
1

Chapter 6

Data Types

2Chapter 6: Data Types

Topics

Composite Data Types
Character Strings
User-Defined Ordinal Type
n Enumerations
n Subranges

Structure Types

3Chapter 6: Data Types

Composite Data Types

Usually considered elementary data
objects.
Their implementation usually involves a
complex data structure organization by the
compiler.
Multiple attributes are often given for each
data type.

4Chapter 6: Data Types

Character Strings

Data objects composed of a sequence of
characters.
It is important in most languages
n Used for data input and output.

Design Issues
n Should strings be a special kind of character

array or a primitive type (no array-style
subscripting operations)?

n Should string have static or dynamic length?

5Chapter 6: Data Types

Character Strings: specification
and syntax

At least 3 different treatments:
1. Fixed declared length.

Value assigned: a character string of a
certain length.
Assignment of a new string value results in a
length adjustment of the new string through
truncation of excess characters or addition
of blank characters to produce a string of the
corre4ct length.
Storage allocation is determined at
translation time.

6Chapter 6: Data Types

Character Strings: specification
and syntax

2. Variable length to a declared bound.
The string may have a maximum length that is declared
previously.
The actual value stored may be a string of shorter
length (even the empty string).
During execution, the length of the string value may
vary, but it is truncated if it exceeds the bound.
Storage allocation is determined at translation time.

3. Unbound length.
The string may have a string value of any length.
The length may vary dynamically during execution with
no bound (beyond available memory).
Dynamic storage allocation at run time.

2

7Chapter 6: Data Types

Character Strings: C

Strings are arrays of characters (no string
declaration).
Convention: null character (“\0”) follows
the last character of a string.
Every string, when stored in an array, will
have the null character appended by the C
translator.
n Programmers have to manually include the

final null character to strings made from
programmer-defined arrays.

8Chapter 6: Data Types

Character Strings: operations

A wide variety of operations are usually
provided.

1. Concatenation.
Operation of joining two strings to make one
long string
Example: if || is the symbol used for
concatenation, “BLOCK” || “HEAD” gives
“BLOCKHEAD”

9Chapter 6: Data Types

Character Strings: operations

2. Relational operations on strings.
n Usual relational operations (equal, less-than,

greater-than, etc) may be extended to strings.

n Lexicographic (alphabetic) order
Example: String A is less than String B if either
n The first character of A is less than the first character of

B
n If both characters are equal and the second character of

A is less than the second character of B, and so on.
n A shorter string is extended with blank character

(spaces) to the length of the longer.

10Chapter 6: Data Types

Character Strings: operations

3. Substring selection using positioning
subscripts.
n Some languages provide an operation for

selecting a substring by giving the position of
its first and last characters

Or first character position and length of the
substring.
Example: In Fortran: Next = STR(6:10)

n Some problem could arise if substring selection
appears on both sides of an assignment

Example: In Fortran, STR(!:5) = STR(I:I+4)

11Chapter 6: Data Types

Character Strings: operations

4. Input-output formatting.
n Formatting data for output.
n Breaking up formatted input data into smaller

data items.
5. Substring selection using pattern matching.

n Often the position of a desired substring within
a larger string is not know.

Its relation to other substrings is know.
Examples:
n A sequence of digits followed by a decimal point
n The word following the word THE.

12Chapter 6: Data Types

Character Strings: operations

n Patter matching operation takes two arguments:
A pattern data structure
n The pattern specifies the form of the substring desired and

possibly other substrings that should adjoin it.

n A string with a substring that matches the specified pattern.

The most common pattern matching mechanism are
regular expressions.
Some languages have pattern matching built into the
language (Perl, Python, Ruby, …).
Some languages implement pattern matching via external
libraries or classes
n Java has Pattern and Matcher classes

3

13Chapter 6: Data Types

Recursive Definition of a Regular
Expression

Individual terminals are regular
expressions
If a and b are regular expressions so are
n a | b choice

n ab sequence
n (a) grouping

n a* zero or more repetitions

Nothing else is a regular expression

14Chapter 6: Data Types

Examples

Identifiers
n letter(letter | digit)*

Binary strings
n (0 | 1)(0 | 1)*

Binary strings divisible by 2
n (0 | 1)*0

15Chapter 6: Data Types

Pattern Symbols

Case insensitive\i
Grouping ()
Choice|
Between i and j occurrences{i, j}
None of enclosed characters[̂ abc]
One of enclosed characters[abc]
0 or 1 occurrences of previous character?
1 or more occurrences+
0 or more occurrences*
Any single character (except '\n').
MeaningSymbol

16Chapter 6: Data Types

Character Classes

There are several classes of characters
that have special names

\S

\W

\D

Exclude

Any whitespace\s

Any letter,
digit, or
underscore

\w

Any digit\d

Match

17Chapter 6: Data Types

Anchors

Used to specify position within a string

\bpattern\b matches the word pattern but not
patterned

Not at word boundary\B
Word boundary\b

End of string$

Beginning of string^
PositionSymbol

18Chapter 6: Data Types

Character Strings:
implementation

Each of the 3 methods for handling
character string utilizes a different storage
representation.
Hardware support for the simple fixed-
length representation is usually available
but other representations for strings must
usually be software simulated.

