
1

Chapter 16

Logic Programming

2Chapter 16: Logic Programming

Topics

Summary (resolution, unification, Prolog
search strategy)
Disjoint goals
The “cut” operator
Negative goals
Predicate “fail”
Debugger / tracer
Arithmetic
Lists

3Chapter 16: Logic Programming

Resolution
Resolution is an inference rule for Horn
clauses.
Given two clauses:
n If the head of the first clause can be matched

with one of the statements in the body of the
second clause then the first clause can be
used to replace its head in the second clause
by its body.

a ß a1,…,an.
b ß b1,…,bi,…,bm.

and bi matches a, then
b ß b1, …, bi-1, a1, …, a n, bi+1, …, bm

4Chapter 16: Logic Programming

Unification

Unification is the process by which
variables are instantiated so that
patterns match during resolution.
Unification is the process of making two
terms “the same” in some sense.
n ‘foo’ = foo

Prolog’s answer: yes.
Both terms are atoms.

n ‘5’ = 5
Prolog’s answer: no.
LHS is an atom and RHS is a number.

5Chapter 16: Logic Programming

Prolog’s Search Strategy

Prolog applies resolution in a strictly linear
fashion
n Replaces goals left to right.

n Considers clauses in top-to-bottom order.
n Subgoals are considered immediately once

they are set up.

n Search can be viewed as a depth-first search
on a tree of possible choices.

6

Prolog’s Search Strategy

Given the following clauses:
(1) ancestor(X,Y) :- parent(X,Z),

ancestor(Z,Y).
(2) ancestor(X,X).
(3) parent(amy,bob).

Given the goal ancestor(X,bob), Prolog’s search
strategy is left to right and depth first on the
following tree of subgoals.
n Edges are labelled by the number of the clause used by

Prolog for resolution
n Instantiation of variables are written in curly brackets.

2

7Chapter 16: Logic Programming

Prolog’s Search Strategy

Leaf nodes in this tree occur
n No match is found for the leftmost clause.
n All clauses have been eliminated (success).

Whenever failure occurs Prolog
backtracks up the tree to find further paths
to a leaf, releasing instantiations of
variables.

8Chapter 16: Logic Programming

Prolog’s Search Strategy

Original Prolog program:
(1) ancestor(X,Y) :- parent(X,Z),

ancestor(Z,Y).
(2) ancestor(X,X).
(3) parent(amy,bob).

Clauses in slightly different order:
(1) ancestor(X,Y) :- ancestor(Z,Y),

parent(X,Z).
(2) ancestor(X,X).
(3) parent(amy,bob).

Problem?

9Chapter 16: Logic Programming

Existential Queries

Variables in queries are existentially
quantified.

father(abraham,X)?

n Reads: “Does there exist an X such that
abraham is the father of X?”

n For convenience, existential quantification is
omitted.

10Chapter 16: Logic Programming

Universal Facts

Variables in facts are implicitly universally
quantified.
In general, a fact p(T1,…Tn) reads that for
all X1,…,Xk where the Xi are variables
occurring in the fact p(T1,…Tn) is true.

likes(X,apple).

From a universally quantified fact one can
deduce any instance of it.

likes(adan,apple).

11Chapter 16: Logic Programming

“Universal” Rules

Rule specifies things that are true if some
condition is satisfied.

For all X and Y,
Y is an offspring of X if

X is a parent of Y.

?-offspring(Y,X):-parent(X,Y).

12Chapter 16: Logic Programming

Disjoint Goals (“or”)

Prolog provides a semicolon, meaning “or”.
n The definition of parent could be written as a single

rule:
parent(X,Y) :- father(X,Y); mother(X,Y).

The normal way to express an “or” relation in
Prolog is to state two rules.
n The semicolon adds little or no expressive power to the

language.
n It looks so much like the comma that it often leads to

typographical errors.
n The use of semicolon is not recommended.

3

13Chapter 16: Logic Programming

The “Cut” Operator (!)

Automatic backtracking is one of the most
characteristic features of Prolog.
n Lead to inefficiency: explore possibilities that

lead nowhere.
The cut predicate tells the Prolog system
to forget about some of the backtrack
points.
n Discards all backtrack points that have been

recorded since execution entered the current
clause.

14Chapter 16: Logic Programming

The “Cut” Operator (!)

After executing a cut:
n It is no longer possible to try other clauses as

alternatives to the current clause.
n It is no longer possible to try alternative solutions to

subgoalspreceding the cut in the current clause.
Reduces the search space.
n “do not go to” (alternatives that we know are bound to

fail).
writename(1) :- !, write(‘One’).

