
1

Chapter 16

Logic Programming

2Chapter 16: Logic Programming

Topics

Examples
n Execution trace
n Controlling backtracking

Lists

3Chapter 16: Logic Programming

Lists

One of the most important Prolog data
structures.
A list is an ordered sequence of zero or
more terms written between square
brackets and separated by commas.

[alpha,beta,gamma,delta]
[1,2,3,go]
[(2+2),in(austin,texas),-4.356,X]
[[a,list,within],a,list]

4Chapter 16: Logic Programming

Lists

The elements of a list can be Prolog terms
of any kind, including other lists.
n The element [a] is not equivalent to the atom
a.

The empty list is written [].
List can be constructed or decomposed
through unification.
n An entire list can match a single variable

Unify With Result
[a,b,c] X X = [a,b,c]

5Chapter 16: Logic Programming

Lists

n Corresponding elements of two lists can be
unified one by one.
Unify With Result
[X,Y,Z] [a,b,c]
[X,b,Z] [a,Y,c]

n This also applies to lists or structures
embedded within lists.
Unify With Result
[[a,b],c] [X,Y]
[a(b),c(X)] [Z,c(a)]

X=a, Y=b, Z=c
X=a, Y=b, Z=c

X=[a,b], Y=c
X=a, Z=a(b)

6Chapter 16: Logic Programming

Lists: head & tail

Any list can be divided into head and tail
by the symbol |
n The head of a list is the first element

n The tail is a list of the remaining elements
(and can be empty).

n The tail of a list is always a list; the head of a list
is an element.

2

7Chapter 16: Logic Programming

Lists: examples

Every nonempty list has a head and a tail
[a|[b,c,d]] = [a,b,c,d]
[a|[]] = [a]
The term [X|Y] unifies with any
nonempty list, instantiating X to the head
and Y to the tail
Unify With Result
[X|Y] [a,b,c,d] X=a, Y=[b,c,d]
[X|Y] [a] X=a, Y=[]

8Chapter 16: Logic Programming

Lists: examples

Unify With Result
[X,Y|Z] [a,b,c]
[X,Y|Z] [a,b,c,d]
[X,Y,Z|A] [a,b,c]
[X,Y,Z|A] [a,b]
[X,Y,a] [Z,b,Z]
[X,Y|Z] [a|W]

X=a, Y=b, Z=[c]
X=a, Y=b, Z=[c,d]
X=a, Y=b, Z=c, A=[]
fails
X=Z=a, Y=b
X=a, W=[Y|Z]

9Chapter 16: Logic Programming

Lists: internal representation

The previous representation is only the
external appearance of lists.
All structured objects in Prolog are trees.
n The head and the tail are combined into a

structure by a special functor ‘.’
.(Head, Tail)

Example:
[ann,tennis,tom,skiing]
.(ann,.(tennis,.(tom,.(skiing,[]))))

10Chapter 16: Logic Programming

Lists: internal representation

Both notations can be
used.
The square bracket
notation is normally
preferred.
Internally, they are
represented as binary
trees.

.

.

.

.

ann

tennis

tom

skiing []

11Chapter 16: Logic Programming

Lists: recursion

To fully exploit the power of lists:
n A way to work with lists elements without

specifying their positions in advanced.

A repetitive procedure that will work their
way along a list, searching for a particular
element or performing some operation on
every element encountered.
n Repetition is expressed in Prolog by using

recursion .

12Chapter 16: Logic Programming

Lists: recursion

In order to solve a problem, perform some
action and then solve a similar problem of
the same type using the same procedure.
The process terminates when the problem
becomes so small that the procedure can
solve it in one step without calling itself
again.
Some common operations on lists:
membership, concatenation, adding an
item to a list, etc

3

13Chapter 16: Logic Programming

Lists: membership

A predicate member(X,L) succeeds if X
is an element of the list L.
Examples:
?- member(b,[a,b,c]).

yes
?- member(b,[a,[b,c]]).

no
?- member([b,c],[a,[b,c]]).

yes

14Chapter 16: Logic Programming

Lists: membership

What can we say about the membership
relation?
In general, this relationship can be based on
the following observation:

X is a member of L if either
(1) X is the head of L , or
(2) X is a member of the tail of L.

15Chapter 16: Logic Programming

Lists: membership

Identify two special case that are not
repetitive
n If L is empty, fail with no further action (nothing is

a member of the empty list).
n If X is the first element of L, succeed with no

further action (the element was found).
To solve the first special case: make sure in
all clauses that the second argument is
something that will not unify with an empty
list.

16Chapter 16: Logic Programming

Lists: membership

The second argument should be a list that has both a
head and a tail.

n The second special case (a simple clause):

member(X,[X|Tail]).

The recursive part (“X is a member of L if X is a
member of the tail of L”) can be expressed as:
member(X,[Head|Tail]):-

member(X,Tail).

17Chapter 16: Logic Programming

Lists: concatenation

The predicate concatenate or append
combines to lists into a single list.
Examples:

?- concatenate([a,b,c],[d,e,f],X).
X = [a,b,c,d,e,f].

Can we use ‘|’? [[a,b,c]|[d,e,f]]

is equivalent to [[a,b,c],d,e,f].

Strategy: work through the first list element by
element, adding elements one by one to the
second list.

18Chapter 16: Logic Programming

Lists: concatenation

The definition concatenation(L1,L2,L3)
will have again two cases, depending on
the first argument, L1:

(1) Since the first list will be shortened, it will
eventually become empty. So, if the first
argument is an empty list then the second
and the third arguments must be the same
list.

concatenate([],L,L).

