
1

Chapter 6

Data Types

2Chapter 6: Data Types

Topics
Introduction
Type Information

Data Type
n Specification of a Data Type

Primitive Data Types
n Numeric Data Types

Integers
Floating-Point Numbers
Fixed- Point Real Numbers

n Boolean Types
n Character Types

3Chapter 6: Data Types

Introduction

Every program uses data, either explicitly
or implicitly, to arrive at a result.
All programs specify a set of operations
that are to be applied to certain data in a
certain sequence.
Data in its most primitive forms inside a
computer is just a collection of bits.

4Chapter 6: Data Types

Introduction

Basic differences among languages exist
in the types of data allowed, in the types of
operations available, and in the
mechanism provided for controlling the
sequence in which the operations are
applied to the data.
Most programming languages provide a
set of simple data entities as well as
mechanism for constructing new data
entities from these.

5Chapter 6: Data Types

Type Information

Program data can be classified
according to their types.

Type information can be contained in a
program either implicitly or explicitly.

6Chapter 6: Data Types

Type Information: implicit

n Implicit type information includes the types of
constants and values, types that can be
inferred from a name convention, and types
can be inferred from context.

Example: number 2 is implicitly an integer in most
languages
Example: TRUE is Boolean
Example: variable I in FORTRAN is, in the
absence of other information, an integer variable.

2

7Chapter 6: Data Types

Type Information: explicit

n Explicit type information is primarily
contained in declarations.

Variables can be declared to be of specific
types.
Example: var x: array[1..10] of integer;

Example: var b: boolean;

8Chapter 6: Data Types

Data Type

A data type is a set of values that can be specified
in many ways:
n Explicitly listed
n Enumerated
n Given as a subrange of known values
n Borrowed from mathematics

A set of values also has a group of operations that
can be applied to the values.
n These operations are often not mentioned explicitly with

the type, but are part of its definition.

9Chapter 6: Data Types

Data Type: definition

A data type is a set of values, together
with a set of operations on those values
having certain properties.
Every language comes with a set of
predefined types from which all other
types are constructed.
n Provide facility to allow the programmer

defined new data types.

10Chapter 6: Data Types

Specification of a Data Type

Basic elements of a specification of a
data type:

1. The attributes that distinguish data objects
and types.

2. The values that data objects of that type
may have, and

3. The operations that defined the possible
manipulations of data objects of that type.

11Chapter 6: Data Types

Specification of a Data Type:
example

Specification of an array:
1. The attributes might include the number of

dimensions, the subscript range for each dimension,
and the data type of the components.

2. The values would be the sets of numbers that form
valid values for array components.

3. The operations would include subscripting to select
individual array components and possibly other
operations to create arrays, change their shape,
access attributes such as upper and lower bounds
of subscripts, and perform arithmetic on pair of
arrays.

12Chapter 6: Data Types

Primitive Data Types

Algol- like languages (Pascal, Algol68, C,
Modula-2, Ada, C++), all classify types
according to a basic scheme, with minor
variations.
n Names used are often different, even though the

concepts are the same.

Primitive types are also called base types or
scalar types or unstructured types or elementary
types.
A scalar type is a type whose elements consist
of indivisible entities (a single data value or
attribute).

3

13Chapter 6: Data Types

Numeric Data Types

Some form of numeric data is found in
almost every programming language.
n Integers

n Floating-Point Real Numbers
n Fixed-Point Real Numbers

14Chapter 6: Data Types

Integers: specification

The set of integer values defined for the
type forms an ordered subset, within some
finite bounds, of the infinite set of integers
studied in mathematics.
n The maximum integer value is sometimes

represented as a defined constant
Example: In Pascal, the constant maxint
The range of values is defined to be from –maxint
to maxint

n Some languages, such as C, have different
integer specifications: short, long

15Chapter 6: Data Types

Integers: specification

Operations on integer data objects include
the main groups:
n Arithmetic Operations:

Binary arithmetic operations such as addition (+),
subtraction (-), multiplication (*), division (/ or div),
remainder (mod).
BinOp: integer x integer à integer
Unary arithmetic operations such as negation (-) or
identity (+).
UnaryOp: integer à integer

16Chapter 6: Data Types

Integers: specification

n Relational Operations:
Includes equal, not equal , less-than, greater-than,
less-than-or-equal, and greater-than-or-equal .
RelOp: integer x integer à Boolean

n Assignment
assignment: integer x integer à integer

n Bit Operations
In some languages, integers fulfill many roles.
In C, integer also play the role of Boolean values.
C includes operations to and the bits together (&),
or the bits together (|), and shift the bits (<<).

17Chapter 6: Data Types

Integers: implementation

Implemented using hardware-defined
integer storage representation and set of
hardware possible storage
representations for integers.
Some possible storage representation
for integers.

18Chapter 6: Data Types

Integers: implementation

No descriptor
n Only the value is stored.
n Possible if the language provides

declarations and static type checking for
integer data objects.