4

19Chapter 6: Data Types

Storage Representation for
Strings

R E L A

T I V I

T Y

Fixed declared length

Strings stored 4
characters per word
padded with blanks

10 14 R E

L A T I

V I T Y

Variable length with bound

Current and maximum
string length stored
at header of string

20Chapter 6: Data Types

Storage Representation for
Strings

10 R E L

A T I V

I T Y

Unbounded with fixed allocations
Strings stored at 4
characters per block.
Length at header of
string

R E L A T I V I T Y

Unbounded with variable allocations

String stored as contiguous
Array of characters.
Terminated by null character

21Chapter 6: Data Types

Strings: evaluation

String types are important to writability and
readability.
Not costly (language or compiler
complexity): add strings as a primitive
type.
n Standard libraries is as convenient as using

strings as primitive types.

22Chapter 6: Data Types

User-Defined Ordinal Type

Ordinal type: the range of possible values
can be easily associated with the set of
positive integers.
n Enumerations

n Subrange

23Chapter 6: Data Types

Enumerations

A variable can take only one of a small number of
symbolic values.
n Example: a variable StudentClass might have only four

possible values representing freshman, sophomore, junior,
and senior.

n Example: a variable EmployeeSex might have only two
values representing male and female.

n In older languages (Fortran, Cobol), an enumeration
variable is given the data type integer.

The values are represented as distinct, arbitrary chosen integers.
Example: Freshman = 1, Sophomore = 2 , and so on.
Example: Male = 0, Female = 1

24Chapter 6: Data Types

Enumerations: specification

Modern languages include an enumeration data
type.
An enumeration is an ordered list of distinct
values.

The programmer defines both the literal names
to be used for the values and their ordering
using a declaration.
n Example: In C,

enum StudentClass {Fresh, Soph, Junior, Senior};
enum EmployeeSex {Male, Female};

5

25Chapter 6: Data Types

Enumerations: specification

Ordinarily many variables of the same
enumeration type are used in a program.
Define the enumeration in a separate type
definition
n In Pascal: type Class = {Fresh, Soph, Junior, Senior};

followed by declarations for variables:
StudentClass: Class; TransferStudent: Class;

n The type definition introduces the type name
Class, which may be used as a primitive.

26Chapter 6: Data Types

Enumerations: specification

n It also introduces the literals of Fresh, Soph,
Junior, and Senior which may be used instead
of the corresponding integers.

Example: if StudentClass = Junior then …
instead of the less undertandable

if StudentClass = 3 then …

Static type checking by the compiler could
find programming errors.
n Example: if StudentClass = Male then …

27Chapter 6: Data Types

Enumerations: operations

Basic operations
n Relational operations (equal, less-than, etc)

Defined for enumerations types because the set of
values is given an ordering in the type definition.

n Assignment

n Successor and predecessor
Gives the next and previous value, respectively, in
the sequence of literals defining the enumeration.
Undefined for the last and first values, respectively

28Chapter 6: Data Types

Enumerations: implementation

Storage representation is straightforward
n Each value in the enumeration sequence is

represented at run time by one of the integer 0,
1, ….

n Only a small set is involved and the values are
never negative.

n The usual integer representation is often
shortened to omit the sign bit and use only
enough bits for the range of values required.

29Chapter 6: Data Types

Enumerations: implementation

Example: The previous type Class has only four
possible values 0 = Fresh, 1 = Soph, 2 = Junior, and 3 =
Senior.

Only 2 bits are required to represent these 4
possible values in memory.
Successor & predecessor: add or subtracts one
form the integer representing the value and check
if the result is within the proper range.

n In C, the programmer may override this
default and set any values desired.

Example:
enum class {Fresh=14, Soph=36, Junior=4, Senior=42};

30Chapter 6: Data Types

Enumerations: evaluation

Provides advantages in
n Readability

Named values are easily recognized.
n Reliability

In languages such as C#, Ada, Java there are two
advantages:
n No arithmetic operations are legal on enumeration types.
n No enumeration variable can be assigned a value

outside its defined range.

In C there are no advantages (treats enumerations
as integers).

6

31Chapter 6: Data Types

Subrange Types: specification

A subrange is a contiguous sequence of
an ordinal type within some restricted
range.
n Example: In Pascal, A: 1..10

In Ada, A: integer range 1..10

A subrange type allows the same set of
operations to be used as for the
corresponding ordinal type.

