is the form of references to elements?
2. Is the size static or dynamic?

39Chapter 6: Data Types

Associative Arrays

Structure and Operations in Perl
n Names begin with %
%hi_temps = ("Monday" => 77,

"Tuesday" => 79,
"Wednesday" => 83);

n Alternative notation
%hi_temps = ("Monday", 77,

"Tuesday", 79,
"Wednesday", 83);

40Chapter 6: Data Types

Associative Arrays

Structure and Operations in Perl
n Subscripting is done using braces and keys
$hi_temps{"Wednesday"};
#returns the value 83
n A new elements is added by
$hi_temps{"Thursday"} = 91;
n Elements can be removed with delete
delete $hi_temps{"Thursday"};

41Chapter 6: Data Types

Records

A data structure composed of a fixed
number of components of different types.
Vectors vs. Records

1. The components of records may be
heterogeneous , of mixed data types, rather
than homogeneous.

2. The components of records are named with
symbolic names (identifiers) rather than
indexed with subscripts.

42Chapter 6: Data Types

Records: attributes

Records have 3 main attributes:
1. The number of components
2. The data type of each component
3. The selector used to name each component

n The components of a records are often
called fields , and the component names
then are field names .

n Records are sometimes called structures (as
in C).

8

43Chapter 6: Data Types

Records: definition syntax

1. COBOL uses level numbers to show
nested records

01 EMPLOYEE-RECORD
02 EMPLOYEE-NAME

05 FIRST PICTURE IS X(20).
05 MIDDLE PICTURE IS X(10).
05 LAST PICTURE IS X(20).

02 HOURLY-RATE PICTURE IS 99V99

44Chapter 6: Data Types

Records: definition syntax

2. Other languages use recursive definitions
type Employee_Name_Type is record

First : String(1..20);
Middle: String (1..10);
Last : String (1..20);

end record;
type Employee_Record_Type is record

Employee_Name: Employee_Name_Type;
Hourly_Rate: Float;

end record;
Employee_record: Employee_Record_Type;

45Chapter 6: Data Types

Record Field References

1. COBOL
field_name OF record_name_1 OF ... OF record_name_n

Example:

MIDDLE OF EMPLOYEE-NAME OF EMPLOYEE-RECORD

2. Others (dot notation)
record_name_1.record_name_2. ... record_name_n.field_name

Example:

Employee_Record.Employee_Name.Middle

46Chapter 6: Data Types

Records

Fully qualified references must include all
record names
Elliptical references allow leaving out
record names as long as the reference is
unambiguous (Cobol only)
Pascal and Modula-2 provide a with
clause to abbreviate references

47Chapter 6: Data Types

Records: operations

Assignment
n Pascal, Ada, and C++ allow it if the types are

identical.
Initialization
n Allowed in Ada, using an aggregate.

Comparison
n In Ada, = and /=; one operand can be an aggregate

Move Corresponding
n In COBOL: it moves all fields in the source record to

fields with the same names in the destination record.

48Chapter 6: Data Types

Records: initialization

Define & initialize with
list of variables

Define & initialize
using the dot operator
(structure member
operator)

struct student s1 =
{"Ted","Tanaka",
22, 2.22};

struct student s2;
strcpy(s.first,

"Sally");
s.last="Suzuki";
s.age = 33;
s.gpa = 3.33;

9

49Chapter 6: Data Types

Records: implementation

The storage representation for a record
consists of a single sequential block of
memory in which the components are
stored in sequence.
Individual components may need
descriptors to indicate their data type and
other attributes.
n No runtime descriptor for the record is

required.

50Chapter 6: Data Types

Records: descriptors

51Chapter 6: Data Types

Unions

A union is a type whose variables are
allowed to store different type values at
different times during execution
Design Issues for unions:
1. What kind of type checking, if any, must be

done?
2. Should unions be integrated with records?

52Chapter 6: Data Types

Unions: examples
1. FORTRAN - with EQUIVALENCE

EQUIVALENCE (A, B, C, D), (X(1), Y(1))

n Free Unions:
No tag variable is required.
No type checking
C/C++ have free unions

2. Pascal: variant records
Contain one or more components that are common
to all variants.
Each variant has several other components with
names and data types that are unique to each
variant.

53Chapter 6: Data Types

Unions: examples
type PayType = (Salaried, Hourly);
var Employee: record

ID: integer;
Dept: array [1..3] of char;
Age: integer;
case PayClass: PayType of

Salaried: (MontlyRate: real;
StartDate: integer):

Hourly: (HourRate: real;
Reg: integer;
Overtime: integer)

end

The component PayClass is called the tag (Pascal) or discriminant
(Ada) because it serves to indicate which variant of the record exists
at a given point during program execution.

54Chapter 6: Data Types

Unions: type checking issues

System must check value of flag before each
variable access

Employee. PayClass := Salaried;
Employee. MontlyRate := 1973.30;
…
print(Employee.Overtime); -- error

Still not good enough!
Employee. PayClass := Salaried;
Employee. MontlyRate := 1973.30;
Employee. StartDate := 626;

Employee. PayClass := Hourly;
print(Employee.Overtime); -- this should be an error

10

55Chapter 6: Data Types

Unions: selection operation

Selection operation: same as that for an
ordinary record.
n For ordinary records: each component exists

throughout the lifetime of the record.
n For variant records/unions: the component

may exist at one point during execution (when
the tag component has a particular value),
may later cease of exist (when the value of
the tag changes to indicate a different
variant), and later may reappear (if the tag
changes back to its original value).