Binary integer

Sign bit

4

19Chapter 6: Data Types

Integers: implementation
Descriptor separated
n Stores the description in a separate memory location,

with a pointer to the full -word integer value.
n Often used in LISP.
n Disadvantage: It may double the storage required.
n Advantage: because the value is stored using the build-

in hardware representation, the hardware arithmetic
operations may be used.

Type description

Binary integer

Sign bit

20Chapter 6: Data Types

Integers: implementation
Descriptor in the same word
n Descriptor and value are stored in a single memory

location by shortening the size of the integer sufficiently
to provide space for the descriptor.

Storage is conserved.
Hardware operations: clearing the descriptor from the integer
data object, perform the arithmetic, and then reinserting the
descriptor.
Arithmetic is inefficient.

Binary integer

Sign bitType descriptor

21Chapter 6: Data Types

Floating-Point Numbers:
specification

Sometimes called real, as in FORTRAN.
Also called float, as in C.
As with type integer, the values form an
ordered sequence from some hardware-
determined minimum negative value to a
maximum value, but the values are not
distributed evenly across this range.

22Chapter 6: Data Types

Floating-Point Numbers:
specification

Same arithmetic, relational, and assignment
operations as for integers.
n Boolean are sometimes restricted.

n Due to roundoff issues: equality between two
real numbers is rarely achieved.

Equality may be prohibited by the language designer.
n Most languages provide other operations as

build-in functions:
n Sine: Sin: real à real
n Maximum value : max: real x real à real

23Chapter 6: Data Types

Floating-Point Numbers:
implementation

Storage representation based on an
underlying hardware representation.
n Mantissa (i.e. the significant digits of the

number)
n Exponent

Exponent

Exponent sign bit

Sign bit

Mantissa

24Chapter 6: Data Types

Floating-Point Numbers:
implementation

This model emulates scientific notation
n Number N can be expressed as N=mx2k

n IEEE Standard 754
32 and 64 bit standard

n Numbers consist of 3 fields:
S : a one- bit sign field. 0 is positive
E: Values (8 bits) range from 0 to 355 corresponding to
exponents of 2 that ranges from –127 to 128
M: a mantissa of 23 bits. The first number is always 1 then it is
inserted automatically by the hardware yielding an extra 24th bit
of precision.

exponentS mantissa

5

25Chapter 6: Data Types

Floating-Point Numbers:
implementation

A double-precision form is available in
many programming languages.
n Additional memory word is used to store an

extended mantissa.

exponentS mantissa

8 bits 23 bits

exponentS mantissa

11 bits 52 bits

26Chapter 6: Data Types

Fixed-Point Real Numbers:
specification

A fixed-point number is represented as a
digit sequence of fixed length, with the
decimal point position at a given point
between two digits.
n Example: In COBOL:

X PICTURE 999V99
declares X as a fixed-point variable with 3
digits before the decimal and 2 digits after.

27Chapter 6: Data Types

Fixed-Point Real Numbers:
implementation

A fixed-point type may be directly
supported by the hardware or may be
simulated by software.
n Example: In PL/I, fixed data are of type Fixed

Decimal.
DECLARE X FIXED DECIMAL (10,3),

Y FIXED DECIMAL (10,2),
Z FIXED DECIMAL (10,2);

Data is stored as integers, with the decimal point
being an attribute of the data object.

28Chapter 6: Data Types

Fixed-Point Real Numbers:
implementation

n If X has the value 103.421, then r-value of X will be
103 421, and the object X will have an attribute scale
factor (SF) of three (the decimal point is 3 places to
the left).

n The statement Z = X + Y
Shift Y left one position (equivalent to multiplying the
integral r -value of Y by 10)
The sum will have 3 decimal digits (SF=3)
Because Z has only 2 decimal places (SF=2) and the sum
has 3, remove one place (divide by 10).

Subtraction and division are handled in an
analogous manner.

29Chapter 6: Data Types

Boolean Types: specification

Data objects having one of two values (true of
false).
The most common operations on Boolean types
include assignment and the following logical
operations:
n and: Boolean x Boolean à Boolean (conjunction)
n or: Boolean x Boolean à Boolean (inclusive

disjunction)
n not: Boolean à Boolean (negation or complement)

Other Boolean operations: equivalence,
exclusive or, implication, nand (not-and), and
nor (not-or).

30Chapter 6: Data Types

Boolean Types: implementation

Storage is a single bit providing no descriptor

Because single bits may not be separately
addressable in memory, its storage is extended to
be a single addressable unit such as a byte.

The values true and false might be represented in 2
ways within this storage unit:
n A particular bit is used for the value (often, the sign bit of

the number representation), with 0=false and 1=true , and
the rest of the byte is ignored.

n A zero value in the entire storage unit represents false,
and any other nonzero value represents true.

6

31Chapter 6: Data Types

Character Types: specification

The set of possible character values is
usually taken to be a language-defined
enumeration corresponding to the standard
character sets supported (I.e. ASCII).
Operations on character data include only
the relational operations, assignments, and
sometimes operations to test whether a
character is one of the special classes letter,
digit, or special character.