4

19

Lists: concatenation
(2) If the first argument is a non-empty list then it
has a head and a tail. The new list have the
same head and the concatenation of the tail with
the second list.

concatenate([X|L1],L2,[X|L3]):-
concatenate(L1,L2,L3).

X

X L1 L2

L3

[X|L1]

L3

[X|L3] 20Chapter 16: Logic Programming

Lists: concatenation

Examples:
?- concatenate([a,[b,c],d],[a,[],b],X).

X = [a,[b,c],d,a,[],b]
?- concatenate([a,b,c],X,[a,b,c,d,e,f]).

X = [d,e,f]
?- concatenate(X,[d,e,f],[a,b,c,d,e,f]).

X = [a,b,c]
?- concatenate(X,Y,[a,b,c,d]).

X = [] Y = [a,b,c,d]
X = [a] Y = [b,c,d] X = [a,b] Y = [c,d]
X = [a,b,c] Y = [d] X = [a,b,c,d] Y = []

21Chapter 16: Logic Programming

Lists: adding an item

To add an item to a list, it is easier to put
the new item in front of the list so that it
becomes the new head.

add(X,L,[X|L]).
Examples:
?- add(0,[1,2,3],L).

L = [0,1,2,3]
?- add(X,[b,c,d],[a,b,c,d]).

L = a
22Chapter 16: Logic Programming

Lists: deleting an item

The delete operation delete(X,L,L1)
deletes an item X from a list L, where L1 is
equal to the list L with the item X removed.
(1) If X is the head of the list then the result after

the deletion is the tail of the list.
delete(X,[X|Tail],Tail).

(2) If X is in the tail then it is deleted from there.

delete(X,[Y|Tail],[Y|Tail1]):-
delete(X,Tail,Tail1).

23Chapter 16: Logic Programming

Lists: deleting an item

Delete, like member, is also non-deterministic in
nature.
n If there are several occurrences of X in the list then

delete will be able to delete anyone of them by
backtracking.

n Each alternative execution will only delete one
occurrence of X, leaving the others untouched.

?- delete(a,[a,b,a,a],L).
L = [b,a,a];
L = [a,b,a];
L = [a,b,a];
no

24Chapter 16: Logic Programming

Lists: counting list elements

This is the recursive algorithm to count
elements of a list:
n If the list is empty, it has 0 elements.

list_length([],0).
n Otherwise, skip over the first element, count

the number of elements remaining and add 1.
list_length([_|Tail],K) :-

list_length(Tail,J).
K is J+1.

5

25Chapter 16: Logic Programming

Lists: reversing a list

Recursive algorithm for reversing the order
of elements in a list:
(1) Split the original list into a head and tail.

(2) Recursively reverse the tail of the original
list.

(3) Make a list whose only element is the head
of the original list.

(4) Concatenate the reversed tail of the original
list with the list created in step 3.

26Chapter 16: Logic Programming

Lists: reversing a list
The list gets shorter every time, the
limiting case is an empty list, which Prolog
must return unchanged.
reverse([],[]).
reverse([Head|Tail],Result) :-

reverse(Tail,ReverseTail),
concatenate(ReverseTail,[Head],Result).

Example:
?- reverse([a,b,c,d],X).

X = [d,c,b,a]

27Chapter 16: Logic Programming

Terms

All Prolog statements are constructed from
terms.

Atoms

Numbers
Constants

Variables

Simple Terms

Compound/Complex terms (structures)

28Chapter 16: Logic Programming

Family Facts

parent(pam,tom).
parent(tom,bob).
parent(tom,liz).
parent(bob,ann).
parent(bob,pat).
parent(pat,jim).

female(pam).
male(tom).
male(bob).
female(liz).
female(ann).
female(pat).
male(jim).

29Chapter 16: Logic Programming

Controlling backtracking:
example

Consider the double step function. The
relation between X and Y can be specified
by three rules:
n Rule 1: if X < 3 then Y = 0

n Rule 2: If 3 ≤ X and X < 6 then Y = 2

n Rule 3: if 6 ≤ X then Y = 4

30Chapter 16: Logic Programming

Controlling backtracking:
experiment 1

f(X,0) :- X < 3.
f(X,2) :- 3 =< X, X < 6.
f(X,4) :- 6 =< X.

Question: ?- f(1,Y), 2 < Y.
The first goal f(1,Y), Y becomes instantiated to 0.
The second goal becomes 2 < 0 which fails, and so
does the whole goal list.
Before admitting that the goal list is not satisfiable,
Prolog tries, through backtracking, two useless
alternatives.
The three rules about the f relation are mutually
exclusive so that one of them at most will succeed.

6

31Chapter 16: Logic Programming

Controlling backtracking:
experiment 2

f(X,0) :- X < 3, !.
f(X,2) :- X < 6, !.
f(X,4).

Equivalent to these three rules:

if X <3 then Y =0,
otherwise if X < 6 then Y = 2,
otherwise Y = 4

32Chapter 16: Logic Programming

Examples using cut

Computing maximum
max(X,Y,X) :- X >= Y, !.
max(X,Y,Y).

Single-solution membership
member(X,[X|L]) :- !.
member(X,[Y|L) :- member(X,L).

Classification into categories
class(X, fighter) :- beat(X,_),beat(_,X),!.
class(X,winner) :- beat(X,_), !.
class(X, sportsman) :- beat(_,X).