56Chapter 6: Data Types

Ada Union Types

Similar to Pascal, except
n No free union

Tag must be specified with union declaration
n When tag is changed, all appropriate fileds

must be set too.
Employee.PayClass := Hourly;
Employee.HourRate := 8.75;
Employee. Reg := 8;
Employee.Overtime := 2;

n Ada union types are safe
Ada systems required to check the tag of all
references to variants.

57Chapter 6: Data Types

Unions: type checking

Problem with Pascal’s design
n Type checking is ineffective.
n User can create inconsistent unions (because the tag

can be individually assigned)
n Also, the tag is optional (free union).

Ada discriminant union
n Tag must be present
n All assignments to the union must include the tag

value –tag cannot be assigned by itself.
n It is impossible for the user to create an inconsistent

union.
58Chapter 6: Data Types

Unions: implementation

During translation, the amount of storage
required for the components of each variant is
determined
n Storage is allocated in the record for the largest

possible variant.
n Each variant describes a different layout for the block

in terms of number and types of components.
During execution, no special descriptor is
needed for a variant record because the tag
component is considered just another
component of the record.

59Chapter 6: Data Types

Unions: storage representation

ID

Dept

Age

PayClass

MontlyRate

StartDate

HourRate

Reg

Overtime

Storage if
PayClass = Salaried

Storage if
PayClass = Hourly

60Chapter 6: Data Types

Unions: storage representation

11

61Chapter 6: Data Types

Union: evaluation

Useful
Potentially unsafe in most languages
Ada, Algol 68 provide safe versions

62Chapter 6: Data Types

Pointers: problems

1. Dangling pointers (dangerous)
n A pointer points to a heap-dynamic variable

that has been deallocated
n Creating one (with explicit deallocation):

a. Allocate a heap-dynamic variable and set
a pointer to point at it
b. Set a second pointer to the value of the

first pointer
c. Deallocate the heap-dynamic variable,

using the first pointer

63Chapter 6: Data Types

Pointers: problems

n Dangling pointers
int *p, *q;
p = (int*)malloc(sizeof(int* 5);
q = p;
free (p);

2. Lost Heap-Dynamic Variables (wasteful)
n A heap-dynamic variable that is no longer referenced by

any program pointer
n Creating one:

a. Pointer p1 is set to point to a newly created heap-
dynamic variable

64Chapter 6: Data Types

Pointers: problems

b. p1 is later set to point to another newly created heap-
dynamic variable

n The process of losing heap-dynamic variables is
called memory leakage

n Lost heap-dynamic variables (garbage)
p = (int*)malloc(5*sizeof(int));
p = new int(20);

The process of losing heap-dynamic variables is
called memory leakage . (cannot free the first chunk
of memory)

65Chapter 6: Data Types

Pointers: examples

C and C++ pointers
n Used for dynamic storage management and

addressing
n Explicit dereferencing (*) and address-of operator (&)
n Can do pointer arithmetic

float arr[100];
float *p = arr;
*(p+5) ≡ arr[5] ≡ p[5]
*(p+i) ≡ arr[i] ≡ p[i]

n void* can point to any data type but cannot be
dereferenced

66Chapter 6: Data Types

Pointers: examples

C++ reference types
n Constant pointers that are implicitly

dereferenced:
float x = 1.0;
float &y = x;
y = 2.2; à sets x to 2.2

n Used for reference parameters:
Advantages of both pass-by-reference and pass-
by-value

12

67Chapter 6: Data Types

Pointers: examples

Java - Only references (no pointers)
n No pointer arithmetic
n Can only point at objects (which are all on the

heap)
n No explicit deallocator (garbage collection is

used)

n Means there can be no dangling references
n Dereferencing is always implicit

68Chapter 6: Data Types

Lists
A data structure composed of an ordered
sequence of data structures.
List are similar to vectors in that they consist of an
ordered sequence of objects.
Lists vs. Vectors

1. Lists are rarely of fixed length. Lists are often used to
represent arbitrary data structures, and typically lists
grow and shrink during program execution.

2. Lists are rarely homogeneous. The data type of each
member of a list may differ from its neighbour.

3. Languages that use lists typically declares such data
implicitly without explicit attributes for list members.

69Chapter 6: Data Types

Variations on Lists

Stacks and queues
n A stack is a list in which component selection,

insertion, and deletion are restricted to one
end.

n A queue is a list in which component selection
and deletion are restricted to one end and
insertion is restricted to the other end.

n Both sequential and linked storage
representations for stacks and queues are
common.

70Chapter 6: Data Types

Variations on Lists

Trees
n A list in which the components may be lists as

well as elementary data objects, provided that
each list is only a component of at most one
other list.

Directed graphs
n A data structure in which the components

may be linked together using arbitrary linkage
patterns (rather than just linear sequences of
components).

71Chapter 6: Data Types

Variations on Lists

Property lists
n A record with a varying number of

components, if the number of components
may vary without restriction

n The component names (property names) and
their values (property values) must be stored.

n A common representation is an ordinary
linked list with the property names and their
values alternating in a single long sequence.

72Chapter 6: Data Types

Sets

A set is a data object containing an
unordered collection of distinct values.
Basic operations on sets:

1. Membership.

2. Insertion and deletion of single values.
3. Union of sets

4. Intersection of sets
5. Difference of sets

13

73Chapter 6: Data Types

Programming Language
Problem

Find the right mechanisms to allow the
programmer to create and manipulate object
appropriate to the problem at hand.
n Language design: simplicity, efficiency, generality,

etc.
A PL is strongly typed if all type checking can be
done at compile time.
A PL is type complete if all objects in the
language have equal status.
n In some languages objects of certain types are

restricted.