32Chapter 6: Data Types

Subrange Types:
implementation

Two important effects on implementations:
1. Smaller storage requirements.

Because a smaller range of values is possible, a
subrange value can usually be stored in fewer bits
than a general integer value.
n Example: the subrange 1..10 requires only 4 bits whereas

a full integer requires 16 or 32.
n Because arithmetic operations on shortened integers may

need software simulation for their execution (slower),
subranges values are often represented as the smallest
number of bits for which the hardware implements
arithmetic operations (generally 8 or 16).

33Chapter 6: Data Types

Subrange Types:
implementation

2. Better type checking.
More precise type checking to be performed on the
values assigned to the variable.
Example: if variable Month is Month: 1..12, then the
assignment Month := 0 is invalid and can be detected
at compile time. If Month is declared to be of integer
type, then the assignment is valid and the error
must be found by the programmer during testing.
Some subrange type checks cannot be performed
at compile time, i.e in Month := Month + 1 run time
checking is needed to determine whether the new
value is within the bounds declared.

34Chapter 6: Data Types

Subrange Types: evaluation

Enhance readability by showing clearly
that variables of subtypes can store only
certain ranges of values.
Increase reliability because possible
values that are outside of a range can be
detected faster and easier.
No contemporary language except Ada95
has subrange types.

35Chapter 6: Data Types

Structured Types

A structured type is a compound type that
contains other data objects as its elements
or components.
n Arrays
n Records
n Tuples
n Lists
n Sets
n Functions
n Stacks

36Chapter 6: Data Types

Structure Types: specification

The major attributes for specifying
structure types include:

1. Number of components
n Fixed size: the number of components is

invariant during its lifetime.
Arrays and records.

n Variable size: the number of components
changes dynamically.

Usually define operations that insert and delete
components.
Stacks, lists, sets, tables, and files.

7

37Chapter 6: Data Types

Structure Types: specification

2. Type of each component
n Two kinds of structured types:

Heterogeneous: elements of different types.
Homogeneous: elements of the same type.

homogeneous heterogeneous

static record, list

dynamic array, set, file

Dynamic selection à homogeneous à compiler will not
know which one will be selected at run time

38Chapter 6: Data Types

Structure Types: specification

3. Names to be used for selecting
components.
n Needs a selection mechanism for identifying

individual components of the data structure
Array: name of an individual component may be an integer
subscript or sequence of subscripts.
Table: the name may be a programmer-defined identifier.
Record: name is usually a programmer -defined identifier.
Some data structures (stacks and files) allow access to only a
particular component (top or current component) at any time.

39Chapter 6: Data Types

Structure Types: specification

4. Maximum number of components.
For variable-size data structures, a maximum size for
the structure in terms of number of components may be
specified.

5. Organization of the components.
n The most common organization is a simple linear

sequence of components.
Vectors (one- dimensional arrays), records, stacks, lists, and
files.
Array, record, and list types are usually extended to
multidimensional forms: multidimensional arrays, records
whose components are records, lists whose components are
lists.

40Chapter 6: Data Types

Structure Types: operations

1. Component selection operations.
Processing data often proceeds by
retrieving each component of the structure.

Two types of selection operations :
Random selection : an arbitrary component of
the data structure is accessed.
Sequential selection: components are selected
in a predetermined order.

41Chapter 6: Data Types

Structure Types: operations

2. Whole-data structure operations.
Operations may take entire data structures
as arguments and produce new data
structures as results.

Most languages provide a limited set.
Addition of two arrays.
Assignment of one record to another.
Union operation on sets.

42Chapter 6: Data Types

Structure Types: operations

3. Insertion/deletion of components.
Operations that change the number of
components in a data structure.

4. Creation/destruction of data structures
Operations that create and destroy data
structures.

8

43Chapter 6: Data Types

Structure Types:
implementation

The storage representation includes (1)
storage for the components of the
structure, and (2) an optional descriptor
that store some or all of the attributes of
the structure.
There are two basic representations:
n Sequential

n Linked

44Chapter 6: Data Types

Structure Types:
implementation

1. Sequential representation.
The data structure is stored in a single
contiguous block of storage that includes
both descriptor and components.

Component

Component

.

.

.

Component

45Chapter 6: Data Types

Structure Types:
implementation

2. Linked representation.
The data structure is stored in several non-
contiguous blocks of storage, with the blocks
linked together through pointers.

Descriptor

Component

Component…

46Chapter 6: Data Types

Structure Types:
implementation

Sequential representations are used for
fixed-size structures and sometimes for
homogeneous variable-size structures
such as character strings or stacks.
Linked representations are commonly
used for variable-sized structures such
as lists.