Confirms the choice of a rule.
max(X,Y,Y) :- X>=Y, !.
max(X,Y,X).

15Chapter 16: Logic Programming

The “Cut” Operator (!)

Simulates an “else” statement when we are
testing cases.
n Mutually exclusive conclusions .

f(X,0) :- X=0, !.
f(X,1) :- X>0, !.
f(X,undefined).

Example: Given the knowledge base
f(X) :- g(X), !, h(X).
f(X) :- j(X).
g(a).
j(a).

What is the result of executing the query ?- f(a). ?

16Chapter 16: Logic Programming

Negative Goals (“not)

The special predicate \+ means “not” or
“cannot prove”.
If g is any goal, then \+ g succeeds if g
fails, and fails if g succeeds.

?- \+ likes(adan,apple).

The predicate \+ can appear only in a
query or on the right-hand side of a rule.
n It cannot appear in a fact or in the head of a

rule.

\+ likes(adan,apple).

17Chapter 16: Logic Programming

Negation as Failure

The behaviour of \+ is called negation as
failure.
n In Prolog, you cannot state a negative fact . All

you can do is conclude a negative statement if
you cannot conclude the corresponding positive
statement.

What is the definition a a person who is not a
parent?

non_parent(X,Y) :- \+ father(X,Y),
\+ mother(X,Y).

18Chapter 16: Logic Programming

Closed-World Assumption

What happens if you ask about people
who are not in the knowledge base?
The Prolog systems assumes that its
knowledge base is complete (this is
called the closed-world assumption).
n Something that cannot be proved to be

true is assumed to be false.

4

19Chapter 16: Logic Programming

Predicate “fail”

Predicate fail is a special symbol that
will immediately fail when Prolog
encounters it as a goal.
Cut-fail combination is used to say
that something is not true.

likes(mary,X) :- snake(X), !, fail
likes(mary,X) :- animal(X).

20Chapter 16: Logic Programming

Debugger / Tracer
The debugger allows you to trace exactly
what is happening as Prolog executes a
query.
?- trace.
yes
n Return : computation is shown step by step.
n s (for “skip”): the debugger will skip to the end

of the current query (useful if the current
query has a lot of subgoals which you do not
want to see).

n a (for “abort”): the computation will stop.

21Chapter 16: Logic Programming

Arithmetic

Prolog supports both integers and floating-point
numbers and interconvert them as needed.
Operator “is”: takes an arithmetic expression on
its right, evaluates it, and unifies the result with
its argument on the left.
?- Y is 2+2. ?- 5 is 3+3.
Y = 4
yes no
?- Z is 4.5+(3.9/2.1).
Z = 6.3571428
yes

22Chapter 16: Logic Programming

Arithmetic

The precedence of operators is about the
same as in other programming languages.
Prolog is not an equation solver.
n Prolog does not solve for unknowns on the

right hand side of is:

?- 5 is 2 + What.
instantiation error.

23Chapter 16: Logic Programming

Constructing Expressions

Prolog vs. other programming
languages
n Other programming languages evaluate

arithmetic expressions wherever they
occur.

n Prolog evaluates arithmetic expressions
only in specific places.

2+2 evaluates to 4 only when it is an argument
of the predicates of the following table; the rest
of the time it is just a data structure consisting
of 2, +, and 2.

24Chapter 16: Logic Programming

Built-in Predicates that Evaluate
Expressions

Succeeds if Expr1 =< Expr2Expr1 =< Expr2

Succeeds if Expr1 >= Expr2Expr1 >= Expr2

Succeeds if Expr1 < Expr2Expr1 < Expr2

Succeeds if Expr1 > Expr2Expr1 > Expr2

Succeeds if results of the expressions are not
equal.

Expr1 =\= Expr2

Succeeds if results of both expressions are
equal.

Expr1 =:= Expr2

Evaluates Expr and unifies result with RR is Expr

5

25Chapter 16: Logic Programming

Constructing Expressions

There is a clear difference between:
n is, which takes an expression (on the right),

evaluates it, and unifies the result with its
argument on the left.

n =:=, which evaluates two expressions and
compares the results.

n =, which unifies two terms (which need not be
expressions and, if expressions, will not be
evaluated).

26Chapter 16: Logic Programming

Constructing Expressions:
examples

?- What is 2+3.
What = 5 % Evaluates 2+3, unify result with What

?- 4+1 =:= 2+3.
yes % Evaluates 4+1 and 2+3, compare results

?- What = 2+3
What = 2+3 % Unify What with the expression 2+3

